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ABSTRACT: In this article we are concerned with a simplified Ericksen-Leslie system on R?, whose bounded
domain case was considered by Lin-Lin-Wang in [20]. With a study of its vorticity-stream formulation, we es-
tablish a global existence result of weak solutions when initial orientation has finite energy and initial vorticity

function lies in L!(R?).
I. INTRODUCTION

I.1. BACKGROUND AND MOTIVATION Ericksen-Leslie system is a hydrodynamic system mod-
eling the flow of nematic liquid crystals. Proposed in [7], [19] and references therein, it is a continuum theory
without molecular details of a liquid crystal material. Recently some research works have been devoted to study-
ing the relationships between the theory of Ericksen-Leslie and two other favorable theories (Doi-Onsager theory
and Landau-de Gennes theory) for nematic liquid crystals. In [29] the Doi-Onsager theory (see [6] and [25]) is
connected with the Ericksen-Leslie theory by taking the Deborah number to zero. As a hydrodynamic Landau-
de Gennes model, the Beris-Edwards system (see [4]) was studied by the authors in [26]-[28]. Particularly in
[28], a Hilbert expansion was obtained for solutions of the Beris-Edwards system with which a well prepared
initial data is supplied. When elastic constants are small, their work rigorously shows that the Ericksen-Leslie
system serves as the limit of the Beris-Edwards system before the first singular time. For the static theory
of liquid crystals, readers should be referred to [1] and [24] for important connections and differences between
the Landau-de Gennes theory and the Oseen-Frank theory. As far as the Ericksen-Leslie system is concerned,
many research works have been established on its well-posedness. In 2-D case, the existence of global weak
solution for a simplified Ericksen-Leslie equation has been obtained by the authors in [20], where the domain
is supposed to be bounded and smooth. The associated uniqueness problem was later studied by Lin-Wang
n [21]. In [14] the author considered the same simplified Ericksen-Leslie equation but on the whole space R2.
When the spatial domain is R? and the model is not restricted to the simplified one studied in [20], the global
existence of weak solutions for the Ericksen-Leslie system with general Oseen-Frank energy are also well studied
(see [15]-[16]). Amongst all the works in 2-D, global weak solutions have finite energy and are smooth except
possibly at finitely many singularities. Compared with the 2-D case, our knowledge on the 3-D Ericksen-Leslie
system is limited. In [30] the authors established the local well-posedness of the general Ericksen-Leslie system.
For the sake of describing its maximal existence time interval, a blow-up criterion (same as the one in [17])
is given. With this criterion, the authors proceed to prove the global existence of the general Ericksen-Leslie
system under the assumption that initial data is small in some Sobolev spaces. The spatial domain in [30] is
R3. For the bounded smooth domain in R3, the authors in [23] also established a global existence result for
weak solution of simplified Ericksen-Leslie equation. Different from [30], the consequence in [23] does not rely
on the smallness of initial data in Sobolev spaces. Instead Lin-Wang made a geometrically small assumption in
[23] for their initial data. More precisely by supposing that initial macroscopic orientation takes its image on
the upper hemisphere, the simplified Ericksen-Leslie equation studied in [20] admits a global weak solution on
any bounded smooth domain in R3, where initial data is only required to be in the natural energy space. For
more detailed mathematical studies of nematic liquid crystals, readers are referred to [22].

Without macroscopic orientation, the Ericksen-Leslie system is reduced to the pure Navier-Stokes equation.

It is well-known that the Navier-Stokes equation admits a vorticity-stream formulation (see [5]). For the 2-D



viscous fluid, taking curl of the Navier-Stokes equation leads to the following vorticity equation:
Ow+v-Vw=Auw.

Here v is the velocity of fluid. w = curlw is its vorticity. In [2] and the references therein the global existence of
the above vorticity equation is studied in R2, where the velocity v is recovered by the Biot-Savart law. Initial
vorticity is assumed to be in the L!-space. In [12] (see also [3]), the regularity of initial data is slightly weakened.
The global existence of the vorticity equation in 2-D is shown to hold with given initial data in the Radon mea-
sure space on R?. Besides the global existence result of the vorticity equation, the stability problem associated
with the Navier-Stokes equation in 2-D is also considered with the use of the above vorticity equation (see e.g.
[9] and [11]-[12]). In [12] the authors studied the long-time behavior of the vorticity of the 2-D Navier-Stokes
equation. With a smallness assumption on the Reynolds number of initial vorticity, it is shown that solutions
of the vorticity equation approach to the so-called Oseen’s vortex as ¢t — 00. The convergence is algebraic in
t. Still in [12], this result was further applied to study the stability of Burger’s vortex for 3-D Navier-Stokes
equation. Later in [9] and [11], the authors considered the long-time behavior of vorticity and its stability for
the 2-D Navier-Stokes equation from the point of view of dynamical system. Finally in [11] the authors dropped
the smallness assumption used in [12] for the Reynolds number of initial vorticity. A global stability result
is obtained by LaSalle’s invariance principle and the theory of Lyapunov. Some stability results on the 3-D

Navier-Stokes equation can be read from [10].

I.2. VORTICITY EQUATION OF ERICKSEN-LESLIE SYSTEM In this article we are concerned
with the simplified hydrodynamic system for nematic liquid crystals studied by Lin-Lin-Wang in [20]. The
spatial domain is supposed to be R?. With all parameters in the system normalized to be 1, the equation is

written as follows:

Orp+v-Vo—Agp=I|Vp|*o, in R? x (0,00);
dv+v-Vo—Av=-Vp-V-(VpO V), in R? x (0, 0); (1.1)
V-v=0, in R? x (0,00).

In (1.1) ¢ is an S2-valued macroscopic orientation of a nematic liquid crystal. v : R? x (0, +o0) — R? represents
the velocity of fluid. p is the pressure function. V¢ ® V¢ denotes the 2 x 2 matrix whose entry on the i-th
row and j-th column is given by ;¢ - d;¢. As one can see, system (1.1) is a coupled system between the non-
homogeneous incompressible Navier-Stokes equation and the transported flow of harmonic maps. Since early
studies of fluid dynamics, problems associated with ”singular objects” have been intriguing a lot of attentions
from both mathematicians and physicists. These singular objects include point vortices and vortex filaments in
fluid dynamics, which are related to vortex phenomena of a fluid. Usually a system with such singular objects
might not have a finite kinetic energy, or equivalently square integrable velocity. Explicit examples can be given
by the so-called Oseen vortices (see [11]). For some rigorous proof one may refer to [5], where the authors show
that for an incompressible velocity recovered by the Biot-Savart law (vorticity has compact support in R?), it
has finite kinetic energy if and only if the total vorticity equals to 0. Thus to study some vortex phenomenon
associated with (1.1), it is more convenient to consider the equation of vorticity instead of velocity. In light of
the above arguments, now we take curl on both sides of the second equation in (1.1). Still using Biot-Savart

law to recover velocity from vorticity, we can rewrite (1.1) in terms of the vorticity of v. That is the system:
Orp+v-Vo—A¢p=|Vol?0, in R? x (0, 00);
v=Kxw, in R? x (0, 0); (1.2)
dw+v-Vwo—Aw=-VxV-(VoOVg), in R? x (0,00).

In (1.2) * denotes the standard convolution operator on R2. For all z = (21, 22) € R?, K(x) is the Biot-Savart



kernel given by

1 at
K(z) = — ——
) = 3 T
where o+ = (—z3, x1). Note that V-K = 0 implies the incompressibility condition: V-v = 0. In the remaining

of the article, (1.2) is referred as the vorticity equation of the Ericksen-Leslie system (1.1).

1.3. MAIN RESULTS AND ORGANIZATION OF THE ARTICLE Our first theorem is concerned
with the local existence of classical solutions to (1.2). Before we state the result, some notions should be given.
First of all we introduce some functional spaces in Definition 1.1, which will be used to control velocity field
v recovered by the Biot-Savart law. Since v = K % w for some vorticity function w, the decay of w at spatial
infinity plays important roles in estimating the Holder norm and the kinetic energy of v. However the standard
Holder norms and LP norms are not strong enough to control the decay of w at spatial infinity. Therefore we
introduce the following CZ’k [I ] and CZ, (Rz) spaces, in which functions decay exponentially at spatial infinity.

Definition 1.1. Suppose that f takes value on some Fuclidean space. Given a positive constant 3 and a finite
time interval I, we say f € C;‘; [I] if f is continuous on R? x I and satisfies

117115, 7 = sup {!f(x,tﬂe””'/ﬁ (1) € R x I} o

I |||5;1 defines a norm on the space Cg [I] Equipped with this norm, CE [I] is a Banach space. Given a k € N,
we denote by CZ’k[I] the function space so that for all f € C;’k [I], it satisfies Vif € CZ [I] Here the index
runs from 0 to k. CZ’k[I] is also a Banach space with norm given by

k
[FAPRESDIN A e
1=0

Similarly we define CZ’; (RQ) to be the space so that for all f € C;; (Rz), it holds

1511, = sup { )| 1/ o e | <

Equipped with this norm, C;; (RQ) is a Banach space. Given a k € N, C;’k(RQ) denotes the function space so
that for all f € CZ’k(R2), it satisfies V' f € CE(RQ). Here © runs from 0 to k. The space C;’k(Rz) is also a
Banach space with norm given by

k
f s = D5 VI
i=0

In Sect.Il we are concerned with some important properties associated with the functional spaces given in
Definition 1.1. With these properties, the following theorem is shown in Sect.IIl by a fixed-point argument.
Notice that in Theorem 1.2 below, we call (¢,w) a classic solution of (1.2) on R? x [0,T] if on this domain

(é’t(b, é‘tw), (V%, Viw) (¢ = 0,1,2) are continuous and satisfy (1.2) in a pointwise sense.

Theorem 1.2. Suppose that wgy € C;’z (RQ) and ¢o s an S?-valued function with ¢y — e € C’f’4 (RQ). Then
there exists a Ty > 0 such that (1.2) admits a classic solution on R? x [0, Ty ] with the given initial data (¢o,wo).

If we denote by (¢p,w) the classic solution, then we also have
(¢ —e, w) € C’f’4 [0, Ty] x C;’Q [0, Tx].

Here e € S? is a constant unit vector in R3.



Our next theorem is about the local existence of solutions for (1.2) with initial data (¢o,wo) € HL (R?; S?) x

L'(R?). Here for a given e € S?, H! (R?; S?) denotes the space given below:
Hi(RQ; SQ) = { ¢ : ¢(x) € S* for almost all x € R? and ¢ — e € H! (Rz) }

Approximating (¢y — e,wy) by a sequence of smooth pairs with compact support, we can find a sequence of
solutions of (1.2) whose initial data equal to the smooth pairs. In Sect. IV, we show that these solutions exist

in a uniform time interval. Thus by appropriate compactness arguments, we can show

Theorem 1.3. Suppose that (¢o,wo) is an initial data in HE(R% S?) x L*(R?). Then there exists a Ty > 0
and a smooth solution, denoted by (¢,w), of (1.2) on (0,Ty) so that the following properties hold:

(i). Ast |0, we have
(¢(- 1) —e,w(-t)) — (o — €, wp), strongly in H'(R?) x LY(R?).
Let (L*(R?) A L”(]RQ)Yk be the dual space of L' (R?) n LP(R?). Then ast | 0, the velocity v = K * w satisfies
v(t) — vg = K * wp, strongly in (L' (R?) n LP(RZ))*, for allp > 2.
Here we equip the space L'(R?) n LP(R?) with the norm defined by || - |1 + | - |,. Moreover we also have
(¢ —e,w) e L?([0,Ty]; H (R?) ) x L®([0, Ty]; L' (R?)).

(ii). Fizing a 7 € (0,Ty) and denoting by @ the unique mild solution (see Chapter 4 of [3]) of the following

initial value problem:

O —Aw+1v-Vo =0, on R? x (1,00);
(1.3)
w(,7)=w(,71); v=K=*,
then we can decompose the velocity field v into the sum
v=170+0v% on R? x [1,Ty]. (1.4)

The velocity field v* lies in the space L® ([, Ty]; L?(R?)) nL?([7,Ty]; H' (R?)) and satisfies the global energy

inequality given below:

to
J [P+ Vet + J J (Vo P + | Ag + | Vo 2o [
R2x{ta} t; JR2

to
< exp{cf \wuw}f 0" + |V [ (1.5)
t1 R2x{t1}

Here ¢ > 0 is an universal constant. t1 and to satisfy 7 < t1 < to < Ty. Moreover ast | T, v¥(-,t) converges to

0 strongly in L2.

