
MATH 2230A - HW 5 - Solutions
Full solutions at Q1,2,4

For your reference, we recall the main theorems central to this HW.

Theorem 0.1 (Cauchy-Goursat Theorem). Let Ω be the closure of some simply connected open set.
Let f : Ω→ C be a function such that it is holomorphic on Ω. Then we have∫

∂Ω

f(z)dz = 0

where ∂Ω denotes the boundary of Ω

Theorem 0.2 (Cauchy-Goursat Theorem, multiply connected domain). Let f : Ω → C be holo-

morphic on the closure of some open, multiply connected set, that is Ω = Ω0 −
⊔k
i=1 Ωi where

Ω0,Ω1, . . . ,Ωk are all open simply-connected sets and {Ωi}1≤i≤k are mutually disjoint subsets of Ω0.
Then we have ∫

∂Ω0

f(z)dz =

n∑
i=1

∫
∂Ωi

f(z)dz

where the boundaries are oriented couterclockwise.

Proof. This follows from the ordinary Cauchy-Goursat Theorem

Remark. Every time, we would be giving full solutions to selected problems only. Other problems
are provided with partial solutions. Please feel free to contact us if you need help on the solutions.

1 (P.159 Q2). Let C1 denote the positively oriented boundary of the square whose sides lie along
the lines x = ±1, y = ±1. Let C2 be the positively oriented circle |z| = 4.

With the aid of Cauchy-Goursat Theorem on multiply connected domain, explain why∫
C1
f(z)dz =

∫
C2
f(z)dz when

f(z) =
1

3z2 + 1
a) f(z) =

z + 2

sin(z/2)
b) f(z) =

z

1− ez
c)

Solution. We denote Ω the closed region between the two contours C1, C2. To use the Cauchy-
Goursat Theorem, we have to ensure that the functions in questions are complex differentiable
everywhere on Ω (including the boundary).
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a). We consider the equation 3z2 + 1 = 0. Note that we have for all z ∈ C

3z2 + 1 = 0⇐⇒ (
√

3z + i)(
√

3z − i) = 0⇐⇒ z = ± i√
3

By the quotient rule, f(z) is complex differentiable at z if the denominator 3z2 + 1 6= 0 while
f is not defined at z and so not differentiable at z if the denominator 3z2 + 1 = 0. Hence the
set of complex differentiable points is Df := C− {± i√

3
}. It is easy to see that Ω ⊂ Df , so f is

complex differentiable on Ω and the Cauchy-Goursat Theorem applies.

b). First we consider the equation sin(z/2) = 0. Note that we have for all z ∈ C

sin(z/2) = 0⇐⇒ eiz/2 − e−iz/2

2i
= 0⇐⇒ eiz − 1 = 0⇐⇒ iz ∈ log 1 = {2nπi|n ∈ Z}

⇐⇒ z = 2nπ for some n ∈ Z

By the quotient rule, f(z) is complex differentiable at z if the denominator sin(z/2) 6= 0 while f
is not defined at z and so not differentiable at z if the denominator sin(z/2) = 0. Hence the set
of complex differentiable points is Df := C− {2nπ|n ∈ Z}. It is easy to see that Ω ⊂ Df , so f
is complex differentiable on Ω and the Cauchy-Goursat Theorem applies.

c). First we consider the equation 1− ez = 0. Note that we have for all z ∈ C

1− ez = 0⇐⇒ ez = 1⇐⇒ z ∈ log1 = {2nπi|n ∈ Z}
⇐⇒ z = 2nπi for some n ∈ Z

By the quotient rule, f(z) is complex differentiable at z if the denominator 1 − ez 6= 0 while f
is not defined at z and so not differentiable at z if the denominator 1− ez = 0. Hence the set of
complex differentiable points is Df := C− {2nπi|n ∈ Z}. It is easy to see that Ω ⊂ Df , so f is
complex differentiable on Ω and the Cauchy-Goursat Theorem applies.

2 (P.159 Q3). Suppose C0 is a positively oriented circle |z − z0| = R for some R > 0 and z0 ∈ C,
then it is true that ∫

C0

(z − z0)n−1dz =

{
0 0 6= n ∈ Z
2πi n = 0

Using the Cauchy-Goursat Theorem on multiply connected domain, show that if C is the boundary
of the rectangle 0 ≤ x ≤ 3, 0 ≤ y ≤ 2, oriented positively, then∫

C

(z − 2− i)n−1dz =

{
0 0 6= n ∈ Z
2πi n = 0

Solution. Consider a small circle centered at (2+i) such that it lies in the interior of C. In particular,
we take C0 = {z ∈ C : |z − (2 + i)| < 0.1}, oriented positively. Then C0 clearly lies in the interior of
C. Let Ω be the closed region between the contour C0 and C. To use the Cauchy-Goursat Theorem,
we have to ensure that the functions z 7→ (z − 2 − i)n+1 for n ∈ Z is complex differentiable on Ω.
This is true because by the quotient rule, the function is complex differentiable except maybe on
the point {2 + i}, which is not in Ω. Hence by the Cauchy-Goursat Theorem (on multiply connected
domain), we have ∫

C

(z − 2− i)n−1dz =

∫
C0

(z − 2− i)n+1 =

{
0 0 6= n ∈ Z
2πi n = 0

where the second equality follows from the fact in the question.
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3 (P.159 Q4). In this question, we would be deriving the following integration formula for b > 0:∫ ∞
0

e−x
2

cos 2bxdx =

√
π

2
e−b

2

(a). Consider the rectangular path below.

