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Theorem 1. Suppose that f is analytic in an annulus A = {z ∈ C | r < |z − z0| < R}. For any
compact subset K of A, the Larrent series of f converges to f uniformly and absolutely for all z ∈ K

Theorem 2. Suppose that f is analytic in an annulus A = {z ∈ C | r < |z − z0| < R}. For any
a ∈ A, we can differentiate the Larrent series of f term by term. That is,

f ′(a) =
∞∑
n=1

nan(a− z0)n−1 −
∞∑
n=1

nbn
(a− z0)n+1

Theorem 3. Suppose that f is analytic in an annulus A = {z ∈ C | r < |z − z0| < R}. For any
contour C inside A, we can integrate the Larrent series of f term by term. That is,∫

C

f(z)dz =
∞∑
n=0

an

∫
C

(z − z0)ndz +
∞∑
n=1

bn

∫
C

1

(z − z0)n
dz

Remark : Theorem 2 and 3 are a immediate consequence of theorem 1.

Be careful that the contour in the above theorem may not be closed! If the contour is closed and
contains z0, we see that all the term are zero except the term b1

∫
C

1
(z−z0)dz, it is because the terms

(z−z0)n have antiderivative in A except 1
(z−z0) (n = −1). This leads to an important theorem. Before

that, we introduce some definitions.

Definition 1. Suppose that f is analytic in some punctured disk D = {z ∈ C | 0 < |z − z0| < R}.
The coefficient of

1

(z − z0)
in the Larrent series is called the residue of f at the singular point z = z0,

which is denoted by Res
z=zk

f . If we write f(z) =
∞∑
n=0

an(z − z0)n +
∞∑
n=1

bn
(z − z0)n

, then Res
z=zk

f = b1.

Theorem 4. (Cauchy Residue Theorem) Suppose C is a closed contour in positive sense. If f is
analytic inside and on C except finite number of singular points zk inside C, then∫

C

fdz = 2πi
n∑
k=1

Res
z=zk

f

Remark : Actually it is exactly Cauchy integral formula in the view of power series.
Remark : In other words, to calculate the integral

∫
C
fdz is to calculate the residue of f at the

singular points.

Definition 2. Suppose that f is analytic in some punctured disk D = {z ∈ C | 0 < |z − z0| < R}.
We define the order of pole at z0 to be the smallest non-negative integer m such that
lim
z→z0

f(z)(z − z0)m+1 = 0.
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Remark : If the order of pole at z0 is m, it implies that the non-zero coefficients in Larrent series is
at most up to bm and bn = 0 for all n > m. Since m is the smallest non-negative integer such that
lim
z→z0

f(z)(z−z0)m+1 = 0, if not, suppose that bm+1 6= 0, we can see that lim
z→z0

f(z)(z−z0)m+1 = bm+1 6= 0

by expanding the Larrent series.

Then we come to the computation of residue. Of course we can express the whole Larrent series
to obtain that. We provide an alternative method here. If the order of pole of f at z = z0 is m and
thus

f(z) =
∞∑
n=0

an(z − z0)n +
m∑
n=1

bn
(z − z0)n

.

We consider

(z − z0)mf(z) =
∞∑
n=0

an(z − z0)n+m + b1(z − z0)m−1 + b2(z − z0)m−2 + ...+ bm

and differentiate it m− 1 times, we could have

dm−1

dzm−1
((z − z0)mf(z)) = (m− 1)!b1 +O(z − z0)

Theorem 5. Suppose that f is analytic in some punctured disk D = {z ∈ C | 0 < |z − z0| < R} and

the order of pole at z0 is m, then Res
z=zk

f = lim
z→z0

1

(m− 1)!

(
dm−1

dzm−1
[(z − z0)mf(z)]

)
.

Exercise:

1. Compute

∫
C

e−
1
z dz where C representing the contour {|z| < 3}.

2. Compute

∫
C

5z − 2

z(z − 1)
dz where C representing the contour {|z| < 3}.

3. Compute

∫
C

π

z2 sin(πz)
dz where C representing the contour {|z| < 1

2
}.

4. Compute

∫ π/2

0

dθ

a2 + sin2 θ
for a > 0.
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