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ABSTRACT: In this article, we study a gradient flow associated with a gauged harmonic map energy in
dimension two. Some specific properties are considered, for instances bubbling analysis, asymptotic behavior
and removability of singularities.
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1. Introduction

The theories of harmonic map and Yang-Mills play fundamental roles in the study of both physics and
geometry. In this work, we couple these two theories and study a model of gauged harmonic map. Our
motivations stem from the work of [1], [2], [11], [16] and the references therein. But as one will see, we define
our model in more general settings, which involve a non-Abelian structure group ¢ and a fibre bundle &,
whose typical fibre .4 is a closed ¥-invariant Riemannian manifold.

I.1. Gauged Harmonic Map and Gradient Flow

Let .4 and .4 be two closed Riemannian manifolds of dimensions m and n, respectively. We assume that
M is equipped with a Riemannian metric g and .4 is isometrically embedded into RY. Suppose that

4 C SO(L)

is a compact Lie group with Lie algebra g. Naturally, if we identify an element in 4" as a column vector in
R” through the isometrical embedding, then ¢ induces a smooth left action on .4 by the left multiplication
of matrix. In this article, we require that .4 is ¥-invariant. That is

g- N CA, Vged¥y.

In order to introduce the model of gauged harmonic map, we need some geometric terminology. Let {%,}
be a finite open covering of .#Z. On %, N %3, we define a smooth map

Ja,B: U, ﬂ@/ﬁ — 9.

Obviously, if {ga,s} satisfies the co-cycle condition, then it determines a principal ¢-bundle, denoted by &7,
over /4. By &2, we can construct a fibre bundle & = & x4 4 via the left action of ¢4 on .4 which was
discussed above. It is clear that & is a sub-bundle of .#F = & x4 RL.

The variables in the theory of gauged harmonic map are a connection 1-form A on & and a section ¢ of
&. Locally on %,, A and ¢ can be represented as

Ay : Uy — g and Oa : Uy —> N,
respectively. Moreover, on %, N %3,
A, = Adga,/; (Aﬂ) - dgcxﬁ " 98,a and o = ga75¢5’
where Ad is the adjoint representation of 4. The energy functional associated with (A, ¢) is defined by
B(4.0) = [ e(d.0)dv, (11)

where
1
e(4,0) = 5 (IFal* + [Dagl?)

is the energy density. Note that in the definition of e(A, ¢), Fy4 is the curvature 2-form, while D4¢ is the
covariant derivative induced by A. The norms in e(A, ¢) are defined in a natural way, using the metrics on
A, RY and the Killing form of the Lie algebra g. With the energy functional F(A, ¢), we define gauged
harmonic map to be a critical point of (1.1). More precisely,



Definition 1.1 (Gauged Harmonic Map). A section ¢ € Q°(&) is called gauged harmonic map if there is a
connection A such that (A, @) satisfies the following Euler-Lagrange equation of (1.1):

Dy Fa=—(99,Da9) gi;
(1.2)

DiDa¢ = (Davi(d), Dad) vi(¢).

D? is the formal adjoint operator of Da. {g:} (I = 1,...,k) is an orthonormal basis of the Lie algebra g
under the inner product (-, -) which is induced from the Killing form on so(L).

{ri(o)}, i=1,...,.L—n

is an orthonormal frame of the normal bundle ( T4 )J‘ at ¢. Similarly as in the work of harmonic map and
Yang-Mills, we can introduce a gradient flow associated with the energy functional (1.1) as follows:

A =—D4Fa— (10, Da0) gi;
(1.3)
Orp = =Dy Dad + (Davi(9), Dad) vi(¢).

Note that (1.2) is gauge invariant under the gauge transformation
S(A7¢) = (5'A35'¢)7

where s+ A = Ady(A) —ds- s~ !, s- ¢ = s¢, while (1.3) is also gauge invariant under a time-independent
gauge transformation s.

1.2. Main Results

There are two directions in the study of gauged harmonic map. The first one is to reduce the problem to a
first-order Bogomol'nyi type equation (vortex equation) by studying the lowest bound of energy functional
in a homotopy class. For instances, [1], [2], [11], [16] and the references therein. To solve the vortex equation,
particularly in Abelian case, one can apply either the method of Taubes (see [11]) or a stability criterion
based on Hitchin-Kobayashi correspondence (see [2]). In fact, Taubes’ method works pretty well when the
base manifold .# is a Riemannian surface or C, while the stability method has its application in the case
when .# is a Kahler manifold with higher complex dimension. Our approach follows the second direction.
That is to study the gradient flow associated with the energy functional (1.1). Along this direction, many
works have been carried out in the theory of harmonic map (see [10], [18], [20]), Yang-Mills (see [13], [15],
[17], [22]) and Yang-Mills-Higgs (see [5]-[7]). As is well-known, the critical dimension for the heat flow of
harmonic map is 2, while the critical dimension for the Yang-Mills flow is 4. Therefore, when dim(.#) = 2,
our model is subcritical for the Yang-Mills fields and critical for the section of &.

We now describe the organization of this article. In Section II, we prove the local existence of the gradient
flow (1.3) with smooth initial data (Ao, ¢o). More precisely, we show that

Theorem 1.2. There is a T > 0 so that the gradient flow (1.3) admits a smooth solution on [0,T) with
the given smooth initial data (Ag, ¢o). For p > dim(.#), T can be shown to depend on the W*P-norm of

(Ag, o).

Theorem 1.2 works for any dimension. Start from Section III. We assume that dim(.#) = 2 and study some
specific properties associated with the gradient flow (1.3), for instances bubbling analysis, asymptotic behav-
ior and removability of singularities. Section III is a preparation, in which we show local energy inequalities,
Bochner-type inequality and e-regularity. A criterion is given in Section II1.4 for the first singular time Tj
of the gradient flow (1.3). If Tj < oo, then the bubbling phenomenon occurs at Tp. In this case, we show that



Theorem 1.3. Suppose that dim(.#) = 2. If the first singular time Ty is finite, then there exist a set of
finitely many points in M, denoted by {x;}, so that for all k € N,

(A(t), 0(t)) — (A(To), ¢(T0)), in CF (0 \{x:}), ast?t Tp.

Moreover, there exist finitely many non-trivial harmonic maps from R? into .4, denoted by {¢*}, so that
the following energy identity holds:

t1T7To

1
lim [ e(t)dv, = / e(Tp) dvg + = Z/ IVe:)? da. (1.4)
V. N 2 —~ Jre
Conventionally, {¢%} in Theorem 1.3 are called bubbles. From (1.4), one realizes that due to the existence of
singluar points, the gradient flow (1.3) loses some energy at Tp. Moreover, the lost energy can be recovered
by finitely many harmonic maps from R? into .4". Different from the assumptions in Theorem 1.3, in Section

V, we suppose that the gradient flow (1.3) admits a global smooth solution on [0, 00). We are interested in
the asymptotic behavior of the global solution as ¢ 1 co. In fact, we have

Theorem 1.4. Suppose that (A, ¢) is a global smooth solution of (1.8). Then there exist ty, T 0o and a finite
covering {B}} of M so that the followings hold:

(1). For each k and i, (A(tx), #(tr)) is gauge equivalent to some smooth (Aj ;, ¢y ;) on Bf. Define

* . * *
Ay By = Ak,m bp

B = Phis for all i.

Then there exists a principal &-bundle &), over M so that A} is a smooth connection on &y and ¢, is a
smooth section on the associated fibre bundle & = Py, Xg N ;

(2). As k — oo, we have a smooth principal 4-bundle P* over .# so that
yk—><@*, éak—>éa*=<@*><ge/‘/.

Here, the convergence of principal 4-bundles and fibre bundles are defined to be the C°°-convergence of the
associated tramsition functions;

(3). There are a W12-connection Ao, on P* and a W12-section ¢poo on &* so that As and ¢o are
smooth away from points in 3, where X is a finite subset of .# . Moreover,

(AltqusZ) — (Aooa¢)oo)7 m 01%00 (%\E), as k — oo;
(4). (Aso, Poo) solves (1.2) smoothly away from the points in 3.

Similarly as in the case of harmonic maps (see [14]), we can remove the singularities in ¥ from (As, Poo)
and show in Section VI that

Theorem 1.5 (Removability of Singularities). (Ao, o) 5 a global smooth solution of (1.2) on M .



11. Local Existence

Let Ay be a smooth connection 1-form on & and ¢y € Q°(&) be a smooth section. Here in the following,
we study the local existence of the gradient flow (1.3) with the given initial data (Ao, ¢o). One should refer
to [21] for some standard terminology in the gauge field theory. Sobolev spaces of sections of vector bundles
are also introduced in [21].

Now we sketch the plan of this section. Note that the first equation in (1.3) is just partially parabolic.
Therefore, in Section II.1 below, we use gauge transformation, similarly as the work of Donaldson, to reduce
the gradient flow (1.3) into a parabolic gauge equivalent flow. Furthermore, we use the projection near the
manifold .4 < R’ to get rid of the constraint on the range of unknown section. In such a way, we obtain an
extended gauge equivalent flow. The linear theory of parabolic equation on vector bundles and contraction
mapping theorem then can be applied to attain a unique smooth solution of the extended gauge equivalent
flow. We then show, similarly as the heat flow of harmonic map (see [10]) and liquid crystal flow (see [9] and
[20]), that if the initial section lies in Q°(&), then the solution of the extended gauge equivalent flow must
be a solution of the parabolic gauge equivalent flow, which, furthermore, implies a solution of the original
gradient flow (1.3).

II.1. Gauge Equivalent Flow and Its Extension

We reduce the gradient flow (1.3) into a parabolic gauge equivalent flow. Suppose that S is a gauge trans-
formation and (4, 1) is gauge equivalent to (A, $) via S™'. That is

A=8"1.4, =51 ¢.
It is clear that if (4, ¢) satisfies (1.3), then (A, ) solves

A= —D5Fz — (i, Dap) g + D (S~ - 0:S) 5

2.1
O = =D D g + (D gvi(¥), D) vi(vh) — (S71 - 8,S) - 9. .
Let A,er be a smooth reference connection and suppose that A = At + a. By requiring that
S1.9,8S = —D}a, (2.2)
one may then rewrite the equation (2.1) in terms of (a, 1) as follows:
da+ Avera = f(a,v) = (919, Dresth) gt — DfegFres; 03

O + Vit Vrett) = (D zvi(¥), D 39) vi(¥) + 20"V ot 190 + aFar,
where Flof is the curvature 2-form of A,ef, Vier is the induced covariant derivative and
fla, ) = a X Fret +a X Vieta — (q1th,at)gi + a X a+a X a X a.
In the above, x denotes any multi-linear map with smooth coefficients.
Avet = DyoDref + Dret Doy

is the Hodge Laplacian. System (2.3) is called parabolic gauge equivalent flow corresponding to (1.3).