(iii). If wg € L' n LP for some p > 1, then T in part (i) can take value 0. The decomposition of the ve-
locity field v in (1.4) holds on R? x [0, Ty].

We are also concerned about the global weak solutions of (1.1). Notice the decomposition of v in (1.4). v already
exists on the time interval (7,00). Therefore to extend v globally in time, we just need extend v* to R? x (7, ).

In light of the global energy inequality (1.5), such extension of v* is expected . As a consequence, we have



Theorem 1.4. Given (¢o,wo) € HE(R%; S?) x L' (R?), there exists a global weak solution of (1.1) in the sense

giwen as follows:

(i). For some Ty > 0, (¢,v) is a smooth solution of (1.1) on R* x (0,Ty). Moreover parts (i)-(ii) in The-

orem 1.3 hold for (¢,v,w), where w is the vorticity of v;

(ii). Let (w,v) be the same as in part (ii) of Theorem 1.3. Then on R? x [1,0), v can be decomposed into the
sum v =0+ v*. (¢,v*) satisfies the global energy inequality (1.5) for all t1 and to satisfying T < t1 < to < 00.

Moreover (¢, v*) is a global weak solution of the following system:

Orp+v* Vo—Ap=—0-Vo+ |Vo|?o, on R? x (7,00);
Ov* +v* - Vo* — Av¥ = —0* . Vo—0-Vo* —Vp* - V- (ng@ng), on R? x (T,oo);
V-v* =0,

together with the initial condition:

(@), = (¢(-,7), 0).

More precisely it holds

—LTJRQW—@??’W + LTfW(v*-Vqs,nw) + LTJR2”V¢:V¢

= [ (otn vy [ [ @ Vo [ [ 196F o)

T T T
—j JR2<U*,n’w> + J.Lw <v*-Vu*,mp>+J J%Qan*:Vgo

- _LTJRQ (v* - VT, 19) —LT J.R2 (v-Vv*, np) +LTJR2 nVoOVe: Vo,

for all T € [1,00], ¢ € H' (R?%; R?), ¢ € HY;, (R* R?) and ne C* [, T] with n(T) = 0. Here

and

Hli, (R* R?) = closure of CX(R* R?*) n{v:divv =0} in H'(R?* R?).

I.4. NOTATIONS In this article we use LP, W*? and C* to denote the standard LP-space, W*P-Sobolev
spaces and C*:®-spaces on R2. The corresponding norms are denoted by || - |, || -

kp and || - [ gr.e, respectively.
For the Holder space C%, we also use [], to denote its semi-Hélder norm. If p = 2, then we use H* to denote
the Sobolev spaces W¥2. On the space-time R? x I, where I is an arbitrary time interval, we say a function is
C/2 if it is C*/2-Hélder continuous with respect to the time variable and C*-Holder continuous with respect
to the space variables. Some times we also use |- |o.1 to denote the L®-norm of a continuous function on R? x I.
Letting X be a functional space on R? with norm | - | x, usually we denote by L?(I; X ) the space so that for all
feLlr(L; X), f(-t) lies in X for almost every ¢t € I and | f (-, ¢)| x is LP-integrable on L. If (-, ¢) is a continuous
mapping from I to X with topology on X induced by | - | x, then we call g € C[I; X]. Moreover in this article
A < B means that there is a universal constant ¢ so that A < c¢B. If we want to emphasize the dependence of

c on parameters a and b, then we use the notation A <, B.



II. PRELIMINARY RESULTS

This section is devoted to studying some basic properties associated with functions in CZ’k [I ] and CZ,’k (R2)
(see Definition 1.1). k is a non-negative integer. When k = 0, the spaces C;’O [I ] and Cz’o (R2) are coincident
with Cg [I ] and CE (RQ), respectively. The first lemma is about solution of a nonhomogeneous linear heat
equation with nonhomogeneous term in C%[0,7']. Throughout the article we use G to denote the standard heat
kernel in R2.

Lemma 2.1. Suppose that 8 and T are two positive constants. « and 0 are two constants in (0,1). Given g a
function in LOC‘([O,T]; ce (Rz)) N CE [0,T], we define

Og](z,t) = Jo » G(r — 2z,t — 5) g(z, s) dzds, VY (z,t) e R? x [0,T]. (2.1)

Then ®[g] is a solution of the following nonhomogenous Cauchy problem:

df—Af=y, in R* x [0,T];
(2.2)
f=0, att = 0.
Moreover ®[g] satisfies the estimate given below:
2
Il ®[g] |||/3; [o,r] + T'? Ve [g] H|B;[O,T] < gl B;[0,T] TBQT/ﬁ : (2.3)
The second order derivatives of ®[g] can be estimated by
) ) 1-0 ] (1-0)a/2 2T0? /8>
IV 0090, jppory S0 s oG] Mgl oy T 22T/ (2.4)

Proof. By Theorem 12 in Chapter 1 of [8], ®[g] is a solution of (2.2). Moreover ®[g], ,®[g] and V' ®[g]
(i = 1,2) are continuous on R? x [0,T]. Thus we are left to show (2.3)-(2.4). Let f denote the function ®[g].
By (2.1) and the norm || |4, ;o 7} given in Definition 1.1, f(z,t) can be estimated as follows:

@t < llgll [ L lasP /100 o121/8 g
) < g 8;[0,T] o Jeo 47T(t—s) .

Applying the change of variable £ = z — z to the integral on the right-hand side above, we get

If(z, )] < gl t L leP faees) (el 41D /8 161 /8 e g
: s W9llsstory |, dnt— s)

t
1 2
—l=|/8 _t —lElP/ae-s) el /B
< llglls;o,ry e / LJ}Rz 47r(t—8)6 / ‘ /dfds.

Now we let 2 = £ /(t — s)1/2 and reduce the last estimate to
¢
‘f(ll},t)‘ S |Hg|”5[0 T] ef\z|/,3 J\ J 6*‘77‘2+2(t78) /Z\WI/B d?]dS
” 0 Jr2

< Mgllgomtet=1/P20/7, (2.5)

The first derivatives of f can be represented as follows:

¢
Vf(z,t)=2" L » Gz —z,t—35)9g(zs) i_ f dz ds. (2.6)



Similarly to the above arguments for f, the following estimate holds for V f

t
Vfxt)] < ‘ —la—z|? [4(t—s) _|z\/5Md d
V@D < lglls o f f A/l gy,
< gl t e—‘f‘z/‘*(t—S)e—\ﬁ—r\/ﬁ—mw/ﬁaa/ﬂLdgds
ey fe (t—s)2
1
—lz1/8 —InPe2(t—-s)"21n1 /8 Inl
< |||g|||/37[0,T] (& / J;) J\Rz e / (t_ 8)1/2 d77 ds
“lz 2
< |||9|”B;[0,T] /2 ol \/ﬂ+2t/5_ o

In light of (2.6), the second order derivatives of f can be represented as follows:

0ii f (x,t) = 271 L » Gz —z,t—s) [g(z,8) — g(z,s)] [ (2 _QZZ)_(Z;); ) _ té_ijs ] dz ds, (2.8)

where 0;; is the Kronecker delta. Therefore we can estimate 0;; f as shown below:

‘ 0 1-0 [ |z — x| 1
|0ijf(z, )] < Jo » Gz —z,t —s)|g(z,s) — g(z,9)| |g(z,8) — g(z,s)| [(t—s)2 +t—s] dzds
max [g(t)]" " t . _swz(l—e)a SN T
S max [9(. )], L y G(z,t —s) =52 || <|g( ,8)| + |g(a, )|)

1(;9 I L(1=0)a /2 —0|x| [B+2t0% [5*

0
<o max [g(-1)] 970,71

te[0,T]

The third inequality above holds by similar arguments as in the derivations of (2.5) and (2.7). The proof is then
finished in light of (2.5), (2.7) and the last estimate. O

In the next lemma, we present an L* C#-estimate for the second order derivatives of f, where 3 € (0, )

and f = ®[g] as in Lemma 2.1. Since the proof is similar to the proof of Lemma 4.4 in [13], we omit it here.

Lemma 2.2. Under the same assumptions for g as in Lemma 2.1, V2f lies in the space L™ ([O,T]; o (R2))
for all B € (0,c). Here f = ®[g] is a solution of (2.2). Moreover V2f satisfies the estimate given below:

2 a/2—[3/2
\V4 -t <a m Lt)|ad .
tg[l&}:?“] [ ue )]B ~ef tE[(?:)C’("] L9 1)]

As for the initial value problem for the homogeneous linear heat equation, we have

Lemma 2.3. Suppose that g € CF(R?) with k € N U {0}. Moreover we assume that V¥g € CZ(R2) for some
B > 0. With the function g, we define

Ulg](z,t) = . Gz — 2,t) g(z) dz, VY (z,t) € R? x [0,T].

Then W [g] is a solution of the following initial value problem:
GF —AF =0, in R? x [0,T];
F=g, att=0.

Moreover for all T > 0, U[g] satisfies the estimate given below:

1959 91|l 0y < 1979, 2777
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Proof. For simplicity we use F' to denote the function ¥[g]. By making derivatives k times, it holds

VAR (2,t) = J G(x — z,t) VFg(2) dz, VY (z,t) e R? x [0,T].
R2

Since V¥g e C;’;(R2 ), we then have
VE@] < IVl [ Gl s et/
R2
The proof then follows by a similar argument as the derivation of (2.5). O

Now we consider some embedding properties associated with Cz [I] and CE (RQ).

Lemma 2.4. For any p € [1,00) and 8 > 0, the space C?; (RQ) is embedded into LP(RQ). Moreover for any
fe CE (R2), we have
171, Sps W5

In the same fashion C}[I] is embedded into the space C(I;LP(R?)). Here I is a finite time interval. For any
f e CElI], the following estimate is satisfied:

Hf”Loo(I;Lp(RZ)) sp;ﬁ |||f|||ﬂ,]
Proof. The proof of the estimates in this lemma is simple in that f is exponentially decay at spatial infinity if
feCElI]or Cf (R?). We only need show that f(t,-) is a continuous mapping from I to L? (R?) if f € Cil1].
Let t,, be an arbitrary sequence in I which converges to some ty € I. Since f € C;[I ], it holds

| f(tn2) = Fltor2)| < | F(tnrz)| /2 e11/P 4| f(t0, )| /P &1 /8 < Y £l g e1o12)

The most-right-hand side above is LP-integrable on R%. Thus the continuity of the function f and Lebesgue’s

dominated convergence theorem imply that f(t,,-) — f(to,-) in L?, as n — oo. The proof is finished. O

This lemma combined with the Calderon-Zygmund estimate leads to the following result:

Lemma 2.5. Ifw € CE(RZ), then for all p € (2,0), v = K * w lies in WYP(R?). Moreover by Morrey’s

inequality, we have

[olcware <o 10ly, <o 19l ooy = 1wl <o Nl

Here the first inequality is Morrey’s inequality. The second inequality above is the Calderon-Zygmund estimate.

The last inequality uses our Lemma 2.4.
In the end we study the continuity of v = K * w with w € C} [0,T].
Lemma 2.6. Ifwe C5[0,T], then v =K w is continuous on R? x [0, T].

Proof. Suppose that (zo,t) is an arbitrary point on R? x [0,7T] and {(zy,t,)} = R? x [0,T] is an arbitrary
sequence which converges to (zg,tg). By the definition of v, we have

v(Tn, tn) = f K(z)w(zy — 2,t,) dz. (2.9)
R2
In light of w € C%[0,T], it holds
K@ wlan = 2t)| 5 27 [wlan = 2t0) [/l g Nl 1217 717177

Here we have used the boundedness of the sequence {z,}. Since the function on the most-right-hand side above
is integrable on R? and w is continuous on R? x [0, T'], then by (2.9) and the Lebesgue’s dominated convergence

theorem, we have v(z,,t,) — v(xo,t9) as n — o0. The proof is finished. O



ITII. EXISTENCE OF SHORT-TIME CLASSIC SOLUTIONS

In this section we prove Theorem 1.2.