(i). Show that the sum of the integrals of e−z
2

along the lower and upper horizontal legs is

2

∫ a

0

e−x
2

dx− 2eb
2

∫ a

0

e−x
2

cos 2bxdx

(ii). Show that the sum of the integrals along the vertical legs on the right and left is

ie−a
2

∫ b

0

ey
2

e−i2aydy − ie−a
2

∫ b

0

ey
2

ei2aydy

(iii). With the aid of the Cauchy-Goursat theorem, show that∫ a

0

e−x
2

cos 2bxdx = e−b
2

∫ a

0

e−x
2

dx+ e−(a2+b2)

∫ b

0

ey
2

sin 2aydy

(b). By accepting the fact that
∫∞

0
e−x

2

dx =
√
π

2 and observing that∣∣∣∣∣
∫ b

0

ey
2

sin 2aydy

∣∣∣∣∣ ≤
∫ b

0

ey
2

dy

show the desired integration formula at the start of the question by letting a → ∞ in the
equation at the end of part (a).

Solution. Just follow what the question tells you.
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4 (P.161 Q6). Let C denote the positively oriented boundary of the half disk 0 ≤ r ≤ 1, 0 ≤ θ ≤ π.
Let f be a continuous function defined on the half disk by

f(z) =

{
0 z = 0
√
reiθ/2 r > 0,−π2 < θ ≤ 3π

2

whenever z is in the half disk.

(a). By evaluating separately the integrals of f over the semi-circle and the two radii which made
up C separately, show that

∫
C
f(z)dz = 0

(b). Why does the Cauchy-Goursat Theorem not apply here?

Solution.

(a). Let C1, C2, C3 be the positively oriented contour of the semicircular arc, the left radius in-
cluding the origin and the right radius including the origin respectively. Then

∫
C
f(z)dz =∑3

i=1

∫
Ci
f(z)dz since C and C1 ∪ C2 ∪ C3 are different by just a finite set of points and

C1, C2, C3 are almost disjoint from each other (by a finite set of points). We proceed to com-
pute the integrals one by one:
On C1. Parametrize C1 by γ1 : [0, π]→ C1 with γ1(θ) = eiθ. Then we have∫

C1

f(z)dz =

∫ π

0

f ◦ γ1(θ)γ′1(θ)dθ =

∫ π

0

f(eiθ)ieiθdθ

=

∫ π

0

eiθ/2ieiθdθ since the branch is −π
2
< θ ≤ 3π

2

=

∫ π

0

iei3θ/2dθ =
2

3i
iei3θ/2

]π
0

=
2

3
(−i− 1)

On C2. Parametrize C2 by γ2 : [−1, 0]→ C2 with γ2(t) = t. Then we have∫
C2

f(z)dz =

∫ 0

−1

f ◦ γ2(t)γ′2(t)dt =

∫ 0

−1

f(t)dt

= lim
ε→0−

∫ ε

−1

f(t)dt

= lim
ε→0−

∫ ε

−1

(−t)1/2eiπ/2dt = lim
ε→0−

−2

3
(−t)3/2i

]ε
−1

=
2

3
i

Note that we use improper integral on the 2nd row in case any problems appear at t = 0.
Luckily, f ◦ γ2(0) = f(0) = 0 and (−0)1/2eiπ/2 = 0 = f ◦ γ2(0). So for this case, improper
integral needs not be used actually. Nonetheless, I expect some justifications similar to the
above.
On C3. Parametrize C3 by γ3 : [0, 1]→ C3 with γ3(t) = t. Then we have∫

C3

f(z)dz =

∫ 1

0

f ◦ γ3(t)γ′3(t)dt =

∫ 1

0

f(t)dt

= lim
ε→0+

∫ 1

ε

f(t)dt

= lim
ε→0+

∫ 1

ε

t1/2dt = lim
ε→0+

2

3
t3/2

]1

ε

=
2

3

Note that we use improper integral on the 2nd row in case any problems appear at t = 0.
Luckily, f ◦ γ3(0) = f(0) = 0 and (0)1/2 = 0 = f ◦ γ3(0). So for this case, improper integral
needs not be used actually. Nonetheless, I expect some justifications similar to the above.
Therefore we have

∫
C
f(z)dz =

∫
C1
f(z)dz +

∫
C2
f(z)dz +

∫
C3
f(z)dz = 0
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(b). To use the Cauchy-Goursat Theroem, we have to show that the integrand is complex differen-
tiable on the closed region enclosed by the contour of integration, which has to be the boundary
of an open, simply-connected set. Now the contour C in question is the boundary of the simply
connected upper half disk. We need to show that the integrand is not complex differentiable at
some points on the closed region enclosed by C. We proceed to show that the integrand f(z)
is not complex differentiable at 0. Denote the closed region enclosed by C to be Ω. Note that
for all z ∈ Ω− {0}, we have

f(z)− f(0)

z − 0
=
f(z)

z
=

√
reiθ/2

reiθ
=

1√
r
e−iθ/2

So, if we take a sequence zn → 0 with θ = 0 and decreasing r with zn ∈ Ω, for example,
zn = 1/n on the real line. Then we have

f(zn)− f(0)

zn − 0
=
f(zn)

zn
=
√
n

which shows that zn is unbounded and thus does not converge. By sequential criteria limz→0
f(z)−f(0)

z−0
does not exist, that is, f is not complex differentiable at 0.
Since the condition of the Cauchy-Goursat Theorem is not fulfilled, we cannot apply it here (at
least directly).

5 (P.161 Q7). Show that for any positively oriented simple closed contour C, the area of the region
enclosed by C can be written as

1

2i

∫
C

zdz

Hint: The Green Theorem you learnt in multivariable calculus may be useful. You may consult
Sec.50 of the textbook

Solution. Please refer to similar examples in Sec.50 of the textbook for the method.
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