Note that the unknown variable 4 in (2.3) can be represented locally as a map into .4#". To get rid of the
constraint on the range of ¥, we need a smooth projection

II: A5 —> AN, for some 6 > 0.

Here 35 is the 36-neighborhood of .4 in RE. Let p; be a smooth non-negative function such that

1, if s €[0,4];
p(s)=1¢ <1, if s € [4,26];
0, if s > 26.

p2 is a cut-off function, which is defined by
p2(z) = p1 (dist (x, A4)), vz e RE.
Obviously, ps is ¥-invariant. That is V x € RE, g € 4, we have
p2(g - x) = p2(x).
By the projection IT and the cut-off function ps, one can define an extended gauge equivalent flow as follows:

ata + Arefa = f(a7 1/J) - (gll/}> Drefw)gl - D:efFref;
(2.4)
O + Vi Vet = pa (1) (D avi(¥), D g () v (¥) + 2a*Vyep 111 + aFay, 1))

Here v is an unkown section on .%#. v;(v) should be understood as the i-th normal direction at ITi.

11.2. Estimates for linear heat equation on vector bundles
Denote by Qr the cylinder .# x [0,T]. With the given f € L? (Qr) and ¢° € WP (.#; .F), we study the
linear parabolic system defined as follows:

019 + Vit Vietd = f;
(2.5)
¢|t:0 = ¢0~

Basically, there are two estimates important to us. The first one is the Wg’l - estimate for the solution ¢
of (2.5). Another one is the LW 1P-estimate. We consider these two estimates in Proposition 2.1 and 2.2,
respectively. In the following, p > 2 is a fixed constant.

Proposition 2.1. The system (2.5) admits a unique solution such that

||¢||W§’1(QT) S fllpogm + H¢OHW2,p .

Proof. Firstly, we reduce the system (2.5) into the case in which ¢ = 0. Let ¥ = {%,} be the finite open
covering of ., by which the principal bundle &2 is defined. Suppose that

pa € CZ (W)

is a sequence of non-negative functions subordinate to the covering X. We require that

Zpaz , in A.
[0



Fix an a. pa¢? is in fact a map from R™ to RE. Here ¢ is the local representation of ¢° in %,. Define

1/1a = Ft * (Pa‘lsg) )

where T'y(z) = T'(z,t) is the standard heat kernel on R™ and * is the spatial convolution operator on R™.
One can easily check that

esssup o lfyen S 1160l -

Denote by 1, the restriction of ¥, on %, and patch them together by setting

\I/a('at) = ZpWQ(X,’YqL’y('7t)a in %a-
v
We claim that
1. On %o N %3, Vo = go sVs. Hence, V(-,t) € W2P (L#; F) by our construction;
2. At t =0,
Vo(0) =D pygarty(50) =D p2gard) =D p2 o0 = 65

v v v

Therefore, ¥(-,0) = ¢°;

3. ¥ admits a W2 !-estimate shown as follows:

ess sup (/ 100" dug + ||\Il||€vzp> < ||¢OH§VQYP ) (2.6)
>0 o

The estimate on 9;¥ in (2.6) can be derived by noticing that
Orthe = Athy, in R™.
Here A is the standard Laplace operator in R™.
We define @ = ¢ — U. It is clear that & satisfies

8t(b + Arefq) = f = f - (8t\IJ + Aref\II) )

(2.7)
P,y =0.
Notice (2.6), we know that fe L?(Qr). Now we apply Proposition 2.7 in [22] and imply that
121wz (00 S IFllzr@r) S 1Flzr@ry + [[6°|ya - (2.8)
Combine the above inequality with (2.6), we have
||¢||W5’1(QT) S HfHLp(QT) + H¢OHW2,p .
The proof is then finished. 0

As for the LW !P-estimate for the solution of (2.5), we have

Proposition 2.2. Let ¢ be the unique solution of (2.5). Then

esssup |61 S 1 Wm iy + 116 [y
te[0,T] |W1p Lr(Qr) H Hsz



Proof. Act V,er on both sides of (2.7) and inner product with p |Vref<1>|p_2 Viet®. One has

d

dt |Vrefq)|p + p/ (|vref(b|p_2 v1ref(I)a vrefAref(I)> = p/ <|vref¢"|p_2 vref(I)a vreff) .
M

In the above integral and the integral in the following, we omit dv, for convenience. Integrate by parts for
the right-hand side and the second term on the left-hand side above. Therefore,

d

dt |me(1)|p +p/ |Vrcf(:[)|p72 |Arcf®‘2 *P/ |vrcf¢‘p72 (Arch)af) =
M M

=2 [ [Tut® ™ (Bt — . Vg (Vrae®, Vias®) + Fr® (Ve Vo).
M

Fix an arbitrary 7 € [0,7] and integrate the above equality with respect to ¢ from 0 to 7. One may imply
by (2.8) and Hélder’s inequality that

essaup / Vet S 112y + 1|6y -

Notice (2.6). The proof is then finished. O
Simlar arguments can be applied to 1-forms. In fact, we have

Proposition 2.3. Suppose that f € LP ([0, T); LP(T*.# @ AdZ)) and a® € WP (T*#/ @ AdDP). If a is the
unique solution of the system:

8ta + Arefa = f7
(2.9)

a|t:0 = aov
where Aves s the Hodge Laplacian, then one has

< 0
lallwz or) + esssuplalwrs S fllzery + 1o iyas -

I1.3. Local Existence for the Gradient Flow

In this section, we assume that p > m.
a® € Q' (Ad2) and Y0 € QY (.F)

are initial datum corresponding to the extended gauge equivalent flow (2.4). Without loss of generality, we
choose T < 1 and suppose that V/,. and V. are closures of

2 ([0,T); Q' (Ad2)) and o2 ([0,T];9Q°%(F))

under the norms

I, = s | s gonaon + [ [, V20



and

T

P

s R [PPSR (LA
’ t€[0,T] 0 M

respectively. Here, all smooth 1-forms in Cg% ([0,7]; Q' (AdZ?)) and sections in Cg% ([0,T];Q°(F)) take
zero initial values. By V1. and V77, we define V, 1 := V1. x V* 1, which is equipped with the norm

1Ml =11 v, + 1 Mg -
Notice that, by Sobolev embedding,

I fllz @) S Ifllv, .z VieV,r. (2.10)

Proposition 2.4. With the given smooth initial datum (ao, 1/)0), there exists a T > 0 such that the extended
gauge equivalent flow (2.4) admits a unique smooth solution in [0,T). T depends on the p and W*P-norm

of (a®,¢°).

Proof. Let f = 0. We solve the homogeneous equation of (2.9) and (2.5) with the given initial datum a° and
Y. The solutions are denoted by a' and !, respectively. By Proposition 2.1-2.3, we have

(CRUD] A [t e (2.11)

Decompose the unknow variable (a,v) as a = a' 4+ @, 1 = ¢! + 1. Therefore, one can rewrite the equation
(2.4) in terms of (@,v) as follows:

3tC_L + Arefa - fl (C_Lﬂ/_)) 3
) i i (2.12)
Oh + Vi Vieth = g1 (a,9)

where f; (Fz, 77[_1) and g1 (EL,?/_J) are defined to be
f (C_L + a17 'J) + 7//1) - (gl (J) + '(/)1) aDrefQ/; + Drefﬂ}l) g — D:efFref

and g (Et +a', 9 —|—1/)1)7 respectively. Here f(a,) is defined in (2.3) and g(a,) stands for the right-hand
side of the second equation in (2.4).

We use the contraction mapping theorem to solve (2.12) with 0 initial datum. In the following, C'is a
suitably large constant depending on p, .#, A", Dyt and the W2P-norms of a® and ¢°. Fix (d*, Q/J*) € By, 1,
where g < 1 and B, r is the ball in V}, 7 with center 0 and radius rg. We consider the system

Ot + Avera = f1 (@x, 04) 3
_ ) . (2.13)
O+ Vi Viet) = g1 (@, 94
with 0 initial value. By (2.10)-(2.11), we know that
fi (@ v.) € P ([0, T]; LP (T4 @ AdP))

and can be estimated by

| In@a)r=cr

T



Apply Proposition 2.3, there exists a unique solution a of the first equation in (2.13) and moreover,

Ha||’;:j <CT. (2.14)

Similar arguments can be applied to 1) which is the solution for the second equation in (2.13). Note that

/ |gl(&*7i*)|p < c <T+/ |Vref1z* 2
T Qr

We estimate fQT |Vierths |2p in (2.15). In one way, it can be bounded by

/ s

In another way, by Sobolev embedding, one may estimate the last term above by

Tt ). (215)

e ) /J/{|Vref&* 7 < esssup/ﬂwref&* |p/ [Viet | e )

t€[0,T)

T
esssup/ ‘Vref'l/_i* }p./ ||Vref1/_1*|}€vl,p <C Hzﬁ* z/p
M 0

t€[0,T]

Since . € By, T, we know that

2
v SC’rgp.

el

/ IVyetth | < C |

Similarly, for fQT |Viet ! |?P, we have

/ Veertt [ < C esssup /ﬂyvrefwll”- / Veert P+ | V201 SO(T+ / V2,000 \”).
Qr

0<t<T

Therefore, one can estimate g; (., ,) as follows:

[ o @oi)r <o (Tenre [ vaar). 210

T

Then by Proposition 2.1 and 2.2, we have

QZT <C <T+r§”+/Q |vfef¢1|”>. (2.17)
’ T

By (2.14) and (2.17), we know that if T and rq are suitably small, the solution (@, ) of (2.13) lies in By, r.
Here we used the absolute continuity of fQ |Vref | . Now we can construct a nonlinear operator which

9]

sends (., 1.) € By, r to the unique solution of (2.13). Clearly, this nonlinear operator is also a contraction
mapping between B,, r and itself when ry and T are suitably small. The local existence for the extended
gauge equivalent flow is then obtained. The smoothness of the solution can be easily obtained by standard
parabolic estimates. We omit the arguments here. O

In the following, we show that the smooth solution for the extended gauge equivalent flow (2.4) is also a
solution for the parabolic gauge equivalent flow (2.3) if the initial section is a section of the fibre bundle &
In fact, we have

Proposition 2.5. With given initial data (a°,¢°) € Q1 (AdP) x Q(&), there exists a T > 0 such that the
parabolic gauge equivalent flow (2.8) admits a unique smooth solution in [0,T), where T depends on p and
the W2P-norm of (a°, ¢°).

10



Proof. Suppose that (a,) is the unique solution of (2.4) with the given initial datum (a°, ¢"). By the
regularity of the extended gauge equivalent flow (2.4), we know that when 7' is small enough, 1 takes its
value in the é-neighborhood of 4. Therefore, p2(¢)) = 1 in [0,T) and the second equation in (2.4) can be
read as

O + Vit Vet = (D zv3 (1), D 119) v () + 20"V op s TT9) + a"ay ITep. (2.18)
Here A = A,e + a. Define p = %W — 9|2, Then by Lemma 2.6 below, we know that
Op+V*Vp <O0.
Here —V*V = A_4 is the Laplace-Beltrami operator on the mainifold .#. The standard maximum principle
implies that p =0 in [0,T). The proof is then finished. O

We complete the proof of Proposition 2.5 by showing Lemma 2.6 in the following.