I11.1. SKETCH OF THE PROOF AND SOME PRELIMINARY LEMMAS

Our proof is based on a fixed point argument in the functional space X given below:

X = {(d%w) t o= s llosrspor + V36 — V2os |||2;[0,T] + llw = wsllly; 2,07 (3.1)

+ |||V2w — Vi, |||4; r] S 1 and (¢,w)|[,_o = (¢o,wo) }7

where with the operator W defined in Lemma 2.3, (¢, ws) := (¥[¢o], ¥[wo]) is a solution of the following

initial value problem:

Or s — Npy =0, Orwy — Awy =0, in R? x (0, 00);
(3.2)
$x(,0) = ¢o (), wx(-,0) =wo().

Since we are studying local existence of (1.2), T can be supposed to be as small as possible.
Now we sketch the proof and make some preliminary lemmas for later use. Letting (¢,w) be an arbitrary
element in X and v = K = w, we denote by (¢, w) = S (¢, w) the solution of the following Cauchy problem:

o =AY =F(p,w) i=n(lo) [| VO] d—v V4], in R? x (0,7);
ohw—Aw=—-v-Vwo—VxV-(VpOVY), in R? x (0,7T); (3.3)

v=K=xw, ¥(0,))=¢o(), w(0,)=wo(-).

In (3.3) n is a non-negative smooth cut-off function defined on R, which satisfies n =1 on (1/2,00) and n =0
on (0,1/4). Moreover ¢ = ¢/|¢| is the normalized vector of ¢. If the operator S has a fixed point in X, then
by (3.3), the fixed point must solve the following initial value problem:

v —A¢=F(p,w), in R? x (0,7);
w—Aw=-v-Vo—-VxV:-(VoO V), in R? x (0,7); (3.4)

v=K=xw, ¢(0,)=¢o(), w(0,)=wo().

A simple maximum principle yields that solutions of (3.4) with the images of ¢ in S? is a solution of (1.2).
Therefore the proof of Theorem 1.2 is then reduced to show that S is a contraction mapping from X to itself.
To do so, we substract (3.2) from (3.3) and get the following Cauchy problem satisfied by (¢ — ¢y, w — wy):

O (Y= s ) = A (Y — s ) = F(,w), in R? x (0,7);
O (w—wy) = Aw—wy) =—v-Vw—Vx V- (VYOVY), in R? x (0,7); (3.5)

P (07 ) — O (07 ) =0, w(07 ) — Wk (Oa ) =0.

Now we should prove (¢, w) € X. Thus we need



Lemma 3.1. There exists a positive constant M so that for all (¢,w) € X, we have
IF@. @)y +[VPF(ow)], < M.
Here M depends on |||-||,.,-norm of ¢o — e and ||| ||5.,-norm of wy.

In this lemma and the remainings of this section, if the space-time is R? x [0,T'], we always use | - |o to simply
denote the L®-norm of a given quantity on R? x [0,T]. To show that S is a contraction mapping, the following

lemma is required:

Lemma 3.2. There exists a positive constant M depending only on the ||-||,.,-norm of ¢o — e and ||-|,,-
norm of wo such that for all (¢j,w;) € X (j=1,2), we have

F(61,01) — F(daywn)| S ZLMV%y—V%ﬂ+(ZLJV@0!m—wk

| VE(¢1,w1) — VE(¢o,w2)| < Yy |Vigy — Vige| + (Zij—l |Vi¢j‘> (23_0 |Vivy — Vivg ‘)

|V2F(61,w1) — V2 (¢2,w2) |, St g |Vior — Vida|, + Xy | Vivr — Vivs |,
Here v; = K*wj (j =1,2) are two velocity fields recovered by the Biot-Savart law.

In the remaining of this section we finish the proof of Lemma 3.1. With (3.8) and (3.10) below, the proof

of Lemma 3.2 can be easily obtained and hence is omitted for brevity.

Proof of Lemma 3.1. Under the assumptions made for (¢g,wp) in Theorem 1.2, Lemma 2.3 implies that

s = ellyppory S Mo —ellyre®™  and  flwwllygor S llwollyze™?. (3.6)

In view of the definition of the space X in (3.1), we have w € CZ’Q [0,T] and ¢ € C;’g [0, T], which yield, by
Lemma 2.6, the continuity of v, Vv and V2v on R? x [0, T]. Therefore we know that VF(¢,w) (i = 0,1,2) are
all continuous on R? x [0,T]. We are left to show the estimate in Lemma 3.1.

For any p > 2 and ¢ € [0, 7], it holds

IVl t) e <p IV + Vi) 0= 0,1,2.
Taking supremum over all ¢ € [0,7'] and using Lemma 2.4, we can reduce the above estimates to
Vol < [Vollyr =012 7)

Employing (3.6) and the definition of X in (3.1), we can show

16 = ellarsforry + V%6 pozy S Mo = elly +1 (3.8)
and
leollyapory + V20 oy S Nl + 1. (3.9)
Thus by (3.7) and (3.9), it holds
2
D IVivle < M. (3.10)
i=0

10



Here and in what follows M is a constant depending only on the |- |l,,,-norm of ¢o —e and ||| - ||, ,-norm of wo.
In light of the definition of F(¢,w) in (3.3), by (3.8), (3.10) and direct calculations, we can show that

[F(p,w)| < |Vo[ +|v]|Ve],
IVE(b,w)| < [Jv]+]Vel][IV8] + V2| ] + [|v]2 +|Vo|]|Vel, (3.11)

|V2F(¢,w)|, < M,

0

Using (3.8), (3.10) and the first estimate in (3.11), we get
[F(p,w)| el < [Vo| el + |o],[Vo| el < M, V(a,t) e R x[0,T].

Taking supreme over R? x [0,7'], we obtain the desired uniform boundedness of F(¢,w). Same arguments can
be applied to show that VF(¢,w) is uniformly bounded from above by M in C¥[0,7]. Here one just needs
(3.8), (3.10) and the second estimate in (3.11). O

I11.2. PROOF OF THEOREM 1.2

Now we proceed to the proof of Theorem 1.2.

Proof of Theorem 1.2: In the proof we still use M to denote a large positive constant depending only on the

Il ,-norm of ¢o — e and |- [l,, ,-norm of w.

Step 1. Let (¢,w) be an arbitrary element in X. (¢,w) = S(¢,w) is the solution of (3.5). The |[-[|,.;-
norm of 1) — ¢, can be estimated by Lemma 2.1. With (2.3) and the first equation in (3.5), one can show that

% = dallisro,my + T2 NV = Voully oy S T NF @) ;0,7

Applying Lemma 3.1 to the right-hand side above implies

e = éallysrory + T2 N VY = Voullyjor) Sm T (3.12)

Making spatial derivative one more time on both sides of the first equation in (3.5), by Lemma 2.1 and Lemma
3.1, we can derive that

196 = Voully oy + T2 |96 = V26u 100y S T IVE@0)ligory Sar T (3.13)
Moreover in light of (2.4), V31 — V3¢, can be estimated as follows:

V3% = Voully 10y Sa T max [VF(6,w)(-1)] )

1/2
te[0 1] a |HVF(¢7‘U) |||1;[0,T]

<o T4 VF T2
~ o, M tén[oa,);"] [ (¢7w)(7 )]a

Here we take 6 = 1/2 and f = 1 in (2.4). « is a constant in (0,1). In light of Lemma 3.1, by interpolation
inequality, we can show that

mex [VF(¢,w)(1)], < |VF(¢,w)|,+|VF(p,w)|, < M. (3.14)

Thus the above two estimates imply that

19% = Vel gy Seonr T .15)

11



Combining this estimate with the first estimate in (3.6), we have
Il o < M. 310
Furthermore by (3.13) and the first estimate in (3.6), the following boundedness holds

Vel oz + 1V 0y < M- (3.17)
In light of (3.9)-(3.10) and (3.16)-(3.17), one can easily show that

lv-Vw+V x V- (VO V) M. (3.18)

ooy <

Applying this estimate and Lemma 2.1 to the second equation in (3.5) yields
lw — ws mz; o717 > I Vw = Vew, |||2; [0,7] SM T. (3.19)

Taking one more spatial derivative on both sideds of the first equation in (3.5), by (3.14) and Lemma 2.2, we
can show for any S € (0, «) that

3 3 a/2—03/2 a/2—5/2
max, [VP9( 1) = VPu (1) ], Saus max, [VE(¢,w)(-,1)], T* P2 <o gm0 TP,

By an interpolation inequality, the first estimate in (3.6) yields

Bhu(-t < M.
Jmax [Voou(,0)],

Thus the above two estimates imply that

Sap(-t <z M. 3.20
ax [V 0], <5 (3.20)

In light of this estimate, (3.9)-(3.10) and (3.16)-(3.17), by interpolation inequalities, it can be shown that

max [v-Vw+Vx V- (VpOVY)]|

<5 M. 3.21
te[0,T] g ~B (3.21)

Using this estimate, (3.18) and (2.4) in Lemma 2.1, V2w — V2w, can be estimated as follows:

V2w = V2wl o,y (3.22)
S5 max [0 Vet VXV (Ve o V)] vV +V < V- (VO Ve) 135 1 T <m0 T

Here we used the second equation in (3.5). In light of (3.12)-(3.13), (3.15), (3.19) and (3.22), if we take T
depending on M and 8 to be small enough, then (¢, w) € X. This shows that S is an operator from X to itself.

Step 2. This step is devoted to showing that S is a contraction mapping. In the remaining of this step
we let (¢1,w1) and (¢p2,w2) be two arbitrary elements in X. For j = 1,2, we denote by v; the vector field K * wj.
If (¢, w;) = S(¢;,w;) (j =1,2), then by (3.5) it holds

(0, (1 —2) — A (Y1 —92) = F(¢1,w1) — F(¢a,w2), in R? x (0,7T);

O (w1 —wa ) — A(wy —wsy) = —[v1 - Vwq —vg-ng] in R? x (0,7);
(3.23)
—[Vx V- (V1 OVY1) =V x V- (Viha © Viha) |;

’L/Jl (0, ) — ’lﬁg (07 ) = O, ’LU1(0, ) — W2 (0, ) =0.

12



The [|-[[l;.,-norm of 1)1 — 2 can be estimated by Lemma 2.1. With (2.3) and the first equation in (3.23),

one can show that

llr =2l o,y + T2 V1 = Vi lly o) € T IIF(61,01) = F(d2,02) [l 0,71
[0,7]

Using the first estimate in Lemma 3.2 and (3.8), we have

[1F(p1,w1) — F(p2,wo)

1;[0,T] <M |||¢1 - ¢2 |||1;1;[0,T] + |U1 — 1}2‘0'

The last two estimates imply that

|||¢1_¢2”|1; 0,7 +1T? |||V¢1—V¢2|H1; 0T] SM T |H¢1—¢2|”1;1; 0,7 +|UI_U2|O .
[0,T] [0,7] [0,T1]

Moreover by Lemma 2.5, this estimate can be reduced to

1 — b2 |||1; o] T T'? | Vap1 — Vibo |||1; 0] SM T|l¢r — @2 |||1;1; o1 T ller — w2 |||2; 0,7
[0,7] [0,7] [0,7] [0,T1]

< T (o1 — p2,w1 — w2) | x-

Here we used || (¢1 — ¢2,w1 — w2)||| ¢ to simply denote the sum

o1 — ¢2|H2;1;[0,T] + st‘bl - VS%‘H} or T llewr — w2 |||1;2;[0,T] + H}Vzwl a v2w2|”4' 0,71
;[0,7] ;[0,77]

(3.24)

Making spatial derivative one more time on both sides of the first equation in (3.23), by Lemma 2.1, we have

IV = Vbl 0.y + TV || VP41 — VP4, H|1;[0,T] < T || VE(¢1,w1) — VE(d2,w2)ll1, [0,77-

In light of the second estimate in Lemma 3.2, by Lemma 2.5, it holds

I VE(¢1,w1) = VE(d2,w2) 1,107 <m o1 — o2 — Vv,

i=0

v 1 — b2

p0m)  llwr —wallly o o7y

The last two estimates then yield
Vi1 = Vbl 0.y + TV || V21 — V2, |||1;[07T] su T [(1 = d2, w01 —wo) || x-
The third order derivatives of 1); — 12 can be estimated by (2.4) and (3.25) as follows:

| V241 = V34, ”’2;[01] Sa,M

(3.25)

(3.26)

(3.27)

T max [VF(¢1,w1)(t) — VF(b,w2) () ]2 [ (@1 — day 01 — wo) I

te[0,T7]

Here we take @ = 1/2 and =1 in (2.4). « is a constant in (0,1). In light of the second and third estimates in

Lemma 3.2, by interpolation inequality, we can show that

2
e [VE(@1,01)(1) = VE(92,00)], < 2 |[VF(61,01) = V'F(62,02)

3 2
<m Z |Vi¢1—vi¢2|0+2 |Vi111 —Vi122|0.