Lemma 2.6. Let p be as in the proof of Proposition 2.5. Suppose that on [0,T), (2.18) holds. Then

Oup+ V*Vp = — |Viet®) — Vier (IY)|*, V€ (0,7).

Proof. By standard calculations, we know that

Op+ V*Vp = — |Vietth — Vier (ITY))|* + (2.19)
1 9 : .
o =1)- (2 5 (ViAW) ) - (6 =10 - V'V
J

+(¢ — ) - (Aky OpIIY) + (¢ — II) - (AL g Aver s TIp) + (¢ — IIp) + (04t + Vieg Vierth) .

We label from (I) to (VI) the six terms on the right-hand side of (2.19). Now we expand the right-hand side
of (2.18) as follows so that we can plug it into the (VI)-th term in (2.19).

O + Vit Vet = (v, VVIIY) v — (v, AL 0.TI0) v; — (13, 0" OpITY) v;— (2.20)
— (1/1-7 Afcf Arcf’knw) v; — <l/i, \jgaj (\/§ Aief H’(ﬁ)) Vi — (Vi7 ak Arcf,kl_h/)) V;—

— (V,L', a’ 8jH1/)) v; — (Z/Z‘, A]fef a;J[z/;) v; — (I/i7 a® akl_[d)) vi +2a" Vet 119 + afaIlip.

We label from (1)-(11) the terms on the right-hand side of (2.20). Notice that
(4~ T9) LT,

Therefore, we can cancel some terms in (2.19) after we plug (2.20) into the (VI)-th term on the right-hand
side of (2.19). In fact, (II) and (5), (IIT) and (1), (IV) and (2), (V) and (4) are the pairs, which can be
cancelled out. In (2.20) itself, we see that (3) + (6) + (7) + (8) + (10) give us a tangent vector at . It is
orthogonal to ¢ — ITyp. Obviously, (9) + (11) is also a tangent vector at ¢. Therefore, only the (I)-th term
on the right-hand side of (2.19) remains after cancellation. The proof is then finished. O

11



As a corallary of Proposition 2.5, we can show that the gradient flow (1.3) admits a local regular solution
with the initial data (Ao, ¢g) given at the beginning of Section II. In fact, set (a, #°) = (Ag — Avret, P0). We
can find a smooth solution (a, ) of the parabolic gauge equivalent flow by Proposition 2.5. In the rest, one
just needs to solve the equation in (2.2) with the initial condition:

S(0) = 1d.
Obviously,
A:S'(Aref+a)a ¢:Sw

provides us with a solution of (1.3). Moreover, we have the following energy identity,

Proposition 2.7. If (A, ¢) is a reqular solution of the gradient flow (1.3) in [0,T), then

d

4 dA@ﬁm¢+/|&AP+m@Pm@=Q Vi e (0,7).

The proof for this proposition is simple. We inner product 9; A and 9;¢ on both sides of the first and second
equations in (1.3), respectively. Here one may use the fact that 9;¢ is orthogonal to the normal vectors
vi(¢). Then integrating by parts, the proof can be achieved.

I11. Energy Inequalities and Criterion for First Singular Time

The main purpose of this section is to study a criterion for the first singular time of the gradient flow
(1.3). Before that, we consider local energy inequalities, Bochner-type inequality and e-regularity in Section
III.1-3, respectively. The criterion will be given in Section III.4. In this section, all balls Br(zo) are geodesic
balls with R < i(.#), where i(.#) is the infimum of the injectivity radius of each point z € .Z.

II1.1. Local Energy Inequalities

In this section, we prove the following local energy inequalities for a solution of the gradient flow (1.3).

Proposition 3.1. Suppose that (A, $) is a smooth solution of (1.3) in M x [0,Ty). Then for all xg € M,
O<R<i(A) and0< S <T < Ty, we have

/ e(A,¢)dv, | < / e(A,¢)dvy | +CE(S)R>(T - S) (3.1)
Bry2(wo) Br(zo)

S

T

and
(3.2)

T
+OE@HT%T—$+C/‘/|@AF+W@R
S M

/ e(A,¢)dv, | < / e(A, §) dv,
BR/2(IO) S Br(zo) T

where E(S) is the total energy of (A, ¢) at time S and C is independent of o, (A, ), R, S and T.
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Proof. Choose 2y and R as in the assumption of Proposition 3.1. Define f a cut-off function such that f =1
in Bg/s(z0), f = 0 outside Br(xo) and [f| < 1 on .#. Moreover, we assume that |V f| < C/R, where C > 0
is an universal constant.

Inner product f2 d;¢ on both sides of the second equation in (1.3) and integrate by parts. We imply that

35 [ PIDack v+ [ Ploofan+2 [ fDa0.00 a5 do = [ (Dav.fora-0) dv,
Inner product f29; A on both sides of the first equation in (1.3) and integrate by parts. One has

g3 [ PIERan s [ Ploafay 2 [ fiRarno o=~ [ (Do o o) do,
Sum the above two equalities. One can show that

(3.3)

dt/ fZe(A, ¢)dv, + / 12 (|0:A]? + |0:9)°) dvg = —2 /%f<FA,df/\atA>+f(DA¢,at¢ df) dv,.

In one way, by Young’s inequality, one knows from (3.3) that

/ f2e(A, ¢)dvy < CR™ / @) du,.

Integrate the above inequality from S to T' and apply Proposition 2.7. One has

/ f2 el ¢) dug

Notice the choice of the cut-off function f. We know that (3.1) holds. In another way, still by (3.3), we have

g / fPe(A,¢)dv, | +CE(S)R (T -S).
M S

dt/ e dvg—i—C/ 2 (|0:A]? + |0:9)?) dvy > —C R~ / $) du,.

Same as the derivation of (3.1), we can integrate the above inequality from S to 7. Then (3.2) holds. O

I11.2. Bochner-type Inequality

Proposition 3.2. Suppose that (A, d) is a regular solution of the gradient flow (1.3). Then

(0 = D) (A, 6) + [VaFal* + [V40[" < C (|Ra|+|Fal) e(4,0) + (Davi(), Dad)®.

Here A 4 is the Laplace-Beltrami operator of the manifold 4. C > 0 is an universal constant depending
only on the geometry of # . R_y is the Riemannian curvature of A .
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Proof. In one way, it can be shown that (see [5])

2
-A g (|D§¢|> = (ViVaDa,Dad) - |Va(Dag).

In another way, by making time derivative once and applying the equation (1.3), we have

2
00 (1252 41010, Dad)? = ~ (D4 (D3D10), Dad) ~ (D3Fn) 0, Da) + (Dari(9). Do’

Therefore, sum the above two equalities together,

2
0~ 8.0 (455 4 106, Dao) P + 9400 -

= (Davi($), Dag)* — (Da (DiDag) = ViVaDad, Dag) — (D Fa) ¢, Dag).
By Weitzenbock formula, one knows that
Dao(D3Dad) —ViyVaDad =Ry X Dadp+ Fa x Dy — D% (Fao).
Moreover, one can also show that
(DaFa) ¢ = DH(Fad) +*(xFa A Dad).
Therefore,

2
@~ 8.0 (2470 + (010, DA + 1V a(Dao)l? =

= (Davi(9), Da¢)? — (R.y x Dagp+ Fa x Da,Da¢) — (+ (+Fa A Dag), Dag).
Obviously, we can bound the right-hand side of the above equality and get

2
0~ 8.) (1245 4 [936 ] < (Darn(9), Dad) + € (Ru + [Fal) Do

where C' > 0 depends only on the geometry of .Z.

As for |F4|?, we know that

F 2
A, (;') = — (V4VAFu, Fa) + [VAFAl.

Moreover, by the equation (1.3),

2
o, (“’;') — —(DA(D3Fa) Fa) — (D (16 Dad) g1, Fa)

Therefore,

|Fal?
2

(O — A y) ( ) + |VaFal? = = (DAD3Fa — ViV aFa, Fa) — (D (g1, Da¢) g1, Fa) -

Apply Bianchi’s identity, we have

DADZFA—VZVAFAZR% X Fqa+ Fy x Fy.
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Hence, for suitably large constant C|

|Fal®

@ = 8.0) (Y45 ) HIVARA" < C (Rl + 1P IPAP = (Da (6. Dad) o Fi).

Note that

(Fa,Da (916, Dad) g1) = 2 (Fa, (D ad, Dad) g1} + |[Fad|* .

Therefore, one may imply that

F 2
@ - 8.0 (F45) + IVaFsP <€ (Rl + |FaD el 0 3.5)
The proof is then completed by summing (3.4) with (3.5). O
I11.3. e-Regularity

We study an e-regularity in this section. In the following, for a given r > 0 and 29 = (xo,t0) € 4 x R,
P,.(2p) denotes the cylinder

P (20) = {(z,t) € M xR:z € B, (20), to —1° <t <to}.
If zo = 0, we simply denote P.(0) by P,.. Now we state our e-regularity as follows.

Proposition 3.3 (e-regularity). There exist two positive constants 8o = do(m, #) and ey = eo(m, M, N")
such that if for some

Ry € (O,min {i(,///),TOl/z}) :

we have

sup / e(A(t), o(t)) dvg < €, (3.6)
Br (wo)

To—R2<t<Ty
then
sup  e(A4,¢) <366 RaQ.

Prg/3(20,T0)

Proof. Our proof follows [5] and [18] with some modifications. For convenience, we divide our arguments
into four steps shown below.

Step 1. Choose t, 1 Ty and denote the point (2¢,t,) by 2,. Obviously, we have Pg,/2(2n) C Pg,(20)
when n is suitably large. Here zg = (29, 7T0). Let r,, € [Ro/4, Ro/2] such that

(Ro/2 — 1) sup e(4,¢) max <(R0/2 —7)? sup e(A7¢)> .

P., (zn) Ro/4<r<Ro/2 P, (zn)

Choose z € P, (2,) such that



If for some &g > 0, we have
en < 6o (RO/2 - Tn)72 ,
then

(Ro/2 — Ro/3)* sup e(A,¢) < (Ro/2—1n)%en < .
PR0/3(zn)

Moreover,

sup e(A,¢) <364 RaQ.
PRO/B(ZTL)

(3.8)

If (3.8) holds for any n suitably large, then the proof can be completed by taking n — oco. In the following,
we show that there are dop > 0 and €g > 0 such that when (3.6) holds, (3.7) is true for any n suitably large.

Furthermore, (3.8) holds for all n suitably large.

Step 2. If on the contrary that (3.7) fails for some n suitably large. Then

= (B0 ex")? /2< (Ro/2 = 10) /2.
Clearly, one may imply that
Py, (23) C Plr,+Ro/2)/2(20)-
Rescale (4, ¢) in P, () by
An = ATy + vy th +7m8),  dn=0(@h +muyth+ans),  (y,8) € Py,
where 2 = («},t"). The metric in B;(0) is induced from g in B,, («}) by
gn,ii () = gij (5, +my), Yy € Bi(0).
On Py, we define
Hy =7, |Fa, |+ |Da, én .
It is known by the above definitions that

sup e(4, ).

Plry+Rg/2)/2(2n)

Tn+R0/2 2
2

H,(0,0) > 272 (Ro/2 — 1) 2 (RO/Z -
Notice (3.9), the definition of v,, and the rescaling (A, ¢,), one may imply that
sup H,, < 2.
Py

Step 3. Fix sp € [—1,0]. By (3.10) and the regularity of the flow, we have

sup |[Fa, |2(+, 80) < 268072 < doi(4)>.
By

(3.9)

(3.10)

(3.11)

Choose a positive constant #(m) according to Theorem 1.3 in [19] and set &g i(.#)? = k(m). It is clear that
when k(m) is suitably small, we can then find a smooth gauge transformation S(sg) such that d + A, (-, so)
is gauge equivalent to a connection d + AS8(-, sy) which satisfies the Coulomb gauge condition and can be

estimated for all p > m as follows:

JASEC 50wy < ) [|Fanoso | o s -
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Let O, be a neighborhood of sg in [—1,0]. For any s € Oy, we act S(sg) on the connection d + A, (-, s).
We denote by d+ AS8(-, s), s € O,,, the gauge equivalent connection. Note that even though we put ”cg” as
a superscript in the gauge equivalent connection, but one should notice that usually only when s = sq, the
connection is in Coulomb gauge. By the regularity of the original gradient flow (1.3), we can assume that
the length of O,, is small enough such that

sup [[A72 (5 8) | Lo 5,y < NATEC550) Lo () +1-

s€0sg
Notice (3.11)-(3.12), we then have by Sobolev embedding theorem that

sup [[ASE(,8)l| (5, < clm),

5€0,,
where ¢(m) > 0 is a suitably large constant depending on m. It is clear that
{Os, : 80 € [-1,0]}
forms a covering of [—1,0]. Therefore, we can find a set of finite neighborhoods {O;,} to cover [—1,0] and
max sup A $) | poe () < c(m). (3.13)
Step 4. By the rescaling in Step 2, we know that in Py,
OsHy — Ay, Hy =27 (0: — Ay) e(A, ¢).

Apply the Bochner-typer inequality in Proposition 3.2 and (3.11), we have

OsHy — Ng, Hy < Cro g Hyy +2(Da, vi(6n), Da, én)”.
Fix an Oy, in Step 3 and notice that the above inequality is gauge invariant. Therefore,

OuHyy — Dy, Hyy < Con g Ho + 2 (D acsvi(635), D ges 632)

Notice (3.13). We know that there is a positive constant C,, ..+ such that

OsHy, — Ay Hy < Crr, v Hy, in O, x By, Vi.

Apply parabolic Harnack inequality (see Theorem 6.17 in [8]). We have

60/2 = Hn(07 0) < Cm,//l7JV H, < Cm,//l,JV’Y;2 / €(A, ¢) d’l)g dt. (314)
Py P’Yn (Z;;)
Since Py, (2}) C Pr,(20), one may imply from (3.14) that
50/2< Coneor suD / (A1), () dvy < 0 oot r-
Br, (z0)

To—R2<t<Tph

Therefore, when we choose €y small enough, then (3.14) fails. In other words, (3.7) holds for any n suitably
large, where &g is determined in Step 3. The proof is then finished.
O
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I11.4. Criterion for First Singular Time

Suppose that (A, ¢) is a regular solution of (1.3) in .# x [0,Ty). We claim that

Proposition 3.4. If for any xy € 4, we have

lim lim sup/ e(A(t), o(t)) dvg < e1 = €p/2,
R=0 17y JBr(wo)

where €y is determined as in Proposition 3.3, then the solution (A, $) can be smoothly extended across Ty.

Remark 3.5.

(1). From Proposition 3.4, we see that if for some Ty € (0,00), [0,Tp) is a mazximal time interval for
the solution (A, @), then for some xo € M, we must have

lim sup/ e(A(t), ¢(t)) dvg > e, VR > 0. (3.15)
t1To Br(zo)

The above inequality provides us with a criterion for the first singular time of the gradient flow (1.3). We
call xo a singular point at Ty if (3.15) holds;

(2). The gradient flow (1.3) admits only finitely many singularities. The total number of these singularities
is bounded by 2Ey/e1, where Eq is the initial energy of the flow (1.3).

Proof of (2) in Remark 3.5.

Suppose that {z1,...,2n} is a set of singular points in .# at Ty. Then for each i € {1,..., N}, we can
find ¢}, T Ty (increasing with respect to n) such that

lim e(A, ¢) dvg > €1/2, (3.16)

"0 J By (wi) x {ti,}

where

1
0= Zmin{i(//l), |z — x| i #£ 4, 4,5=1,..,N}.

Without loss of generality, we can assume that
t < it VneNandVie{l,..,N —1}.

Apply the local energy inequality in Proposition 3.1, we know that for any ¢ and n,

/ e(A, ) dv, < / e(A, ¢) dv, + C Eo (£, —t1)572.

B (z;)x {ti} Bas(zi)x{t},}

Sum the above inequality from i = 1 to N. We have
N N o
Z/ e(A, ¢) dv, < / e(A,¢) dvg + CEy6™» (t, —t}), VYneN.
o1 Y Bs(wi)x {ti,} UL, Bas (@) x{tp,} i=1

By Proposition 2.7, the total energy of the gradient flow (1.3) is non-increasing. Therefore,

N N
Z/ e(4, ) dv, < / e(Ao, do) dv, + CEps2 3 (#, —11), V¥neN.
i—1 Y Bs(zs)x{ti} pa

=1
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Notice (3.16). We then send n — oo and imply that

N€1/2§/ e(Ao, ¢o) duy.
i

Therefore, we know that the total number of the singularities is bounded by 2Fq/¢;. O

In the rest of this section, we prove Proposition 3.4. For convenience, we set
e2 =e3(A,¢) = |[VaFal* +|Vio[> +1,

where V 4 is the induced covariant derivative.

Proof of Proposition 3.4 .
Step 1. Uniform boundedness of e(A4, ¢) and fine covering of . .

By the assumptions in Proposition 3.4, for any xq € .#, we can find a ry such that

Jim sup / e(A(L), $(1)) duy < €.
By (z0)

T

Furthermore, there is a T, < Ty such that

sup / e(A(t), ¢(t)) dvg < €1 < €.
Brg (TO)

Ty <t<Tp

Apply Proposition 3.3, we conclude that e(A, ¢) is uniformly bounded in a cylinder P, (xg,Ty) with rp
sufficiently small. Since x¢ € .4 is arbitrary and .# is compact, then there is a 77 < T} sufficiently close to
Tp such that e(A, ¢) is uniformly bounded on

Pr, = x [11,Tp).

Let z9 = (x0, %) be an arbitrary point in Pr, 1,. By Holder’s inequality,
HFA(to) ||L1(BR* (x0)) < Cu R ||FA(to)HL2(Bm (z0))’ V R, <i(A).
By Proposition 2.7, the energy E(A, ¢) is non-increasing. Therefore,

|| Fa <CuyEY*R.,, VR, <i().

o)l 11 (81 (w0))

Hence, we can take R, suitably small which depends on the geometry of .# and Ej such that by Theorem
1.3 in [19], A(to) is gauge equivalent to a connection A8(ty) on Bpg, (xo). A®(to) satisfies the Coulomb
gauge condition and can be estimated as follows:

A (to) lwir(Br, (20)) < CtllFacto) lr (B, (20))s Vp>2.

Let p — 0o. We know that on Bg, (7), the W1>°-norm of A(t) is uniformly bounded. Motivated by the
above discussions, we fix a finite covering of .#, denoted by ¥’ = {Bg, (v;)}. The total number of geodesic
balls in ¥’ can be bounded by a constant depending on the geometry of .# and Ey. We refer ¥/ as a fine
covering of 4 .

Step 2. Follow the similar arguments as in Section III.2, one can show that in Pp 1,

(0y — A y)ea +2e3 < Cey + Rem, (3.17)
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where C' > 0 is a constant independent of (z,t) € Pr, 1,
ez = e3(A,¢) == |VAFa[* + |Vl
and "Rem” is the sum of the following six terms.

I=|(V4N, Vio) |, where Ny = (Da¢, Davi(¢)) vi(9);

II=|VaH¢|?, III=|VaADsH>,  where H = (g, Da¢) g and Ho € Q° (T*. @ $*T.N);

IV =|Va(Ry xDap+FaxDad)[>, V=|Va(x(xFaNDag))|*, VI=|Va(RuxFa+FaxFa)l.

Note that in the above six terms, we omit some useless positive coefficients. Take p > 2 and multiply 612)_1

on both sides of (3.17). Integrate over .#. We have

1d
, &/ eb dvg + 2/ e tesdu, < C’/ eb dug +/ eb™' - Rem du,. (3.18)
M M ¥4 s

In the last integral of (3.18), there are six terms by the definition of Rem. One can check that the integral
of eg_l multiplied by IT to VI can be absorbed by the first integral on the right-hand side of (3.18). We
only need to study the integral of eg_l multiplied by I. Recall the fine covering >’ of .# in Step 1. We have

/ eg_l T dvg < Z/ eg_l - I dv,. (3.19)
M i JBr.(yi)

Step 3. Fix an arbitrary ¢t € [T1,Tp) and focus our study on one geodesic ball B; := Bg, (y;) € ¥’. Notice
the fact that I and es; both are gauge invariant. Therefore, we can assume, by the discussions in Step 1,
that at time ¢ and in ball B;, (4, ) is in good gauge with A(t) uniformly bounded in W1°°(B;). Notice
that e(A, @) is uniformly bounded on Pr, 1,. Hence, in this good gauge, ¢(t) is also uniformly bounded in
W1o°(B;). Meanwhile, one may imply that the L>-norm of Dav;(¢) is uniformly bounded on B;. As for
the higher order covariant derivatives of v;(¢) at time ¢, we have

Lemma 3.6. Fiz an arbitrary t € [T1,Ty) and suppose that on B;, (A(t), #(t)) is in the good gauge. Then
at time t, we can find bounded quantities K; (i = 1,...,4) such that the following decompositions hold:

Vavi(e) = LY (o) Vie+ K1, Vivi(¢) =Ly () VAo + Ky x Vid+ K3 x VZA + K.
Here
L, =V (vio1I) (¢)

is a matriz with I the projection from A5 onto A . K; (i = 1,...,4) depend on the following uniformly
bounded quantities: ¢, v;(p), the curvature Fu, the covariant derivatives Da¢ and Dav;(¢), the connection
A and the first derivatives of A.