=0 i=0
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By Lemma 2.5, this estimate can be reduced to

e [VFE(¢1,w01)(-t) = VF(dg,w2) |, Samr [[(d1 — d2, 01 —w2) ||l - (3.28)
Thus (3.27)-(3.28) imply that
9% = V% lly oy Seonr T (61— 62,00 — )l x. (3.29)

Direct calculations show that

IV % V- (Ve © V) =V x V- (Vb © Vo2 ) [l .11
< | Vi |0 |||V31/)1 — Vi, |||2; [0,T]

+ ’V31/J2 }o I Vipr — Vb |||2;[0,T] + HV2¢1 ‘0 + ‘V21/’2 |0] ’HV2¢1 = V4 ‘HQ; [0,7]
Therefore by (3.16)-(3.17), (3.26) and (3.29), this estimate can be reduced to
IV 9+ (V10 V1) =V x V- (V30 V) [l oy S T/ 1161 — dasn — )l x.
On the other hand using Lemma 2.5 and (3.9)-(3.10) yields

e Ver —va - Vanllyor € [or—v2 g V@l o7y + [v2]y IVw1 = Vsl o

< flwr —we mz;[o,T] Ve |||2;[O,T] + |U2 |0 I Vwr — Vs |||2; [0,T]

Su o lwr —w2llly; 20,77
The last two estimates then imply that
IR-HS. Moo Sar {01 — 2,01 —w2)ll x- (3.30)

Here we used R.H.S. to simply denote the right-hand side of the second equation in (3.23). Applying this

estimate and Lemma 2.1 to the second equation in (3.23), we get
lwy — w2 H|2; 0,71 + 7> | Vwy — Vws |||2;[07T] su T [(d1 — 2,01 —w2) | - (3.31)

Taking one more spatial derivative on both sideds of the first equation in (3.23), by (3.28) and Lemma 2.2, we
can show for any 8 € (0, ) that

3 . _ 3 . . _ . a/2—05/2
tg[lg:)ji“] [v V1) — V2o >t)]g Sa. 8 tg%g:)ji“] [VF(¢1aW1)( 1) = VE(¢2, w2)( ,t)]a T

Sapu TP (91— d2,01 —w2) |l -
Using this estimate, (3.16)-(3.17), (3.20), (3.26) and (3.29), by interpolation inequalities, we have

max [V x V- (V1 OVY1) =V x V- (Vo OVi2)], Sapm T7(01—d2,w1 —w2)l y,

te[0,T]
where 7 is a positive constant depending on a and S. The Hélder estimate for vy - Vwy — ve - Vws can be
estimated as follows:
max |v;-Vw; —vy-Vw < Vw max |v; —v + v — v max |[Vw
te[0,T] [on P 2]5 ’ 1’0 te[0,T7] [on 2]5 ’ ! 2‘0 te[0,T] [ 1]5

+ |Vw1 — ng}o tga)}] [112]6 + |v2|0 tg&);] [Vu)l — va]ﬁ

Su o lwr —we H|1;2;[O,T] + ”|V2w1 — Vi, ”|4; [0, 77

14



To derive the above estimate, we used (3.9)-(3.10), Lemma 2.5 and various interpolation inequalities. Combining

the last two estimates, one can easily show that

H.S. < - — .
tg%g)é] [R S]ﬁ Spom (@1 — b2, w1 —wa) [l x

In light of this estimate and (3.30), the following estimate holds by (2.4) in Lemma 2.1:

IRHES. |2 . T

Vw1 = V2unl, oy <5 max [RHES.]? 2 10.7)

N te[0,1] &

<o TP (61 — dowi — wa) || - (3.32)
By (3.24), (3.26), (3.29) and (3.31)-(3.32), it holds
Il (1 = o, w1 —wo) [l Spomr TP [(¢1 — b, w1 — wa) |l x-

Therefore S is a contraction mapping from X to itself, provided that T is small enough.

Step 3. Now we choose T to be small enough. By the contraction mapping theorem, S admits a fixed
point in X. Denoting by (¢,w) the fixed point, we know that (¢,w) is a solution of (3.4). Since ¢ € CT’Q (0,77,
by Lemma 3.1 and the first equation in (3.4), we have d;¢ € C¥[0,T]. It then turns out that

¢
1—|¢(J;,t)\ < |¢(.13,t)—¢)0‘ < J;)|8S¢(x,s)|ds < t\HatcﬁHh;[o,T]a Y (z,t) e R? x (0,T).

If t < Ty < T, where Ty is sufficiently small, then |¢(x,t)| > 1/2, for all (z,t) € R? x (O,T*). In light that
n=1on (1/2,0), the first equation in (3.4) can then be reduced to

o —Ap = |VO[d—v-Vd  onR%x (0,Ty).
On the domain R? x (0, Ty ), this equation yields
Orp—Ap = —2|V¢—Vq§|2, Wherep=|¢—gz3’2.

A standard maximal principle implies that p = 0 on R? x (0,7%). In other words on R? x (0,T%), (¢,w) is a
solution of (1.2) with |¢| = 1.

Step 4. In this step we show that (¢,w) € C¥*[0,Ty] x C¥?[0,T%]. Taking spatial derivative one more
time on the both sides of the first equation in (1.2) and using ¢, in (3.2), we have

01 (0j0—0jds) —A(0j¢— ) = —0j0-Vo—v-V;0+2(Ve:V0d)o+ |v¢|2aj¢. (3.33)

In light of (3.14) and Lemma 3.1, by Lemma 2.1, it holds V3¢ — V3¢, € Cj[0,Ty] for all B € (1,00). This
result and the first estimate in (3.6) imply that V3¢ € C3 [0,T4] for all 8 € (1,0). Taking one more spatial
derivative on both sides of (3.33) and using ¢, in (3.2), we have

at(&i(?jqb—ai&jqb*) —A(@Z(?Jqﬁ—(?la]([)*) = —(%@»U-V(b—v-vaﬁj(b—i—Q(V(gb : V&i6j¢)¢+l.o.t., (334)

where l.o.t. is a quantity containing all the lower order terms on the right-hand side of (3.34). It can also be

shown that l.o.t. lies in the space C¥[0,Ty]. Applying (2.3) to the above equation, we obtain

1/2
Vo056 = Vaidsonllogary = T (1ohogary 196 logor) ) 1705056150,

V20l o IV 8l oz + L0l o7, B € (1,20).
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Employing (3.8) and (3.10), we can reduce the last estimate to

1/2
1908, 8ll5p0m S NV086ulsip0msy + MTY2 V856l 5, 0070 + M IV s: 0.2y + 10l 0.2,

1/2
< WIVaid;bullygory + MTY

11015 T 110ty po 7y

Thus if we choose T small enough depending on the constant M, then it follows that

|||Vai aj¢H|5;[o,T*] S |||vai aj Ps |||1;[0,T*] +M H|v¢”|1;[o,T*] + |||1-0~t- |||1;[0,T*]' (3‘35)

Taking 3 — 1 yields that V3¢ e C¥[0, Ty].

In light of (3.9), V2w € C#[0,Tx]. Then by Lemma 2.5, VZv has finite L* C”-norm on R? x [0, T}] for
all v € (0,1). This result and (3.20) show that the right-hand side of (3.34) lies in L* ([0, Tx]; C”(R?)) for
some 7 € (0,1). Therefore Lemma 2.1 shows that V¢ — Vi, € Cj[0,Ty] for all B > 1. Here we used the
previous consequence that V3¢ € C§[0,Ty]. Therefore in light of the first estimate in (3.6), V*¢ € C%[0, Tk]
for all 8 > 1. This result and interpolation inequality show that the right-hand side of the last equation in (1.2)
has finite L C7-norm for all v € (0, 1), which furthermore shows by (2.4) that V2w — V3w, € C¥ [0, Ty] for
all o > 2. Here we have used the fact that v - Vw and the right-hand side of the last equation in (1.2) lies in
C# 10, Tx]. Moreover by the second estimate in (3.6), it holds V2w, € C* [0, T}] for all a > 2. Therefore we can
imply from the above arguments that V2w € C* [0, Ty] for all @ > 2. Now we make spatial derivative once for
the last equation in (1.2). It turns out that

% Vw—AVw=Ry := —Vv-Vw—v-V2w—-V -Vo— V3. Vi (3.36)

Similar derivation as for (3.35) shows that the |[-[|,. ¢ 7,;-norm of V2w is uniformly bounded from above by
a constant independent of . Then we take o — 2 and get the optimal exponential decay of V2w at spatial
infinity. That is V2w € C3 [0, T%].

We are left to show that V4¢ € C¥ [0, Ty]. Since Vv has finite L® C7-norm on R? x [0, 7] for all v € (0, 1)
and Vi¢ € Cj[0,Ty] for all B > 1, the right-hand side of (3.34) has finite L*C?%4-norm on R? x [0,Ty]. Tt
then follows, by Lemma 2.2, that V*¢ — V4 ¢, has finite L* C/2-norm on R? x [0, 7]. Moreover this norm is
bounded from above by a constant depending on M. As for V4¢,, we do not know that it has finite L C1/2-

norm on R? x [0, T,]. But we can represent V°¢, as follows:

Vo¢y (z,t) = VG(z — z,t) Vo (2) dz, VY (2,t) € R? x (0, 00).
R2

Therefore it holds, for all (z,t) € R? x (0,00), that
5 |z — 2| 14 2] 4 —1/2
Vou@n] 5 [ oz T Vi) el e s vl
which furthermore implies the following L*-boundedness of V° ¢
Vo0l < IVl e vee(0.0). 331)
y (3.37) and the first estimate in (3.6), we have, with an use of simple interpolation inequality, that
[V ) [ore S [V 0l 0 [ + Vo0 Co D) S £712, Ve (0,7,
Therefore the above arguments show that
V460, t) |gre < [V 8) = VE0ul(t) |gue + | V20u(o0) [cre S 72, Vie (0,T:]. (3.38)
c C C
Using the same derivation as for (3.38), by the last eqution in (1.2), we get

[V2w(t) e <m0 7172, Vte (0,Ty]. (3.39)
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Now we come back to (3.36). Using wy in (3.2) and (2.8), we can represent V3w — V3w, as follows:

0iVw (x,t) — 05 Vwy (z,t) =271 L § G(z — z,t — s) [Ru(z, s) — Ri(z, s) | [ (2 _22)_(2)2_ %) _ t(s_ijs ] dz ds.

Here (z,t) is a fixed point in R? x (0,7%]. In light of (3.38)-(3.39) and the fact that Ry € C%[0,T%], it holds
from the above equality that

+ 2
S I
|0ijVw(z,t) — 0;;Vwy (z,t) | < f f G(x —z,t —s) |[Ri(z,5) — Ri(z,s) | J(Ct s)<2 il dzds
0 Jre -
t 1/2 — a4 (-
<M J G(z — z,t — 5) |Ri(z,8) — Ra(z, s) [6_|2|/4 +e_|””|/4] |2~ 2] (2 il dzds
0 Jr2 (t*S)

‘ |Z—{E|1/4 —|z|/4 —|xz|/4 |Z*I|2+(t*5)
<M J;J i, G(x—Z,t—S)SlM[e I=1/4 4 e~ /] )2 dzds.

By the same derivation for (2.5), the above estimate can be reduced to
1035 Vw(2,t) — 0 Vs (,t) | <y e 14718 < emlol/Ay=12 0y (2,4) e R? x (0, Ty].