The proof of Lemma 3.6 can be carried out by straightforward calculations. We omit it here.

Step 4. Now, we estimate fB, 612)_1 - Idv,. Note that (A, ¢) is assumed to be in the good gauge discussed as
above. By calculations, one can imply that

V4 Ny = V2 (Dad, Davi(9)) vi(¢)+
+d (Da¢, Davi(¢)) ® Vad + Vad ®@d(Dad, Davi(¢)) + (Dad, Davi($)) Vivi(¢).
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Label from Nj to N4 the four terms on the right-hand side above. Therefore, we have

1. N4. By the uniform boundedness of D¢ and D4v;(¢), one can imply from Lemma 3.6 that

|(N4, V40)| < C|VA0|[VAVi(9)]| < Ces; (3.20)

2. Ny and N3. Since A is metric,
d(Dag, Davi(¢)) = (Vie, Davi(¢)) + (Dad, Vivi(9)) .
Similarly as in the case of Ny, one has

(N2, V20) | + | (N3, V240)| < C [V39]" + C V39| [VAri(6)| < Ces; (3.21)

3. Ni. Note that v;(¢) is orthogonal to V 4 ¢, where V4 ;¢ = 0;¢ + A;¢. Therefore,

(vi(9), Vi) = —(Va,id, Varvi()) dz’ @ da*.
Apply the uniform boundedness of D¢ and D gv;(¢). We know that
(N1, VA49)| < C[V2(Dag, Davi(9))| < C (IVa6] + [Viavi(9)]) + Cea.
In light of the decomposition for V3v;(¢) in Lemma 3.6, one can show that
Vari(9)| < C(IVagl +[Viel + [V Al +1).
Moreover,

(N1, VA0)| < C(IVagl +V2A]) + C ea. (3.22)

Notice (3.20)-(3.22). On B;, I is bounded by the right-hand side of (3.22) with suitably large constant C'.

Now we apply all the arguments above to (3.18). Hence, by (3.19), we know that

1d

pdt dvq—|—2/ eh €3d’Uq<C/ e dvg + C Z/ eb” |V o+ |V?A|) du,. (3.23)
M

By Young’s inequality,

J,

Notice that the total number of geodesic balls in ¥’ is bounded by a constant which depends on the geometry
of .4 and Ey. Therefore, when e is suitably small, the first term on the right-hand side of (3.24) can be
absorbed by the second term on the left-hand side of (3.23). The second term on the right-hand side of
(3.24) can be combined into the first term on the right-hand side of (3.23) with suitably large constant C.

We are left to study
/ eyt V2 A | du,.
B.

i

Ve d, Se/ Ve du, + Cle )/ e du,. (3.24)

i i B;

With minor modifications of Lemma 2.3.11 in [3], one can show that if R, is suitably small, then in the good
gauge discussed above, we have

[Allwae(p,) < Coar (IFallzoe sy + IV aFallLe(s,)) -
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Therefore, by Holder’s inequality,

1 -1
/65 |V2A|dvg < [lez [ (5,)

i

VAl Lo s < Clleallogpy L+ IVaFallLoes,) < C/B eb dvg + C.

Finally, all the above arguments imply that there exists a constant C' suitably large, by which
L d Pdv, < C / 5 +C
- = es dv es dv .
pdt ), a

Solve the above inequality, one knows that,
lle2(t) o) < €“Tllex(To)l oy + €™, Ve [Th,To).
Let p — co. We obtain the uniform boundedness of e; on Pr, 7.

Step 5. Choose a sequence t, 1T Tp. Hence, by the above discussions, es(t,) is uniformly bounded. We
can then go through Uhlenbeck’s theorem in [19] to find a set of gauge transformations {g,} such that

are uniformly bounded in WP, for any p € (2,00). Apply the local existence result in Section II. A new
solution can be found by solving the gradient flow (1.3) with the initial data (3.25) at time ¢,. Moreover,
we know that this new solution exists in an interval [t,,T) with T > Ty, provided that ¢, is close to
To. Note that the gradient flow (1.3) is invariant under a time-independent gauge transformation. As a
consequence, we can act g, 1 on this new solution and obtain an extension of (4, ¢) on [t,,T). The proof is
then completed. O

IV. Bubbling Analysis

We consider the bubbling phenomenon associated with (1.3). Throughout this section, (A(t),¢(t)) is a
smooth solution of (1.3) on [0,Tp), where Ty < oo is its first singular time. For simplicity, we assume that
there is only one singular point, denoted by xy € .Z, at Tj.

IV.1. Convergence of the gradient flow

In this section, as ¢ 1 Ty, we study the convergence of (A(t), ¢(t)) away from the singular point xy. Suppose
that 21 € 4 \ {zo}. By the definition of singular point in part (1) of Remark 3.5, one can find a 1 > 0
such that

B, (x1) cC A\ {x0}

and moreover,

lim Sup/ e(A(t), o(t)) dvg < €. (4.1)
t1tTo Brl (11)
In light of (4.1), we have
sup / e(A(t), o(t)) dvy < e, for some T7 < Tp.
te[T1,To) J By (21)
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Therefore, by the e-regularity in Proposition 3.3, we imply that

sup  e(A,¢) <Cry?, for some r9 € (0,71) small enough. (4.2)
Pr, (z1,T0)

Now we consider the uniform boundedness of e; which is defined in Section III.4.
Step 1. L'-integrability for es.
By (4.2) and the Bochner-type inequality in Proposition 3.2, we know that
(O — A y)e(A,d) + e < C, on P, (x1,Tp), (4.3)
where C' > 0 is a constant independent of t. Let 1 be a non-negative cut-off function such that
n=1, on By, (x1); n =0, outside B,,(z1).

If we multiply n on both sides of (4.3) and integrate over By, (z1), then

d

% nA ge(A, @) dvg—i—/ epdvy <C, Vite [TO—TS,TO).
B

By y2(x1)

ne(A, ¢)dvg — /

) (x1) B, (z1)

Apply integration by parts twice for the second term on the left-hand side of the above inequality. One has
/ nA ye(A, @) dv, = / e(A, ) A yndug.
Br, (71) Br, (w1)

Therefore, by (4.2),

d

— ne(A,¢)dvg+/ ex dvg < C, Vte [Tof?”g,T()).
dt B7.2(w1)

By 2(x1)

Integrate the above inequality from Ty — 7“%/ 4to T, where T € [TO — r§/4, TO). Then by (4.2),

T
/ / eg dvg dt < C,
To—13/4J B, 2(21)

where C is independent of T. Take T' 1 Ty. We get the desired L!-integrability for es. That is

/ ep dvg dt < C. (4.4)
Py /2(x1,T0)

Step 2. L*-integrability for es.

In this step, we restrict our study on P,,(x1,Tp), where r3 = r9/2. By Uhlenbeck’s theorem, A(t) is
gauge equivalent to a Coulomb connection A*(t) on B,.,(z1), for any t € [Ty —13,Tp). Notice (4.2) and (4.4).
A*(t) can be estimated as follows:

* * 2
sup (A D) s, o) + / V24 (8)[* dvy dt < C. (4.5)
tE[T(]f’I”g,T(]) PTg(xlvTO)

By (3.17) and the arguments in Step 2-4 of the proof of Proposition 3.4, one can show that

((9,5—A//[) () SCQ 62—|—CQ |V2A*|, in PTB('I:l?TO)'
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If we define f to be the unique solution for the following initial-boundary-value problem:

((%—AJ/{) f:C2f+CQ |V2A*|, n Prs(xl,To);
B (4.6)
fZO, on 8PT3($1,TQ),
where 0 P, (x1,Tp) is the parabolic boundary of P,.,(x1,7p). Then obviously,
(O —Ay) (e2—f) < Ca(e2—f), on P, (w1, To).
Apply (4.4) and the parabolic Harnack inequality. One can show that
sup (e — f)<C ea + | f] dvgdt§C+C/ |f| dv, dt.
Py, 2(21,T0) Py, (x1,To) Py (21,T0)
Therefore,
ey < \f|—|—C’+C’/ |f] dvg dt, on P, jo(x1,Tp). (4.7)
Prg(21,T0)
By (4.5)-(4.6), f can be estimated by
su ) < Cl|v2ar <C.
te[Tomrs o) 17128y o) < CNVA sy o1 )
Apply this estimate in (4.7). One can imply that
sup / ezdv, <C+C  sup / |f|? dv, < C. (4.8)
tG[Tof T§/4,To) Br3/2(w1) tG[TO*’I‘g,To) Byg(z1)
Step 3. L°°-Boundedness of es.
In this step, we restrict our attention on P,,(x1,7Tp), where r4 = r3/2. Similarly as in Step 2, A(t) is

gauge equivalent to a Coulomb connection A**(¢) on B,,(x1), for any t € [Ty — r3/2,Ty). With (4.8), we
have a better estimate for A**(¢). That is

sk s,k 4
sup [|A*(t) 100:By, (21) T sup /B ( )|V2A ()| dvg < C. (4.9)

te[To—r2,To) te[To—r3,To)
Same as in Step 2, we have

(0y — Ay) ez < Creg + Cy |[VPA™

, iIl PT4(.CL‘1,T0>.
Meanwhile, we define h to be the unique solution for the following initial-boundary-value problem:
(0: — A y) h=Coh+ Oy |V2A**|, in P7.4(.131,T0);

] (4.10)
h:(), on apm(xlvTO)a

Therefore, by parabolic Harnack inequality and similar arguments as in Step 2, one can imply that
e < ||+ C, on P, 2(x1,To).

Obviously, the L*-norm of h is finite on P, /o(x1, 7o) due to (4.9) and Theorem 7.32, Theorem 7.36 in [8].
Therefore, the L>°-norm of ey is finite on P, /5(z1,Tp).

Keep applying similar arguments as above. We conclude that
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Proposition 4.1. For any given x1 € 4 \ {xo}, there exists a sequence of decreasing radius {s;} such that
By, (x1) CC A \ {0}, forallj €N

and meanwhile, |V£FA\2 + \Vf:rlgﬂz is L>°-bounded on Py, (x1,Tp).
By Proposition 4.1, one can further imply that

Proposition 4.2. There is (A, ¢s) smooth away from xg so that for any k € N,

(A@®), o(t)) — (As; 02), in Cloe (M \ {20}), ast1To.
In the following, we define (A(To), #(To)) = (Ax, ¢x) which is the extension of the gradient flow (1.3) at Tp.
We should understand the convergence in Proposition 4.2 in the following way. For any x1 # o, one can find
a small ball & so that x1 € # and x¢ & B. Meanwhile, & is contained in any %, which contains z;. Here
{3} is the covering that we use to define the principal ¥-bundle &2. Let (A (t), ¢a(t)) and (Aq s, Pa.x)

be local representations of (A(t), #(t)) and (A, ¢.) on %, respectively. Hence, Proposition 4.2 implies that
for any k € N,

(Aa(t), da(t)) — (Ag,x, Pax), strongly in C*(%), ast1Tp.