Similar derivation as for (3.37) yields that [|V3w(-,1) H!Q < t7Y2. Thus it holds by this result and the last

estimate that
V3wt |, <ar Y2, Vie (0.T4].
Applying this estimate and Lemma 2.5, we have
V3ot |, < [[VPwC.t) |, sa t7%  Vie (0,7 (3.40)
Now we make spatial derivative one more time on both sides of (3.34). It follows that
0 (V3¢ —V30y ) — A(VP0— V¢, ) =Ry 1= —V?0 - Vo —v -V +2(Ve: V) + Lot. (3.41)

It then turns out by (2.6) that

-7 dz ds.

t
Vio(x,t) — Vigy(z,t) = 271 f G(z — 2, — s) Ra(2, 8) =
0 Jre t

This equality yields, for all (x,t) € R? x (O,T*], that

z|

t
|Vig(2,t) — Vigu(z,t)| < Mel®l 4+ J- Gz — z,t — )| V30(z,5) | |Vo(z,5) | 5;
0 Jr2 -

¢
2 — |

+ (|v ‘0;[0,T*] + |V¢O;[O,T*]> fo JRz Gz —z,t —s)|Vi¢(z,3) | —

The first term on the right-hand side above follows from the term lo.t. in (3.41). In fact we know that

Lo.t. € C¥[0,Ty]. Therefore (2.3) implies that ®[l.o.t.] also lies in C} [0, T%], which gives us the first term on

the right-hand side above. Using (3.8), (3.10), (3.40) and the same derivation as for (2.5), we can get from the

above estimate that

t J—
|V4¢5(x,t) — Viy(x,1) | <u e l7ly f Gz — z,t — s) s712 e lel 7|i :'
0 Jr2 -

t
_121/8 12 — ]
T S L fRz Gla — 2,1y erleV 2221

t t
<y e Tl 4 elal f (t—s)" Y2572 ds + |||V4¢|||ﬁ;[0’T*] e~1I/B f (t—s)"Y2ds
0 0

Su [Vl g 1y 7 T
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Here 3 is an arbitrary constant larger than 1. Multiplying e/!/# on both sides of the above estimate and taking
supreme over (x,t) € R? x [0, Ty], we have

[[Vip — Vi < M+ M|V T,

ll5: 0.7 A (PRTES

Using the first estimate in (3.6), we have V*¢, € C¥ [0, Ty]. This result together with the above estimate yield
T2

Iv* < MMV

9ll5: 0.7 9l 5: 0,741

Now we choose Ty small enough (smallness depends on M). The last estimate can then be reduced to
4
Iv*llsp0m < M
Taking 3 — 1, we know that V4¢ € C¥ [0, Tx]. The proof is then finished. O
We also claim without proof that

Remark 3.3. Let (¢,w) be the classic solution obtained from Theorem 1.2. v = K = w is the velocity field
recovered from w by the Biot-Savart law. Then for any given a € (0,1), v has finite C*/**-norm on R? x [0, Ty ].

IV. LOCAL EXISTENCE OF WEAK SOLUTION

In this section we study the local existence of solutions for (1.2) with ¢9 € H}(R? S?) and wy € L'(R?).
Before we prove Theorem 1.3, two lemmas are given as follows.

Lemma 4.1. Let (¢g,wo) be a smooth initial data on R2. Moreover we suppose that (¢pg — e,wp) is compactly
supported on R%. By Theorem 1.2, for some T > 0, the system (1.2) admits a classic solution on R? x [0,T]
with the given initial data (¢o,wo). Then for all p € (4/3,2) and t € [0,T], the following estimates hold:

A1) <, max s' VPG s) wwo, + Ap(t) + B(t) O(1); (4.1)
t
B(t) <, max s G(-,8) = Vo |, + Ap(t) B(t) + B2(t); (4.2)

Ct) <p e, s | VG(-,s) * Vo |, + Ap(t) B(t) + Ay(t) C(t) + B(t) C(t) + B3(t). (4.3)

Here for any t € [0,T], we define

L 1-1/ L 1/4 L 1/2 24/,
Ap(t) 1= max s P w(s)l,,  Bt) = max sV [VE(s)ly,  C(F):= max s [V20(8)],. (4.4)

Proof. The proof is divided into three steps.

Step 1. Let (z,t) be an arbitrary point in R? x [0,T]. By the last equation in (1.2), w(z,t) can be rep-
resented as shown below:
w(z,t) = Gz — z,t) wo(z J Gx—zt—s)[—Vz-(wv)+vz-(v¢~A¢)l].
R2 R2
Integrating by part with respect to the z variable, we get from the above equality that
¢

w(z,t) = Gz — z,t) wy(z) +J V.G(x —z,t—s)- [wv —(Vo- Aqﬁ)l]. (4.5)

R2 0 JR2
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For any p € (4/3,2), 2p/(3p — 2) and 2p /(4 — p) are two numbers larger than 1. Thus it holds
¢

< |

p 0

¢
s Jo ” VGt —s) HQP/(Sp—Q) ” wv “ 2p/ (4—p)° (4.6)

The second inequality in (4.6) follows by Young’s inequality for convolutions. With the use of Holder’s inequality

V.G(z —z,t—s) - (wv)
R2

J V.G(z — z,t — ) -(wv)
0 Jr2

p

and Calderon-Zygmund estimate, wv can be estimated by

2
[0 PATRIESE [ 1 [ PR I

Applying the last estimate to (4.6) yields

Jo B V.G(z —z,t—s) - (wv) <p L(t—s)_l/” Hw”i (4.7)

P

Still using Young’s inequality for convolutions and noticing that 4p/(p + 4) > 1, we can show that
t

< |

» 0

t
[RRCCERT I LR

V.G —zt—s) - (Vé-Ag)

R2

J V.G —zt—s) - (Vé-A¢)

0 JR2

p

N

t
Sp J (t_s)_5/4+1/p HV¢'A¢”4/3'
0

It then turns out by (4.5), (4.7) and the last estimate that

p

t t
w0, < 1GC0sul,+Cp [ =Pl +C, [ €= Vo 20l ,
' —1/p 2 ' —5/4+1/p
S0 GG wanl, + [ =Pl + [ @ s o Vol | Aol (4.5

Step 2. By the first equation in (1.2), ;¢ can be represented by

t

aj¢($7t) = G(.’E—Z,t) 6]¢0(z) +J

R2 0 JR?

0.,G(x — z,t — 5) [v-v¢—]v¢]2¢] . (4.9)
(z.9)

Still by Young’s inequality for convolution, it can be shown that

t t
L Rz&ZjG(x—z,t—s) [”'V¢](z,s) .y S LHVG(.’t_S)H2p/(3p—2) H”'V¢“4p/(4—p)

¢
<p L (t—9)""]v H2p/(2—p) Ivél,

t
S | =97l Vel
0

The last inequality above used Calderon-Zygmund estimate. Same method can be applied to show that

|

A

t
J asz((E—Z,t—S)[‘V¢‘2¢](27s)

0 JR2

t
2
5 | Va9l |veF,
t

A

NGRS
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Using the last two estimates, by (4.9), we have
t t
[Vot.0l, < [GC0 w000l +C | =9 wl, [V0],+C | (= [oli  (10)
Taking spatial derivative one more time on both sides of (4.9) implies that

0ij ¢(x,t) = 0;G(x — z,t) (9j¢>o(z)+ft . 0y, G(x — 2,t — 5) 0 [U~V¢—|V¢|2¢] . (4.11)
0 2

R? (2.5)

By Young’s inequality for convolutions, it holds

< [ U969 Loy 10076 Ly 1

t
J (%;iG(x—z,t—s)[(?v qu (2.5)
0 Jr2

~p

& [ a-9 vl Vs,

¢
s [ - o], Ve,
Similar arguments yield the following three estimates:

< [ IVGEt =9y 5y 0 V0501,

¢
f 02,G(x —z,t—s)|v- V6]¢ (2.9)
0 Jr?

S [ =910l 0, 1991,

t
S5 | =97l [

< [ Ivati-9)l,,1v0: Voo,

t
f 02,G(z — 2,t — 5) [V : V0, qb]( S)qﬁzs
0 Jr2

< [ vl |,
0

t
3
[, I96Ct =01y, 176

t
f 8wiG($—z,t—s)[|V¢|28j¢](zs)
0 JR2 ’

t
_ 3
NGRS
0
Applying the above four estimates to (4.11), we get

V26001, %0 [VEEHTooly+ | @74 wl, | Vo],
b=l 192,
0

b [ el vl, + [ @97 vel (4.19)
0 0
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Step 3. Recalling the notations defined in (4.4), then by (4.8), we have, for all s € [0,¢], that

S ()| gy STV Gls) *wo HP+AZ(t)8171/1)J (5 — 7)"Vp 24200 gy
0

+ B(t)C(t) S1-1/p f (s — 7_)—5/4+1/p T
0

1-1 2
< max s PGy s) xwol, + A5(t) + B(t) C(t).

Taking supreme over s € [0,¢] yields (4.1). The proofs for (4.2)-(4.3) are similar. One just needs to use (4.10)
and (4.12). O

The estimate (4.1) in Lemma 4.2 also holds when p = 4/3. More precisely we have

Lemma 4.2. Suppose that (¢o,wp) and (¢p,w) are the same as in Lemma 4.2. Then for all t € [0,T], the
estimate (4.1) also holds if p is taken to be 4/3.

Proof. Repeating the same arguments as the derivation for (4.8) yields

t t
oty & 166D w0l + [ = ol + [ =972 1v0], |a0],
Here ¢ is an arbitrary number in [0,7"]. Using the same arguments as for (4.10), we have

A4/3(t) < SIEH[%?%] 51/4 H G(a 5) * Wo H4/3 + A?L/?,(t) + B(t) C(t)a Vie [Oa T]

The proof is finished. O
Now we prove part (i) of Theorem 1.3.

Proof of (i) in Theorem 1.3. We divide the proof into four steps.

Step 1. Let (¢0;n,w0;n) be a sequence of smooth pairs so that as n — o0,
do;n —€ —> o —e, strongly in H! (R2); Wo;n —> wo, strongly in L? (RQ). (4.13)
Here ¢o.,, takes values in S?. Thus for any € > 0, there exists an N € N such that
[V boum — Voo, + [wom —won|, < e Vim> N, (4.14)

Moreover we can suppose that (qbo;n —e, wo;n) is compactly supported on R2 for all n € N. It then turns out,
for all t € (0,1), that

N

tlil/p H G('vt) *Wo;m Hp tlil/p HG(7t) *Wo;N Hp + tlil/p H G('at) * (w();m - wO;N) Hp

1-1/p . _
< t tIen[g‘)i] HG( 7t) *Wo;N Hp + HWO;m Wo;N ”1

<p ¢oip G(-,2) = Wo;N |H1;[0,1] + HWO;m —Wo;N ”1

P lwo Iy + [wom = wonly -
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To derive the second inequality above, we used Young’s inequality for convolutions. The third inequality is an
application of Lemma 2.4 with 8 = 1. The last inequality above holds by Lemma 2.3. In light of (4.14) and the

last estimate, we can choose 7y > 0 small enough (the smallness depends on € and |[|wo; v||;) so that
PG ) s wom [, S, e Vte[0,7x] and m > N. (4.15)
Similar arguments can be applied to show that
Y4 |G t) % Voum l, <€ Y2 | VG(-,t) * Voomly, < € Vte[0,7n] and m > N. (4.16)

Here we need (4.14), particularly the bound for the L2-norm of V., — Vgo.n in (4.14).

Step 2. In the next we fix an m > N and let p = 8/5. In light of Theorem 1.2, there exists a T, € [0, 7n]
so that (1.2) admits a classic solution on R? x [0,7},,] with the given initial data (¢o,m,wo,m). Moreover the
solution, denoted by (¢, wm), also satisfies

(Gmsom) € CF1[0,Ton] x C2[0, T (4.17)

Associated with (¢m,wm), Am;s/s5(-), Bm() and Oy, (+) are quantities given in (4.4). Here we used a subscript
m, which means that these three quantities are defined in terms of (¢, w,,). Letting 6 be a positive number,

we define
t¥ = sup {t € (O,Tm) D Apss(t) <6 }, td = sup {t € (O,Tm) :B(t) <6 }, 4 = sup {t € (O,Tm) :Cn(t) <6 }
Moreover we let s* be the minimum number between t¥, t5 and ¢. Clearly it satisfies
s* = min{t’f, 5tk } < Tm < 7n.
Since s* <t} A t3, it holds
Apigis(s™) <0 and By, (s*) <. (4.18)
In view of the first estimate in (4.16) and (4.18), (4.2) then yields
By, (s*) < €4 By, (s™).
Now we choose 0 to be small enough. The above estimate is then reduced to
Bn(s*) < e (4.19)
Applying the second estimate in (4.16) and (4.18)-(4.19) to (4.3), we obtain
Cn(s*) < €+ 0By(s*)+0C(s*) < e+ 0Cn(s%).
Therefore we can keep choosing § small enough so that
Cn(s*) < e (4.20)
Similar arguments can be applied to (4.1) and yields
Apss(s*) 5 (1.21)
Here we need (4.15) and (4.18)-(4.20). In view of (4.19)-(4.21), we can choose € to be small enough so that

A7n;8/5(8*) + Bm(s*) + Cm(s*) < 5/2 (422)
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By (4.17), wm, Vém, V2d,, have finite ||- 2, {o,7,,;-norm. Lemma 2.4 then implies that

lwm (5 8) 85, I\V¢m(-,t)\\4 and [ V2 (-t)[2

are continuous functions for ¢ € [0,T,,,]. If s* < T,,, then one of t} (i = 1,2,3) must be less than T,,,. Suppose
that s* = t¥ < T, (the cases when s* =t and s* =t can be similarly treated). Then by the definition of ¢
at the beginning of this step, we have A,,.5/5(t}) = 6. Here we used the continuity of the function |[w(-,t)|s/s-
On the other hand (4.22) shows that A, s/5(tf) = Ay,;8/5(5%) < 6/2. This is a contradiction to the fact that
Apyig/5(tY) = 6. Thus we have s* = Ty,.

Step 3. In this step we extend the existence interval of (¢,,w.,) from [0,T,,] to [0,7n]. Suppose that
T% is a number in [T,,,7n] so that (¢, w) is a classic solution of (1.2) on R? x [0,T%). Moreover it is

assumed to satisfy
(> wm) € CH40,T] x CH2[0,T], for all T < T'*. (4.23)
Using the same derivation for (4.22), we get
Apisss(T) + B (T) + Ci(T) < 6/2, VT <TE.

Particularly the above estimate yields

T om0 g5 + Tl * [V om0 |, + T2 [ V2o 0], < 1, forallte[Tn/2,T5).  (4.24)
By Calderon-Zygmund estimate, it follows from (4.24) that
Jom( ) s S Jwn )]s < 1,28, forallte|Tn/2,Tk). (4.25)

Now we consider the equation satisfied by (¢, v,,). The equation satisfied by ¢,, can be obtained from the
first equation in (1.2). That is

Ot bm — Adm = =V - Vo + |V | dm, on R? x [T, /2, T). (4.26)
Using the second and the last equations in (1.2), we know that v, satisfies
X (04 vm — Avp + Uy - Vg ) = =V x (Vo - Adp, ), on R? x [T, /2, T%).
Therefore we can find a p,, so that
OrUm — Ay + Uy - VUi = =V Py — Vo - Ay, on R? x [Ty, /2, TE). (4.27)
Since div v,, = 0, the equation satisfied by p,, can be derived from the last equation as follows:
—App = div (v - Vo, ) + div (Ve - Adp, ). (4.28)

Moreover p,, can be represented by

pm(x,t):—(27r)_1fR i B [vm-wm,ﬁaﬂsm-mm] de.

2 |z —zf? (=)
Using this representation and (4.24), by Calderon-Zygmund estimate, we have the following estimate for V p;,:

[ Vom(t H4/3 < Jom(8) - Vom(, H4/3+”v¢m o) Adm(, H4/3 (4.29)

N

[om () |5 IV omC 8) g5 + [ Vom0, [ AGm (D) ],

A

[wm(8) |35 + | VomC ) |, [Adm( 8], < e(Tm), Vie[T, /2, T%).
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Here ¢(T),) is a constant depending only on 7T,,. In light that the bounds in (4.24)-(4.25) and (4.29) are
independent of t € [T,,/2, T)% ), one can apply the standard LP-estimate for parabolic and elliptic equations
(see [18]) to (4.26)-(4.28) and obtain the L®-boundedness of (v, Vo, ) on R? x [T}, /2, T ). Here we also need
to use Morrey’s inequality. Making derivatives on both sides of (4.26)-(4.28), we can apply similar arguments
for the L®-boundedness of (v, V) to get the L®-boundedness of the higher-order derivatives of (v, Vi)
on R? x [T}, /2, T ). With the L®-boundedness obtained above, by Arzela-Ascoli theorem, (¢, v,,) and all
their higher-order derivatives converge locally uniformly as ¢ 1 T;%. Since w,, = curlv,,, we also know that w,,
and all its higher-order derivatives converge locally uniformly as ¢ 1 T)%.

In the remaining of this step, we show the uniform boundedness of || ¢ (+,t) — ell,.; and [[|wy (- 1), for
all t € [T, T%), where T is a number less than T)%. Suppose that f is the solution of the following initial value

problem:

o f —Af =0, on R? x (T, o0);

f(vT) = ¢m('7T)'

Then by (2.3) in Lemma 2.1, we have, for all Ty € (T, T*), that

m

I om = Fllvprrg T WV Em =V illgrry S (Ti— T)'/? mvm -V + }V¢m|2¢mml;mm

1/2
Sew (T =T)"WV0m Iy, 7y

where ¢, is a constant depending on the L*-norm of (v,,,, V¢,,) on R? x [T, T ) Employing Lemma 2.3 yields

If=elly iz + IVl oy S lomGT) =elly + 11V ém T I

It then turns out by the last two estimates that

1/2
[T, Ty] < Mem(T) —ell 11t Cx (T;:L - T) IV ém H|1;[T,T1]'

i ém —ell sz, + IV Em |

Now we choose T so that Tt — T is sufficiently small (smallness depends on the constant c,). The above estimate

can then be reduced to

lom —ellrprry S NémT) —el

|1;1'

Therefore |- | ,,,-norm of ¢p,(-,¢) — e is uniformly bounded for all ¢ € [T T}},). This shows that the limit of
¢m — e as t 1 T has finite [|-[,,,-norm. In light of (4.23), we can repeat the method used above and show
that the limit of (¢, — e,wy,) as t T Tt is contained in the space CT’A‘ (Rz) X C;“Q (Rz). Letting the limit of
(Gm,wm) as t T T,% be an initial data at 7%, by Theorem 1.2, we can keep solving the equation (1.2) to a time

inverval [T%, T + €). By this way we can extend the solution (@, w.,) till the time arrives at 7.

Step 4. In the last step we have shown that the solution (¢y,,w,,) can be extended to the time interval
[0, 7n] for all m > N. Using the same method as for (4.22), we know that

Am;S/S(TN) + Bm(TN) + Cm(TN) < 5/2
Thus for all 7 € (0, 7x), it holds
T wn () g + TNV OGO |+ 72 [ VRO 8)], < 1, forallte[rmn]. (4.30)
By Calderon-Zygmund estimate, it follows from the above estimate that

| v (-, 1) HS < me("t)Hs/s < 738 for allte [7,7n].
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Same arguments as for (4.29) yields

Hva ) “4/3 < ‘|wm('at)HZ/0+HV¢m ) H4 HAd)m ) HQ < C(T)a VtG[T, TN]'

Here ¢(7) is a constant depending only on 7. In light of the last three estimates, by the same arguments as
in Step 3, we know that (¢, vm,wm) (also their higher-order derivatives) are L®-bounded in R? x [7,7x].
Moreover the upper bound is independent of m. Therefore by Arzela-Ascoli theorem and a diagonal process,
we can extract a subsequence, still denoted by (¢, Um,wm ) so that as m — oo, this sequence converges locally
uniformly on R? x (0,75]. Now we denote by (¢,v,w) the limit of (¢, Vm,wm) as m — oo. Clearly on
R? x (0,7x), it solves the first and third equations in (1.2) smoothly. Now we show that

v=K=w. (4.31)

In view of (4.30), for any ¢ € [7,7n], wm(-,t) converges weakly in L% to w(-,t). Letting ¢ be a smooth test

function compactly supported on R?, then we have, for all ¢ € [7, 7y], that
Y(x) v (2, t) d = Y(z) de J K(z — 2) wm(z,t)dz = J wm(z,t) dz J K(z — z) ¢(x) dx. (4.32)
R2 R2 R2 R2 R2
Since vy, converges locally uniformly to v on R? x [7,7x], the most-left-hand side of (4.32) satisfies

Y(x) v (2, t) do — Y(x)v(z,t) de, as m — .
2 R2

In light that K = ¢ € L8/, applying the L¥°-weak convergence of w,,(-,t) then yields

j wm (2, 1) dz K(z — 2) ¢(z) de — w(z,t)dz J K(z — 2) ¥(x) dz, as m — .
R2 R2 R2 R2

Employing the last two convergence, we then can take m — o0 in (4.32) and obtain

» Y(x)v(z,t)de = J

R2

w(z,t)dz J]RQ K(z — 2) ¢(z)dz = » Y(x) dz JR2 K(z — 2) w(z,t) dz.

(4.31) then follows.
In the remaining of the proof, we only need show that (¢(-,t), v (-, ), w(-,t)) converges to (¢o, vo,wp) ast | 0,
in the sense given in Theorem 1.3. Let (¢, Um,wm) be the convergent subsequence obtained above. Using the

same derivations as for (4.19)-(4.21), for any € > 0, we can find a N’ > N and 7/ < 7 so that
Apna3(Tae) + B () + Cr (7o) < 6, Ym> N (4.33)

Here we used Lemma 4.2 so that the estimate for A,,., in (4.1) is valid when p = 4/3. Using Calderon-Zygmund

estimate and the estimate for A, 4/3(7nv) in (4.33), we can bound the L*-norm of vy, as follows:
[omG 0 [, < JomCt) ], < et Vte (0,7n0]. (4.34)

Now we prove the L2-convergence of ¢(-,t) —e as t | 0. In light of (4.26), ¢,, — e can be represented by

t
d)m(l',t) —€= G(7t) * (¢0;7n - 6) + J G(.I‘ - Z,t - 5) [ - Um - V¢'m + |v¢)m }2¢7n:|(z s) dz ds. (435)
0 JR2 ’

Here (z,t) is an arbitrary point in R? x (0,7x). It then turns out, by the above equality, that

||(¢m('vt)_e)_G('at)*(¢0;m_e) HQ J H_Um yS V¢m S ‘V(bm‘ m S H2

< [l V6n o), + [VonCo) [ as
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With (4.33)-(4.34), this estimate can be reduced to

H (¢m('7t) - e) = G(t) * (Po;m — €) HQ < € /2,

Since (¢m(-t) —€) — G(+,t) * (¢o;m — €) converges to (¢(-,t) — ) — G(-,t) = (¢o — €) pointwisely as m — o,
by Fatou’s lemma, we can take m — o0 in the above estimate and get

| (¢(,t) —e) —=G(,t) = (o —€) |, < €72, Ve (0,7n).