In a word, the convergence in Proposition 4.2 is the convergence for any representation of (A(t), ¢(t)). The
proof for Proposition 4.2 is trivial. One just needs the equation (1.3). We omit the arguments here.

IV.2. Bubbling Analysis

We start our bubbling analysis. Firstly, we consider an energy identity. Note that for any 6 > 0 and t < Tj,

/ e(t) dvg —|—/ e(t) dvy = / e(t) dvg,
Bs (o) AN\Bs (o) a

where e(t) is a simplified notation for the energy density e(A(t), #(¢)). By Proposition 4.2, when ¢ 1 Tp,

lim e(t) dv —|—/ e(Ty) dv, = lim/ e(t) dvg.
170 J Bs (o) O LB T S . !

Send § — 0. We have the following energy identity:

lim e(t) dvg = / B(To) d’l)g + Ebubble, (411)
tTo J 4 Vi

where

Eyubble = (%I_I}(l) tl%%l) . e(t) dvg. (4.12)

Notice (3.15). Ebubble has a positive lower bound. Therefore, by (4.11), we lose some energy at T due to the
existence of the singular point zg. To recover these lost energy is the main topic of this section. Throughout
the following arguments, B, (o) is a geodesic ball around zg. rg can be adjusted small enough. We choose
normal coordinates in B, (z) so that

| gij(z) — d;5 | §C|:r—ac0\2, |dgi;| < Clz— xol, YV x € Byy(x0). (4.13)
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1. Bubbling Sequence.

By (4.12), one can find §,, | 0 and ¢,, T Ty such that

Ebubble = lim e(tn) d’Ug. (414)
n—

°°J Bs,, (x0)
With {d,} and {t,} above, we define two cylinders
Py = Byy(20) X [tn —265,t,]  and Py =B, ;-1 x[—=2,0],
where B, s-1 is a ball with center 0 and radius ro 5,1 Set

Ap =0,A (-TO +0nY,tn + 57215) > On =09 (950 +0ny,tn + 67218) ) v (y7 8) € P':

By the above definitions, one can show that

/ |85¢n|2 + 5;2|65An|2 dvg, ds = / |6,5¢|2 + |[“),5A|2 dvgdt — 0, asn — oo,
P,

*
n n

where g, is the rescaled metric defined by
gn(-) = g (x0 +bn"), on B

—1.
70 0n

Therefore, we can find sg € [—1,—1/2] such that the rescaled kinetic energy satisfies

|5‘s¢n|2(', s0) + 5;2|38An|2(~, s0) dvg, — 0, asn — oco. (4.15)

BTO st

For convenience, we define
2
Tn = tn + 0, So
and set

An,s = An('78)7 (bn,s = ¢n('7s)7 Vse [507371);

where s,, := (Tp — t,,)0,,2. Particularly, when s = s, we call (4, s,, ®n.s,) @ bubbling sequence.

Choose a sequence Ry, T 0o and denote by By, the ball Bg, (0). Fix k. When d,, is small enough, we have

/ e(t) du, > / e(t) dug + / e(t) dug
M t=Tp AMN\Brq(x0) Bs,, ry, (zo)

t=Tp t=7p
Apply the local energy inequality (3.1) in Proposition 3.1. One can show that
/ e(t) dvg > e (tn) dv, + C Egso R, 2.
Bs,, ry, (z0) t=7, Bs,, Rk/2($0)
Therefore, for Ry suitably large, the above two inequalities imply that
/ e(t) dug > / e(t) dug + / e(t) dvg > (4.16)
4 t=Tn AMN\Brq (20) ter, Bs, ry, (o) =,
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> / e(t) dvg + / e (tn) dvy + C Egso Ry 2. (4.17)
AN\ Brg (o) =, Bs,, (z0)
By (4.11),
lim e(t)dv, = / e (Ty) dvg + Ebubble- (4.18)
n—oo | o ter, %
By (4.14) and Proposition 4.2,
lim lim lim (4.17) :/ e (Tp) dvg + Ebubble- (4.19)
ro—0 k— 00 n—o0 Y

Note that

_ 2 2
2 / e(t) dv, = / 5n2| Fa,. | dug, + / |DAn,SD¢n,SOy dvy, . (4.20)
Bs,, ry, (To) By, By,

Hence from (4.16)-(4.20), to recover the lost energy Fhupple relies on the study of the convergence of

t=7p

En,k = / (5;2 |FAn,so
By,

which is the rescaled energy for the bubbling sequence. In the following, we study the convergence of the
rescaled energy for gauge fields. That is the first term in E,, j.

2 2
duy,, +/ |DAW,,S[J ¢n,80| duy,,
By

2. Gauge Adjustment.

Fix an arbitrary R > 0. Choose §,, small enough so that Rd, < ryp. One then can show that

[ 1Fa,
Br

Apply Uhlenbeck’s theorem. We can find a gauge transformation o,, such that on Bp,

< CEyéd2. (4.21)

Tn

? dv,, = 62 / |Fa)2 dv,
Brs, (zo)

* pyp—
A =0y Ans

n,50

satisfies the Coulomb gauge condition and moreover,

145 sollr + B (VAL < OB [[Fa sy [ (4.22)
where || - ||2,r stands for the usual L? (Bg)-norm. We can also define on Bg,
(A 03) (58) = (Angs Dns) = 0n - (Anss bns) V s € [50,5n)-
Since (1.3) is invariant under time-independent gauge transformation, (A}, ¢ ) must satisfy
0sAy, = =D Fay — 62 (91 9%, Das9%) i, on Bg X [s0, $n), (4.23)
where in (4.23), we are using the rescaled metric g,,. Particularly when s = sp, we have
L (671 AL L) =T, in Bg, (4.24)

where

L =A+ (g —69) x V2
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and T, =TI+ 11+ 111 + 1V +V with

Ii=A; , xV (6, AL L), IT:= AL, X6, Fas |

7,50 n,50 7,50 n,s0

n,so s=sq?

1 =0, ¢y, 5y X Day &gy IV = 5L 0,AY| Vi=Fa, xF(9,V9)|

2o+0ny *

In the definition of V', F is a smooth function.
3. Convergence of connections in good gauge.

Fix k and [ > k. In this part, we denote by A ; the A} . in part 2 with R = R;. Set
Apie =6, A = (0,1 A5,
where for function S, (5),, is the average value of S over By. Fix ¢ € (1,2). By Hélder’s inequality, one has
IV (621 47.)

| < Core IV (572 45) e < Cor, IV (5 A5 ) s

Notice (4.21)-(4.22). We have

IV AL g, + 1 F iy |, < Co O (4.25)
Therefore, the above two inequalities imply that
IV (62 AL ) r, < Carios (4.26)

Now we estimate [ - V in (4.24) with R = R;. By Hélder’s inequality and (4.25), one can imply that

||I + II||Q§Rk S CEO ||A;,l H?q/(qu);Rl .

In light of Sobolev embedding and (4.21)-(4.22), we have
NI+ II|g:r, < Cq.Eo.R On- (4.27)
As for I1T and IV, one just needs (4.15) and the finite-energy condition so that
[IIT+1V |35, < Cg, 62 +/ 672 10sAnl” (-, 50) — 0, as n — oo. (4.28)
o bt
The estimate for V' is simple. By (4.21), we have

[V l2;re < CEy 0n- (4.29)

Notice (4.13). When n is large enough, .%,, is a small perturbation of the Laplace operator A. One then can
go through the proof of Theorem 9.11 in [4] to obtain a W?9-estimate for A, ;.. More precisely, one can
imply that when n is suitably large,

”An,l;k ||27q;Rk/2 < Cq,Rk ( || An,l;k ||q;Rk, + HTn |q;Rk)'

Apply Poincaré inequality. One has

||An,l;k ||2,q;Rk/2 < Cq,Rk( || v(éﬁlAZ,l) ||q;Rk, + HTn q;Rk)‘
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Notice (4.26)-(4.29) and the compactness of the Sobolev embedding
W?*%(Bg, j2) = W"(Bg, /2)-
We can extract a subsequence by diagonal process, still denoted by {n}, such that as n — oo,
Anie — Ak, weakly in Wz’q(BRk/z) and strongly in Wl’Q(BRk/Q), Vi>k. (4.30)
By the lower semi-continuity of W?29-norm, we have
| Avk ll2,g:R /2 < Cg Ry Eo-

Note that the upper bound on the right-hand side of the above inequality is independent of I. Hence, we
can keep extracting a subsequence, still denoted by {l}, such that as I — oo,

A — A7, weakly in W*9(Bg, /2) and strongly in W"?(Bg, /2), V k € N. (4.31)

4. The Limiting Connection.

In the following, we show that {A}} in (4.31) induce a L?

2 -connection on R?. Firstly, we show that
Lemma 4.3. If k1 < ko, then VA}  and VA are identical on Bp,, /2 Hence,
n:= VAL, in Br,/2, Vk€EN

is well-defined on R2. Moreover, n is L?-integrable.

Proof. Note that for any n,l € N with | > ko, Ay, 1., differs from A, .5, by a constant on By,. Therefore,
when n and [ are sufficiently large,

VAn,l;kl = vAn,l;kzy in BRkl /2
By (4.30)-(4.31), when one sends n — co and [ — oo successively, then
VA, =VAL, on Bg, /2.

As for the L2-integrability of 7, one can see from (4.25) that

IV A N2z < |V (627" A5 0) [|yop, < Co-
Therefore, if we send n — oo and | — oo successively, then
Inlainje = VAzllmese < Cmos Y kEN.
Let k — co. We get the desired L2-integrability of 7. O

By Lemma 4.3, we can define a global connection A* by {A;}. In fact, one may define
A* = A7, on Bpg, /s
Note that on Bpg, /2, A5 differs from A7 by a constant C7. Hence, we can define
A" = A5+ C, on Bg, /2

so that the definition of A* can be extended from Bg, /o to Bg, /2. By induction, we can define A* over R2.
Furthermore, one can show from (4.13), (4.24), (4.27)-(4.29) that
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Lemma 4.4. The connection A* satisfies the harmonic equation
AA* =0, in R2.

Since Ay 1.1 is in the Coulomb gauge, A* satisfies the Coulomb gauge condition d*A* = 0 in R? as well.
Moreover, by the definition of A* above, we know that n in Lemma 4.3 is the derivative of A*. That is

n=VA*.