This estimate shows that ¢ — e has finite L{°L2-norm on R? x (0,7y-). In light that G(-,#) * (¢g — €) converges
to ¢o — e strongly in L2 as ¢ | 0, the above estimate also implies that ¢(-,t) — e converges to ¢y — e strongly in
L? as t | 0. Taking spatial derivative once on both sides of (4.35), we get

Vom(z,t) = G(-, 1) * V¢om+ffR2 VG(z—z,t—5)[—vp- V¢m+’V¢m‘ d)m] dzds

Thus it holds for all t € [0, /] that

¢
Hvd)m('at)_G('yt)*vd)o;mHQ < L(t_s)_1/2 ||_'Um( ) v¢m S +’v¢m’ m ) ||2
¢
< [e=92 (lonCa Vo6 |+ [Tont0); )
0
t
< € J (t—s) 25 V2ds < €2 (4.36)
0

Here we also used (4.33)-(4.34). Still by Fatou’s lemma, we can take m — oo in the above estimate and get
|Vo(-,t) = G(,t) Vo |, < €, Vite (0,7n). (4.37)

This estimate shows that V¢ has finite L¥L2-norm on R? x (0,7x+). Since G(-,t) * Vo converges to V¢
strongly in L? as t | 0, (4.37) also implies that V¢(-,t) converges to Vg strongly in L? as ¢ | 0. Similar
arguments can be applied to the vorticity w. By the last equation in (1.2), w,, can be represented by

t

W (z,t) = G(z — z,t) wo, m(2) +f

V.G(x—z,t—3s)- [wmvm—(Vq’)m-Aq’)m)l] dz ds.
R2 0 JR2

(2:5)

In view of Young’s inequality for convolutions, it then follows from the above estimate that

om0 =Gty cwomly € [ I9GEE= 0, )9

J, 1966t =1, 190 5)- D6l

By Holder’s inequality and Calderon-Zygmund estimate, the last estimate yields

t t
Jwm (1) = GC 1) xwom |, = L(t_ )2 [wm (8 om (- 8) [, + L(t_s)_mﬂv% s) - Am (- 5) |,
t
< [0 o)y o) [ 72 [ V00, [ A0,
t t
< L(t—s)—m me(.7s)\|i/3+ser(r(1?j§w) HV(;Sm(.,s)HQJ0 (t— )2 | Ad(-,s) -
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In light of (4.36), H Vom(:,8) H2 is uniformly bounded for all s € (0, 7y+). The upper bound depends only on the
L2-norm of V¢q. Using result together with (4.33), we can reduce the last estimate to

t
Wi (1) =G t) s wom |, < €| (t—s) V2s712 (4.38)
! 0

t
+ c(Hqung)eJ(t—s)_1/25_1/2 < c(|Veol2)e, Yte (0,7a).
0

Here ¢ ( | Vo ||2) is a constant depending on the L2-norm of V¢y. Still by Fatou’s lemma, we can take m — o0

in the above estimate and get
|w(t) =G, ) xwo |, < c([Vaol2)e, Vie (0,7a0). (4.39)

This estimate shows that w has finite L°L-norm on R? x (0,7x-). Since G(-,t) * wy converges to wy strongly
in L as t | 0, (4.39) also implies that w(-,t) converges to wy strongly in L! as ¢ | 0. The convergence of v(-,t)
follows by a simple duality argument. In fact for any ¢ € C*(R?), we have

¥(x) (v(z,t) —vo(z)) dz (2) J K(z — 2)(w(z,t) —wo(z)) dz dz
R2 R2 R2

_ fR2 (w(z,t) — wo(2)) JRZK(x—z)w(x) dz d=

= —f (w(z,t)fwo(z))f K(z — z) ¢(z) dz dz.

Thus it holds, for all p > 2, that

Y(x) (v(z,t) —vo(z)) da

< [t e K« vl S fot0=wo0 (1o, + 9], )

I

By density arguments, the above estimate still holds for all i € L' n LP. Taking supreme over all ¢ € L' n LP,

we get from the above estimate that
||v(-,t) = vo(") H (L1ALP)* Sp HW(Ht) —wo(*) |1
The convergence of v(-,t) then follows since w(-,t) — wp strongly in L* as ¢ | 0. O
Slight modifications of the above proof leads to

Remark 4.3. Let (¢g,wp) be the same as in Theorem 1.3. Then we can extend the solution obtained in Theorem
1.8 to a global solution defined on R? x (0,0), provided that HV¢0 ||2
suitably small. Moreover on R? x (0,00), the extended solution is smooth.

+ Hwoul < €. Here e > 0 is a number

V. GLOBAL EXISTENCE OF WEAK SOLUTION

This section is devoted to finishing the proofs of Theorems 1.3-1.4. The key point to extend a solution globally in
time is a global energy inequality concerning the kinetic energy of v and the L?-norm of V¢. However formally

from the last equation in (1.2),

Qt) := fw w(z,t)dz

is a conserved quantity. If initially 2(0) does not equal to 0, then for all ¢ > 0, Q(¢) should not be 0. In light of

Proposition 3.3 in [5], we can not expect that the kinetic energy of v is finite. A decomposition of v is required.
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Still by Proposition 3.3 in [5], if we want some part of the velocity v has finite kinetic energy, then the vorticity
function obtained by taking curl of this part should have zero value when it is integrated over R2. Upon this
consideration, we decompose v into the sum given in (1.4). Formally by (1.3) and the last equation in (1.2), the

curl of v* is a conserved quantity and satisfies

J Curlv*zf w—f G):J w—f w=0, for all t € [7, Tx]-
R2x{t} R2x{t} R2x{t} R2x {7} R2x {7}

Thus we can expect that the kinetic energy of v* is finite. This is exactly part (ii) of Theorem 1.3. Before

proving it, in the next, we give a global energy inequality. That is

Lemma 5.1 (Global Energy Inequality). Given t; < to, we suppose that (1,4, u*) is a weak solution of the

following system:
O+ u* V= A =~ Vb + [V 2y, on B2 x (t1,t3);
ou* +u* - Vu* — Au* = —u*-Va—a-Vu* —Vp* - V- (vw@vw), on R? x (tl,tg),' (5.1)

diva = divu* = 0.

Here p* is a pressure. v is an S%-valued map. If in addition we have
Vip € LO([t1,t2]; L?) n L2 ([t1,t2]; HY);
p* eL4/3([t17t2];W1’4/3); (5.2)
we L' ([t1,t2]; WH®) and  u* € L®([ty,t2]; L?) A L2([t1,t2]; HY),

then it holds

tz t2
J }u*\2+\v¢|2+f f |V [* + | A + [ Vo 2o < exp{cJ vuw}J [u* | + | Ve .
R2x{t2} t1 JRZ2 t1 R2x{t1}

Here ¢ > 0 is an universal constant.

The proof of Lemma 5.1 follows similarly as the proof of Lemma 4.1 in [20]. We omit it here. The following

lemma is also required in the proof of Theorem 1.3, which is an improvement of Proposition 3.3 in [5].

Lemma 5.2. Suppose that w e C} (R?) for some 8> 0. Then u =K xw € L(R?) if and only if

JW w = 0. (5.3)

If the |||l g-norm of w is bounded from above by a constant W, then the L2(R?)-norm of u is bounded from

above by a constant depending on W.

Proof: In light of Lemma 2.5,  is uniformly bounded on R?. The upper bound depends on the ||- || 5-norm
of w. Therefore we only need to study the L2-integrability of u on B%. Here R is a positive radius sufficiently
large. For any = € Bg, u(x) can be rewritten as follows:

1 (x—2)*
27 Jra |z — 2|2

_ 1xlfR2 w(2)dz + o JRQ[M_mL] w(z) dz. (5.4)

2 |22 le =22 o

The last term in (5.4) can be further written as

J]Rz[ Z:ZP IZH vl = J{|z<|oe1/2} [H R @] He o
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Since |x| > R with R sufficiently large, then for all z with |z| < |z|*/?

2x -
@ — 2|72 = |z| 2 (1—“ 2

, we have
2

ERREE

-1
) =|x\72+(’)(|x|75/2).

It turns out that

< |32, for all z and z satisfying || > R and |z| < |=|"/2.

o2 2P

Applying the above estimate to the first term on the right-hand side of (5.5), we get

o [ o

If || = |2|"/2, then w(z) satisfies

S 1al 2 [ jul < 2Rl e s o)

W)l < flwllye#/? < |y et=1/28 elet /20,

Thus the second term on the right-hand side of (5.5) can be estimated by

1 1
M _r w(z)dz < |x|*1 67|x|1/2/2ﬁ 6*\Z|/25 &
{121 fep2} L le— 2> Jaf? Shwll

R2

. e—\xl”z/wf _1 -z,

r2 |7 — 2|

—|z|Y? /2
Sppwi, € /2. (5.7)

In view of (5.6)-(5.7), the last term in (5.4) is L2-integrable on Bf. Therefore the L?-integrability of u on B§
is equivalent to the L2-integrability of the first term on the second line of (5.4), which is L2-integrable on B§
if and only if (5.3) holds. The proof is finished. O

In the next, we prove part (ii) and (iii) of Theorem 1.3.

Proof of (ii) and (iii) in Theorem 1.3. The arguments in the following are continued from the last section,
where part (i) of Theorem 1.3 was proved.

Step 5. In the proof of part (i) of Theorem 1.3 (see Step 4 there), the approximation solutions (@m,,wm)
were shown to exist on the time interval (0, 7y-], for all m > N’. Moreover for a fixed 7 € (0, 7n+), the L®-norm
of w,, on R? x [7,7y/] are uniformly bounded from above by a constant independent of m. Thus by (4.38), it
follows that

lwm (-, t) Hp < o, Ym > N', pe[l,0] and t e [7,7n/]. (5.8)
Here ¢; is a positive constant depending on p, 7 and the initial data (¢g,wp). In view of (4.33), it holds
IV2 b (1) |, < e(n), Vm> N and t € [1,7n].
With this estimate and (4.36), it follows that
[V omCot) [, + [ Vom (1) |, < c2, Vm > N"and te [T, n] (5.9)

Here ¢, is a constant depending on 7 and the L2-norm of V¢g. Taking m — o0 in (5.8)-(5.9), by Fatou’s lemma,

we have

|w(-,t) ”p +[| V(1) H2 +| V26 (-, 1) H2 < ¢ + ¢, Vpe[l,oo] and te [1,7a]. (5.10)
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In the next we consider the velocity field v, = K#w,,. Let (@, 0, ) be the unique mild solution of the following

initial value problem:

ata}m_Aa}m"rT)m'vaJm:O, on RQ X <T7OO);

(5.11)

(Ilm(-,T) :wm('aT); U = K = G0y,

Using o, in (5.11), we can decompose vy, into the sum v, = ¥y, + v%. In view of (5.11), ¥y, satisfies the

following Navier-Stokes equation:
Ot 0m + Uy - Vm — Ay, = —VPim, (5.12)
where Py, is the pressure which satisfies the Poisson equation:
—App = i (Vmyi Uy )- (5.13)
Subtracting (5.12) from (4.27) yields
Oy + vk - Vuk — Avk = —vk Vi, — Uy - VUi, —Vph =V (V$, OV, ), onR®x (7,7n/). (5.14)
By Calderon-Zygmund estimate and (3.27) in [3], it holds
Hﬁm(Wt) H4 S ”a’m("t) H4/3 S me('ﬂ—) HL4/3m L Vi
In light of (5.8), we get
|om (5 t) |, < c, Vi (5.15)

Since (U, Pm) satisfies (5.12)-(5.13) and (5.15), then by standard LP-estimate for parabolic and elliptic equa-
tions (see [18]), any derivative of v,, is uniformly bounded on R? x [T+ ¢, o0) with the upper bound independent
of m. Here € > 0 is a constant arbitrarily given. Thus by Arzela-Ascoli theorem, we can extract a subsequence,
still denoted by (@, U ), S0 that (&y,, U,,) and all its derivatives converge locally uniformly on R? x (7,00), as
m — 0. The limit is denoted by (@, U ). Fixing the subsequence obtained and using the fact (see (3.27) in
[3]) that

me(-,t) H < me(-,T) HLqul, Vge[l,o0] and ¢t > T, (5.16)

q

we then have, for all p > 1 and ¢ > 7, that the L”-norm of &,,(+,t) is uniformly bounded from above by a
constant independent of m. Here we also used (5.8). Thus there is a subsequence, still denoted by @, (+,t), so
that @, (+,t) converges weakly in LP to a limit as m — oo0. This limit must equal to @y (-, ¢) in the sense of
distribution. It then follows that

Wi (75 1) — Wop, weakly in LP, for all p > 1 and t > 7. (5.17)
In light of the local uniform convergence of o, and (5.17), it holds, by the same derivations as for (4.31), that
Voo = K # Wep. (5.18)

Now we show that
(Wop, Vo) = (@, D), (5.19)

where @ is the unique mild solution of (1.3). Since @,, is the mild solution of (5.11), it can be represented by
t

W (z,t) = Gz —z,t —T)wp(z,7)dz + j VG(z — z,t — 8) - (2, 8) Um(z, ) dzds. (5.20)
R2 T JR2

30



Here (,t) is an arbitrary point in R? x (7,00). Applying (3.28) in [3] yields
om0 |, <p [wmC7) |(iaey YP>2andt>T (5.21)

Therefore by (5.8), (5.16) and (5.21), @, and o, are uniformly bounded on R? x [ 7, o0). Employing this uniform
boundedness result and the fact that (@, Um, wm (-, 7)) converges to (Do, Voo, w(+, 7)) pointwisely, by Lebesgue’s
dominated convergence theorem, we can take m — oo in (5.20) and get

¢
Glr —z,t—T)w(z71) dz+[ VG(x — z,t — 8) - W (2, 8) Vop (2, 8) dzds. (5.22)
T JR2

Boo (1, 1) :f

R2
Moreover it also follows that (@, U ) are uniformly bounded on R? x [7, ). Using the same derivation as for
(5.16) and (5.21), we can also show that (@, %) are uniformly bounded on R? x [, 00) since w (-, 7) € LP, for all
p € [1,0] (see (5.10)). Using these two uniform boundedness results, (5.18) and (5.22), we can easily show that
(5.19) holds, by a similar fashion as the proof of Lemma 4.2 in [3]. Here one just needs to know that @ and we,
share same initial data at ¢ = 7. In light that for all i = 0,1,2, ..., we have V'v,, — Vv and V'9,, — V0

pointwisely, as m — o0, it then turns out that
Vivk — Vi, pointwisely on R? x [7,7y/], for all i = 0,1.2, ... (5.23)

Here v* = v — 7.