5. The limiting energy of the rescaled connection

Take a subsequence as in (4.30)-(4.31). Fix an arbitrary R > 0. When n and [ are large enough,

/ 6,2 |Fa,.,
Br

Choose k large enough so that Ry/2 > R. Then

2
? du,, = / 5;2’FA*Z‘ dug, . (4.32)
Br "

v (5;114;‘”) = VA, .k, on Bpg.
Hence, if we send n — oo and [ — oo successively, then
V(6,1 A} ) — VA", strongly in L?(Bg). (4.33)
By (4.21)-(4.22), when n and [ are large enough, we have
1621 Al 0.5 < Crourr- (4.34)
By Sobolev embedding,
102" A%l s < Cror- (4.35)

Therefore, (4,33) and (4.35) imply that

Lemma 4.5. Suppose that the limiting connection A* is represented by
A=A g,
1

where {g;} is an orthonormal basis of the Lie algebra g. Take a subsequence as in (4.30)-(4.31). Then

. -2
lim 0, ’FAn,sU
n—oo Jp

R

‘X[ Wxafen V>0
1 /Br

Furthermore, send R — oo, we have

lim lim (5;2 ‘FAn .
R—00 n—0o0 Br 50

2 2
dv, = V x Af|” dax.
Ugn ; /]Rz | X l | €L

Based on all the arguments above, in the end, we show that

Proposition 4.6. Take a subsequence as in (4.30)-(4.31). Then

lim [ 6,%|Fa,. |° duy, =0, VR >0.

n—oo Br

n,sq
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Proof. As discussed in Lemma 4.4, we know that A} satisfies d* A = 0 in R?. Hence, A7 = V1, where ¢
is a scalar function. Still in Lemma 4.4, we know that AAF = 0 in R?. Therefore, one can show that Ap = ¢
in R2?, where c is a constant. Notice that

/szxAm? dx:/]R?|A<p|2 dz < oc.

This implies that ¢ = 0. The proof is then completed by Lemma 4.5. O

6. The limiting energy of the rescaled covariant derivatives.

The convergence of the second term in E, ; (see the end of part 1) is quite similar to the study of
Palais-Smale sequences for harmonic map energy. In fact, Fix k and [ > k. We define ¢}, ; to be the ¢], ; in
part 2 with R = R;. Hence,

2
/ ’DAn,sO (bn,SO‘ dug, :/ ‘DAfl,zqs:hl
BRk' BRk

where A} ; is defined at the beginning of part 3. By the second equation in (1.3), (4}, ;, ¢}, ;) satisfies

2
dvgn ’

—D4- Day bny=0n- Os¢n |y, — (DA;JVz'(cbZ,z),DA;,,(?ZJ) Vi(én1)s in Bg,, (4.36)

where the metric in the above equation is g, and o, is defined in part 2 with R = R;. Notice (4.15) and
(4.34). One can apply the similar arguments in [12] to the equation (4.36). Finally, we conclude that

Lemma 4.7. There exist finitely many non-trivial harmonic maps
¢F R — A, s=1,..,5,

such that up to a subsequence, still denoted by {n},

n—oo Bk

L
lim ’DAqubn’sOdegn :/ | Vi |2dx+Z/ | Vi |? d, vV keN.
By, s—2 JR2

If S =1, then we just have the first term on the right-hand side of the above equality.

7. Completion of the Proof for Theorem 1.3.

By (4.16)-(4.20) in part 1, Proposition 4.6 and Lemma 4.7, the energy identity (1.4) in Theorem 1.3 holds.
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V. Asymptotic Behavior

In this section, we assume that the gradient flow (1.3) admits a global smooth solution on [0,00) and
study its asymptotic behavior as t 1 co. By Proposition 2.7, we know that

/ / |0 A2 + | 949 |* dvy dt < .
0 M

So we can choose a sequence t,, T oo such that

tntl
/ |0 A > + |0 |* dvy dt — 0, as n — oo. (5.1)
tn—1 J A
Meanwhile,
OtA(- ty), Op(-,tn) — 0, strongly in L?(.#), asn — oc. (5.2)

Recall the covering {%,} and the transition functions {g, g} that we use in the definition of the prinicpal
¢-bundle . For any zo € .#, there is a neighborhood %, ,,) such that xg € %,(4,). Choose 7o small
enough. We have

ng0 CcC %a(xo)v

where B, is the ball with center x¢ and radius 7. Suppose that A (s, (tn) is a local representation of A(t,,)
on Ze(zo)- By Uhlenbeck’s theorem, there are a Coulomb connection Aj, , and a gauge transformation oy, 4,
such that

A, = On,xg * Aa(xo)(tn)a on By,.

n,xro

Meanwhile,
HA:":L’O HLQ;B% <C ”FA(tn) ”2;3207 (5.3)

where C > 0 is a constant. Since the initial energy of the gradient flow (1.3) is finite, o can be chosen
independently of n.

Apply the first equation in (1.3). We know that
—Dj.  Fa;, =G(A¢):=Ad,, (8: A1, ) + (919(tn), Dage,y¢(tn)) Ads, . (g1) - (5.4)
Moreover, one can rewrite the left-hand side of (5.4) as follows:
—9" 0 (0545 woik = Ok A anig) = VAN zg X Afny = F(9:V9) X Fay = Ar o0 X Fay

where F is a smooth function. If we choose normal coordinates in B, such that
(9ij(w0)) = (6i5),
then (5.4) can be rewritten as
AA; o+ (9" —6™) x V4],

n,To mn,To n,To n,To n,To

= G(A,¢) + VA, X A%+ F(9,V9) X Fay  + A% % Fay
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Note that when 7¢ is small enough, the left-hand side of (5.5) is a small perturbation of

AAY

n,To"

Therefore, by (5.3) and the similar arguments as in the proof of Theorem 9.11 in [4], we have

14 ullaa s 2 < Covo + Co 90, L 5:5)
where B,/ 2 is the ball with center o and radius 79/2. Note that
{By,/2:20€ .M}
forms a covering of .#. By the compactness of .#, we can find finitely many balls, denoted by
% = {B; : B! = B,/ 2}, (5.7)
such that €* is a finite covering of .#. Notice (5.6) and the compactness of the Sobolev embedding
W22 (BE) <5 W2 (B7)
We can extract a subsequence, still denoted by {n}, such that for all i,
AZI — A}, weakly in W23/2 (B}) and strongly in w2 (B}), asn— 0. (5.8)
Define A}, and A* so that for all 4,
A:‘I|Bi* = A . and A* Br = AL
Note that on B N B},
A v = Onas - Aage) (tn) = Ona; - Ja(@)aley) * Aatey) tn) = One, - a(a)alas)  Tns, * Ana,- (5.9)

Then A} is a connection 1-form on &,,. Here &, is a principal ¢-bundle over .# determined by {B}} and
the transition functions

{g1m} = {Fue. - ga@oat ok, |-
Moreover, by (5.9), one has
dgijin = GijinAne; = Anw,ivjim: on Bj N Bj. (5.10)
Apply the compactness of Sobolev embedding. Up to a subsequence, we have for all 4, j and p > 2,
Gijin — 9ij» weakly in W22 (B n B]*) and strongly in W7 (B n B]*)

Clearly, {B;} and { g5 j} determine a new principal ¢-bundle, denoted by &2*, over .#. One can check that
A* is a connection 1-form on &2*.

Now we study the convergence of sections. Similarly as before, we define ¢;, so that for all 7,

Pn

-
where
Drzs = Oni * Pales) (tn)
with ¢o(z,)(tn) a local representation of ¢(t,) on %, (s,). Obviously, ¢y, is a section of the fibre bundle
En =Py Xg N
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Let

n—oo

= yOE%:limlimsup/ e(4, ¢) du, >e =€/2 9y,
r=t Br(yo)

t=ty,

where ¢y and €; are the same as in Proposition 3.4. By similar arguments as in the proof of part (2) of
Remark 3.5, 3 is a finite subset of .#. Choose a sequence 7y | 0. We can define a ri-neighborhood of ¥ as
follows:

= Br ).

yeS

Fix k. For any z; € X}, where X is the complement set of > in .#, one can find some B} such that
71 € B} and ¢}, has a local representation ¢;, ., in B. Choose 7; small enough so that B,, (r1) is contained
in Bf. Note that one may have more than one balls in €* (see (5.7)) which contain x;. In this case, we
choose 71 small enough such that B, (z1) is contained in the intersection of these balls which contain z;.
Moreover, we can require that

Erl (1'1) m E = @

Since z; € X, we can keep choosing 7 small enough so that

/ e(4A, ¢) d,
B7'1 (wl)

By (5.1) and (3.2), one may imply that for some ro < ry, where ro depends on 1, €y, Fy and r1, we have

< €1, for n large.

tn

sup / e(A,¢)dvg | < e, for n large.
te[tn—73,tn] Y Bry(21) "
By e-regularity in Proposition 3.3, we know that
sup  e(A(tn), o(tn)) < Cry2. (5.11)

B, /3(z1)

Therefore, in light of (5.2), (5.11) and the second equation in (1.3), the W*2-norm of ¢}, , in B,, g(x1) is
uniformly bounded. So are other representations of ¢} . Clearly

{Br2/6(371) tx € ZZ}

forms a covering of 3j. By the compactness, we can extract a finite covering of 37, denoted by

Cgk - {Brkys(xk,s)}v

so that all representations of ¢% are uniformly bounded in W?2-norm on By, ,(xy,s). Furthermore,
¢ =] %
k
forms a countable covering of .Z \ 3. Fix a p > 2. By the compactness of the Sobolev embedding
W??(B) = W'P(B),
where B is a ball and the diagonal process, we can extract a subsequence, still denoted by {n}, so that

oy —> ", strongly in W' (B,, (zy,)), for all k and s. (5.12)
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Here, (5.12) should be understood as the convergence for all representations of ¢;.

Based on all the arguments above, for any z¢ € . \ ¥, we can find a ball
B= Brk,s(mk,S)

so that ¢y € B. By (1.3), (5.2), (5.8) and (5.12), if we send n — oo, then (A*, $*) solves (1.2) on B weakly.
Since on B, all representations of A* satisfy the Coulomb gauge condition and all representations of ¢* are
WhP_regular for some p > 2. Then standard elliptic estimates imply that (A*, ¢*) is a smooth solution of
(1.2) on B. Moreover, (A*, ¢*) must be a smooth solution of (1.2) away from the points in 3 in that g
is arbitrary. In Section VI, we remove the singularities and show that (A*, ¢*) is indeed a global smooth
solution of (1.2) over .#. Therefore, take n — oo in (5.10). We have

* %k * * *
dgi,j = gi,jAJJj - Aa:igi,ja

which implies that the limiting principal ¢-bundle &2* is a smooth principal ¢-bundle.

VI. Removability of Singularites

In this section, by following the arguments in [14], we study the removability of singularities for the model of
gauged harmonic maps. Since the theory is local, for our convenience, we can assume that the Riemannian
metric is the usual Euclidean metric.