Step 6. This step is devoted to studying the uniform boundedness of the kinetic energy of v¥ (see (5.31)). In
order to use Lemma 5.1, we need ¢y, Um, v, and p¥, satisfy the assumption (5.2). Here p¥, is the pressure in

(5.14). By (5.9), V¢, satisfies the corresponding assumption in (5.2). In the following we consider v,,, v} and

*
an'

(I). Estimate of ¥,,. The L*-estimate of ¥y, is obtained in (5.21). Now we consider the estimate for V,,.

Using (3.29) in [3], one can find a 7, > 7, where 7, — 7 depends on the L' n LP-norm of w,, (-, 7), such that
(Ve Dl Sp =02 JomCm) |pnp,  YEe (mm).
In light of (5.8), T« — 7 can be independent of m. Therefore it follows that
[Vom(- 0], Sp VOO pinme Sp =77 Jomm) i Vie (7,7).
By (3.38) in [3], we also have
190mC 1), < e(lemGD ) (=17 < e(fomtn ) (=) Vis 7

Thus the above two estimates imply that

[ 1vocnl, = [ ivnenl s [" 1vaeol,

T T NI NT%

-1
o fomCn) e Fe(lomtn) ) (e =7) " < e, (5.24)

where c3 is a positive constant independent of m.

(II). Estimate of v¥. Since wy, (-,7) € C5? (R?) and (&, U ) satisfies (5.11), then by similar arguments

as the proof of Theorem 1.2, we can show that @,, € C;’Q [7,7 4+ d], for some & > 0 suitably small. In view

of (5.8) and (5.21), similar arguments as in Step 3 of the proof for Theorem 1.3 can be applied to show that
WO, € C;*Q [7,7 4+ ], for all § > 0. Using the exponential decay of @,, at spatial infinity, by (5.11), we have

J O (z,t) dz = f W (z, 7) dz, Vie [T, mn] (5.25)
R? R?
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As for w,,, since it satisfies
Ot W, + U, - Vi, — Awy, = =V x V- (V(bm @qum),

then we can integrate the above equation over R? and get

f W (x,t) do = J W (x, 7) d, Vte[r, mn]. (5.26)
R2 R2

Here we have used the exponential decay of Vi, for i = 1,2,3. (5.25)-(5.26) imply that
J W (2, 1) — W (2, t) dz = 0, Vte [T, mn].
R2

Since for all t € [7,7n], W (-, t) — @ (-, t) decays exponentially at spatial infinity. Moreover the [|-[[|,-norm of
W (-, 1) — @m (-, t) are uniformly bounded by the norm of w,, — &y, in C¥[7,7n/], for all t € [7,7n+]. Therefore
we can apply Lemma 5.2 to v¥ = K # w,,, — K % (,;, and show that

lot ], < c4(\||wmf@m|||2;[w,]), Vie[r, . (5.27)

The L2-estimate of Vv can be obtained by Calderon-Zygmund estimate as follows:

f vor P < J ywm|2+J Von |’ < f ‘wm]2+J |G |-
R2x{t} R2x{t} R2x{¢} R2x{t} R2x{t}

Here t € [1, 7] is arbitrarily given. Applying Lemma 2.4 and (5.16) to the most-right-hand side above, we get
f |Vv;’; |2 < o5+ |||wm|||§,[77 ] Vte (r,Tn)- (5.28)
R2 {1} ILTTN
Here c5 is a positive constant depending on 7 and the initial data (¢g,wo)-
(ITI). Estimate of pf . Since v}, is divergent free, it then follows by (5.14) that
7Ap;kn = @-j (’U;kn;i "U;kn;j) + 2 (3ij (Qjm;i vjn;j) + div (V . (V¢m @ Vrbm))
Therefore Calderon-Zygmund estimate implies that

2 _ 2
[pm s = lom sy + Homl [on | lyys + 1V 6mss- (5.29)

On the other hand pf, can be represented by

pE (2,t) = —(21) 7! J i [v;;.w:l,j + 20 - VO L+ 05¢m - Adm dz.
Rz |7 — 2| (2,t)

Still by Calderon-Zygmund estimate, it follows that
(s H4/3 < oo, ”4/3 + | om - Vor, H4/3 + [ Vém - Adm H4/3' (5.30)

In light of (5.9), (5.15), (5.27)-(5.28), one then can apply Ladyzhenskaya’s inequality and Hoélder’s inequality to
the right-hand sides of (5.29)-(5.30) and show that p¥ € LY3([7, 7n/]; Wh4/3).

Notice that (¢, v ) satisfies (4.26) and (5.14) on R? x (7, 7x/). (5.9) and the above arguments in (1), (II),
(III) show that ¢y, Um, vE and p¥ satisfy the assumption (5.2). Thus we can apply Lemma 5.1 to get, for all
te (r,7n7), that

t t
f ‘v;|2+lv¢m}2+ff Vb P+ | A + |V P | < exp{cf meyw}f IV [*
R2 x {t} - Jr2 . R

2x{r}
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Here we have used the fact that v* (-,7) = 0. By (5.9) and (5.24), the right-hand side above is uniformly
bounded by a constant independent of m. Therefore it follows that

te[r,7n7]

TN/
max J ok P + [V | +J f (Vo2 >+ | Adm + |Vom?bm | < 6, Ym>N. (531)
R2x {t} r JR2
Here ¢g > 0 is a constant independent of m.

Step 7. In view of (5.23) and the pointwise convergence of Vig,, (i = 0,1,2), by Fatou’s lemma, we can
take m — oo in (5.31) and get

_— f |v*|2+|v¢|2+jN'f Vo2 +[Ad + Vo]0 < con
R2x {t} r Jr2

te [T,TN/]

which furthermore implies
v* e LOO([T7 ™ L2) N L2([T, N ]; Hl). (5.32)

As m — o, U, — U and V1, — V@ pointwisely. Then by (5.15), (5.21), (5.24) and Fatou’s lemma, we have

TN/
max H@(-,t)||4+ max ||6('7t)”:o+J ||V17”OO < . (5.33)

tE[‘r,TN/] tG[T,TN/]

In light of (5.10), (5.32)-(5.33), by the same arguments as in (IIT) of Step 6, we know that
p*e L4/3([r, ™ W1,4/3)_ (5.34)
Here p* is the pressure in the following equation:
Opv* + v V¥ — Av* = —0* Vo -0 Vu* —Vp* -V (VoOVe), onR?x (r,7n). (5.35)

The derivation of this equation is the same as (5.14). One just needs to know that (¢, v) satisfies the second
equation in (1.1) and (@, ) solves (1.3) in Theorem 1.3. (5.10), (5.32)-(5.34) imply that ¢, v, v* and p* satisfy
the assumption (5.2). Recalling that (¢, v*) satisfies the first equation in (1.2) and (5.35) above, we then obtain
the global energy inequality (1.5) in Theorem 1.3, with an use of Lemma 5.1. Here we take Ty = 7n+ in Theorem
1.3. Noticing that v*(-,7) = 0, then we have, by taking ¢; = 7 in (1.5), that

t t
J |v*|2+|V¢|2+fJ IVo*[P + | A +|Ve[2o|* < eXp{CJ w(oo}f Ve[,
R2x{t} 7 JR? T R2x{t}

for all t satisfying 7 < t < 7nv. Since at t = 7, w(-,7) € L' n LP for all p > 2, then we know, by similar
arguments as for (5.24), that HV@ Hoo is L'-integrable on [T, 7xn/]. Therefore we can take t — 77 in the above
estimate and get

t—Tt

limsupJ ’v*‘2+‘v¢’2 < f |V¢‘2.
R2x{t} R2x {7}

Since Vo (-, t) converges weakly in L? to V¢(-,7), as t — 7T, by lower semi-continuity of the L2-norm, we
further have from the last inequality that

J Vo[ < hmsupf | [P +|Ve]* < f Ve
R2x{r} R2x{t} RZ2x {7}

t—7t

This shows that v*(-,) — 0 and Vé(-,t) — Vé(-,7) strongly in L? as t — 7+. Same strong convergence
and also the decomposition (1.4) hold when 7 = 0, provided that we know wy € L' n L? for some p > 1.
Indeed we just need to check the L!-integrability of HVT) HOO near t = 0. Without loss of generality, in the
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following arguments, we assume p € (1,2). Moreover we let (@w,?) satisfy (1.3) with 7 = 0 there. For any
(z,t) € R? x (0, 00), it holds

V@(x,t):VG*wo—J VG(z—z,t—3)(v(z,5) - V.)&(z,5)dzds.

0 JR?

By Minkowski’s and Young’s inequality, it follows, for all

2p 2p
5.36
q€<maX{p7 3p_2},2_p>, (5.36)

t
Va0l < ch*wouq+Lch;<.,t_s)u o Vo[ sy (s)ds

that
2p+2q9-pq

t
IVGC s Lol + | ¢=9)77 o] o |Val,.
Pa+p—gq 0
Applying Calderon-Zygmund estimate and (3.27) in [3], we get from the above estimate that

t
Ve (t)lla <pa t_1/2+1/"_1/p||%\|,,+f<t—8)_1/p |@], [vel,
0

t
S P I P e K A (537
0

Now we denote by A7 () the quantity:

A*(t) = max rY/2"Yatri/p |V, )Hq.

4 o<r<t

Then (5.37) can be reduced to

AT (1) Spg H wo llp + A7 (t) to1p Hwo [FEPSES

Therefore we can find a T small enough (smallness depends on p, ¢ and ||wg |,) such that

Vo)), Spe 72V Jwg], vie (0,7 (5.38)
In light of
_ 1 (x—2)t _
) = — | === t)d
Vo (x,t) o7 Joe o= 22 Vi(z,t)dz

1 J (x—2)t _ f (x—2)*t __

= — —= Vw(z,t)dz + —— = Vo (z,1) dz,
2m |lt—z|<1 |.13 - Z|2 ( ) |lz—z|=1 |aj - Z|2

then for ¢; € (1,2) and ¢ > 2 satisfying (5.36), it holds

|Vo(z,t)| < Jl L

z—z|<1 “/I‘. - Zl

) 1/q), 1 /4,
< |va(.p], (L_m FEr dz> +[vatnl, (L_m ET dz)

Soa | VOGO, + VD], -

|V@|(z,t)dz+f ! V& |(z,t)dz

|lt—z|=1 |.T - Z|

Here ¢} and ¢4 are Holder conjugates of g1 and g¢q, respectively. Applying (5.38) to the last estimate yields

||V17(-,t) Hoo <paras ||wo ”p t—1/2+1/az=1/p H wo Hp t—1/2+1/q1—1/p7 Vie (O,T].

Therefore by (5.36), | V@ (,t) |« is integrable near ¢ = 0. The proof is finished. O
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In the end we finish this article by a proof of Theorem 1.4.

Proof of Theorem 1.4. In view of Theorem 1.3, (1.1) can be solved on (0,T%). Moreover the velocity v

satisfies the decomposition (1.4). Since (¢, v*) solves the system:

Op+v* Vo—Ap=—-0-Vo+|Vp|?0, on R? x (7, Ty);
Opv* +v* - Vo¥ — Av* = —* . Vo —0-Vo* = Vp* =V - (Vo O Vo), on R? x (7, Ty);  (5.39)
div o = divv* = 0.
and v already exists on the whole space R? x (7, %0), we only need to extend (¢, v*) globally in time so that the
extended (¢, v*) solves (5.39) weakly on R? x (7,00). In light of the global energy estimate (1.5), we can use

similar arguments as the proofs of Theorems 1.2-1.3 and Lemma 5.2 in [20] to obtain such extension of (¢, v*).
Details of the proof are omitted for brevity. O
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