1. Some Assumptions.

For some J, > 0 sufficiently small, we suppose that (A, ¢) satisfies the assumptions shown as follows:

(A1). For the ball Bs, with center 0 and radius d., (4, ¢) solves (1.2) smoothly on Bs, \ {0};

(A2). On Bjs,, A is in the Coulomb gauge and is a W?23/2-strong solution of the first equation in (1.2);
(A3). The energy of (4, ¢) in By, is finite and small enough.

All these assumptions can be naturally satisfied by the arguments in Section V. For example, (A2) can

be obtained from (5.8). With these assumptions, one may derive some quick results. We list these results in
the following for our future use. By (A2)-(A3), one can find a positive constant C' independent of ¢ so that

/ [A]? + [VA]? +|Vo|* < C, vV § <4, (6.1)
Bs
From (A2) and Morrey’s inequality, we have

[Allo.2/3(ps) < Cs [|All2,3/2;6 < C, vV § < 6. (6.2)

Still by (A2), we can apply Sobolev embedding and imply that
IVAl6s < Cs [ All2,3/2;5 < C, V<6 (6.3)
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2. Refined estimate for e(A, @)

Fix an arbitrary 6 < d.. We consider the pointwise estimate of e(A4,¢) on Bs \ {0}. Note that in the
following, C' > 0 is a constant independent of §. Choose an arbitrary xg € Bs \ {0}. Since (4, ¢) is a
stationary solution of (1.3) on B, 2(%0), therefore by (A3) and Proposition 3.3, we have

sup e(A,¢) < C'lzol %, (6.4)
Bﬂo(wo)

where pg := |20|/6. Rescale (A, ¢) within B, (z¢) by setting
a= poA(zo + poy), s = ¢(zo + poy), Vy € B.
Then by Bochner-type inequality in Proposition 3.2, we have
~Ah < C(1+|F,|) h+ (Davi(s), Das)?,
where h = 1/2 (py?|Fa|? + |Das|?) is the rescaled energy for (a,s). By (6.4), one has

suph < C.
B

Particularly, we have

sup [F,|> < C pp.
By

If pg is small enough (necessarily if d, is small enough), one can choose good gauge for a in By to show that
the gauge invariant quantity |D,v;(s)| is uniformly bounded in B;. Therefore, one can imply that

—Ah S Ch, in Bl~

Apply Harnack’s inequality, we know that

Suph§C/ th’/ e(A,(b)SC/ e(A, ¢).
Biy2 B By (w0) B

2|zl

Hence, we have the following refined estimate for e(A4, ¢):

Lemma 6.1. There is a large constant C > 0 such that for all zy € Bs \ {0}, we have

e(A, d)(x0) < C [zo] 2 / e(A, 6).

Bajag|

3. Energy Stress Tensor

We define the energy stress tensor as follows:

V16> = |Va2d|* 2V A10-Vago
T = |Fio]* I + ,
2V A19- Va9, V20> = [Vaiol?

where I is the 2 x 2 identity matrix. If (4, @) solves (1.2) on Bs \ {0}, then

8;Ty; =0, on Bs\ {0}, k=1,2. (6.5)
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Set z = x1 +ixe and w = Th; — i T2, where i2 = —1. One can show that the imaginary part of wzdz is
Swzdz) = (x2Th1 — z1Ti2) dzy + (2111 + 22T12) das.
We calculate its integration over 9B, (r < J). As a convention, for s < r, we denote by A(s,r) the annulus
{reR*:s<|z|<r}.

Apply Stokes’ theorem and (6.5). We have

/ S(wzdz) = / To (31T12 — 62T11) = 4/ X9 VAJQZS . F12¢.
OA(s,r) A(s,r) A(s,r)

Let s — 0, the right-hand side of the above equality converges to the integration over B,. As for the most
left-hand side of the above equality, we have

‘ / S (wzdz)
8B,

Apply Lemma 6.1. It can be shown that

’ / S (wzdz)
OB

Therefore, we imply that

R wz2d0=/ S(wzdz)zél/
oB, 0B, B

By polar coordinate, one can show that the most left-hand side of (6.6) is bounded from below by

[ (1o =l do-c? [ [VoPao-Cor® [ |+ AP 0,
9B, B, 0B,

27
52 / Ti1 cos 20 + T4 sin 260 d6 ‘ <C 52 / B(A, (25) dé.
0 OB

<C e(4,¢) — 0, as s — 0.
B2s

22 Va1¢- Fi2¢ < CT/ e(A, p). (6.6)

By

T

where ¢* > 0 is a constant which can be chosen arbitrarily small. Therefore, we have

Lemma 6.2. If (A, ¢) satisfies (1.2) in Bs \ {0}, then for all r € (0,9),

/ (r2|o>r|2—|¢e\2)d9s0r/ e(A,¢)+e*r2/ |V¢|2d9+0w2/83 |Fal® +|AJ* do),

9B, B, OB,

where C > 0 is a constant independent of v and (A, p). Cex > 0 is a constant depending on €*.

4. Remouwability of Singularites

As a convention, for m € N, A,, 5 denotes the annulus A (2_7”5,2_’”“5). In the following, ¢ is a func-
tion defined on Bjs \ {0} such that on each A,, s,

q=Cni+ Cpologlz|,

where Cp, 1 and (), o are constant vectors such that for all m € N,

q ;][ ¢ do, on 0By-m+t15. (6.7)
8327771,4»15
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We now compare g with ¢. Note that for all r € (2778, 27™F1§),

lq(r) = ¢(r,0) | < [q(r) —q(@7"F0) [ + | q(27" 1) — (r,0) | .

Hence, apply the maximum principal on the annulus A,, s for the function ¢, we have

la(r) = ¢(r,0) | < [q(27™8) — q(27™F10) | + ] a(27"F18) — ¢(r,0) |, on Ap,s.
By the definition of ¢, we know that
1 27
a27"8) — g2 ) = o [ 62760 — g2 15,0) o
T Jo
and
1 2w
(27" H18) — o(r,0) = o ¢(27" 18, ) — ¢(r,6) da.
T Jo
Therefore, one can imply that
la(r) — ¢(r,0) | <2 sup | o(x) — &(y) |, Ve (2779,27mT). (6.8)
T,y€ m,8
Note that
[p(x) — ¢(y) | <2736 [|VHllocia, s for all z,y € A s.
Therefore, by the boundedness of A in (6.2), we know that
| ¢($) - ¢(y) | < 273 HDA(bHOO;Am,a +C27™, for all z,y € Am75~

Apply Lemma 6.1. [|[DA¢|/sc;4,, s can be controlled and moreover, one can show that

1/2
e(A, qb)) +C27™, for all z,y € Ay, 6. (6.9)

1/2
lq(r) —¢(r,0)| < C (/B e(A, qb)) +C27m, on A, s (6.10)

In the following, we estimate the gradient of ¢ — ¢. Note that for any k € {0,1,2,...},

v-vzzoo/ Vq—-Vol|?.
| 1va-vol > [ 1va-vel

2=ks m=k+1

2—m+2s

Integrate by parts. We know that

/B IVq—V¢I2=—/

B
where for fixed m € N, ¢z and ¢y are derivatives of ¢ and ¢ along the outer normal direction of 94, s. By
the boundary condition (6.7) and the fact that ¢ is radial, one can show that

=0 (Ba-20)+ Y [ @-9)lm-sads (611

2=ks 2=ks m=k+1 m,$

/ (@—¢) gads=0. (6.12)
OAm.s
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For any fixed S € N, S > k + 1, after cancellation, we know that

2 fy - oonio=

m=k+1

AR .

2=k 2=5Ss

By Lemma 6.1, (6.2) and (6.10), one can estimate the last term in the above equality by

<C 475—1—/ e(4,¢) | — 0, as S — oo.
B,_st25

29 51 /8 =) (00 ds

2=5Ss

Therefore,

) -z ds = /BB (g— @) - ¢rds. (6.13)

2—ks

>

m=k+1 m,s

By (6.11)-(6.13) and the fact that Ag = 0, one can show that

/B . |Vq_v¢|2:/3 . (1—¢) A¢ - / ) ¢r ds. (6.14)

2—Fks 2—

We estimate the last term in (6.14). It is bounded by

1/2 1/2
2"“6(/ |q—¢>|2d9> (/ |¢>T|2d9> .
oB OB, 1 4

Notice (6.7). One can apply Poincaré inequality and imply that
1/2

1/2
/ (q—¢)-¢pds| <C27%§ (/ | o] d9> (/ |Vo|? d9> : (6.15)
OB, & OB OB,k 5

2=ks
As for the first term on the right-hand side of (6.14), one has

/a_. (a—9) Ag

2=ks

2—ks

2=ks

<la=dlas, ., [ 180l

2—Fks

In light of (6.10), for any €* > 0 arbitrarily small, we can find ko = ko (A, ¢, €*) large enough such that

*
g0l ,,, <€

Therefore,

/B (a—9) Ag

2=ko s

< E*/B | AG|. (6.16)

2=k0 5

Suppose that dy = 27%0§. Hence, (6.14)-(6.16) imply that
1/2

1/2
2 * 2 2
/B%wq—vm Se/B |AG| +C b (/BB%WQ de) (/aBéowm d9> | (6.17)

By the second equation in (1.2), we then can show from (6.2) that

50

|ag|<C(1AR+|Vol*) <C+C Vo, on Bs,.
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Apply the above inequality in (6.17). We have

J

Consider the left-hand side of (6.18). Note that ¢ is a radial function. Therefore,

/s

By Lemma 6.2, one can show that

[ 10 =lel ool <c/5°/ e [

Moreover,

/35 2172 o |* 2 <1€>/Bé V[ 0/50/ c. /B FP AR (6.20)

0 0

Choose €* small enough. One then can show, by (6.2)-(6.3), (6.18)-(6.20), that

J

Since dy = 27%0 § and § > 0 is an arbitrary number less than §,, then by the above inequality, we have

|Vq—V¢>|2§C'5(2]+Ce*/ |v¢|2+c5§/ V6|2 do. (6.18)

30 Bsg 9Bs,

|Vq—w|2z/ 2|72 |9, (6.19)

S0 Bs,

Vol +Co [ IFaP+1AP,
B‘SO

%0

1V6|? < C 6o+ C 62 / 1Vo|? do.
0Bs,

50

/ \v¢|2gcr+cr2/ | Vo |* db, Vr <, (6.21)
B, OB,
where r, = 27%0§,. Solve (6.21), we get

/ Vo> < Cre, Vo<,

BT

where « € (0,1) is a constant. By Lemma 6.1, (6.2)-(6.3), we then have
| D¢ |” (o) < C |ao]*2, for all zo with |zo| < 7./2.

Hence, D ¢ is L?5-integrable in Bj_, for some 8 € (1,2/(2—a)). The proof of Theorem 1.5 is then completed
by applying the standard elliptic estimates for the equation (1.2).
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