MATH2040A Week 8 Tutorial Notes

In this tutorial, we will consider only finite dimensional vector spaces.

1 Diagonalizability

A linear map $T \in L(V)$ on a vector space V is *diagonalizable* if there exists a basis of V that consists only of eigenvectors of T. If T is diagonalizable with eigenbasis β , $[T]_{\beta}$ is then a diagonal matrix. As noted in lecture, diagonalizability depends on the behavior of the characteristic polynomial $f_T(t) = \det([T]_{\alpha} - tI)$:

Theorem 1.1. T is diagonalizable if and only if f_T splits and the algebraic multiplicity of each eigenvalue is the same as their geometric multiplicity¹.

Here,

- a polynomial *splits* if it can be factorized into linear factors (of form X a) (optionally multiplied by a constant): $p(X) = c(X a_1) \dots (X a_k)$
- the algebraic multiplicity of a root λ of a polynomial p(X) is the largest integer $m_{\lambda} \ge 1$ such that $(X \lambda)^{m_{\lambda}}$ is a factor of p(X)
- the geometric multiplicity of an eigenvalue λ of a linear map T is $\operatorname{nullity}(T \lambda I) = \dim \mathsf{N}(T \lambda I)$

As noted in lecture,

- a *complex* polynomial always splits
- for eigenvalue λ of $T, 1 \leq \text{nullity}(T \lambda I) \leq m_{\lambda} \leq n$
- if p(X) splits and all (unique) roots are $\lambda_1, \ldots, \lambda_k$, then $\sum m_{\lambda_i} = n$

So, to check if a linear map T is diagonalizable, typically you would need to

- 1. compute the characteristic polynomial, usually by computing the determinant
- 2. factorize the characteristic polynomial and check if it splits
- 3. for each eigenvalue, compute the dimension of N ($T \lambda I$), usually by finding a basis
- 4. check for each eigenvalue if the two multiplicities match

Once diagonalizability is verified, it is simple to find a diagonalizing basis:

Theorem 1.2. If T is diagonalizable with (unique) eigenvalues $\lambda_1, \ldots, \lambda_k$, and β_i is a basis of $\mathsf{N}(T - \lambda I)$, then $\beta = \beta_1 \cup \ldots \cup \beta_k$ is an eigenbasis of V

So, to construct an eigenbasis, you just need to merge all bases you find in step 3 above into one basis.

By definition of diagonalizability, $[T]_{\beta} = \text{diag}(\lambda_1, \ldots, \lambda_n)$ is diagonal if $\beta = \{v_1, \ldots, v_n\}$ is an eigenbasis with associated eigenvalues $\lambda_1, \ldots, \lambda_n$, and so on a basis α of V we have $[T]_{\alpha} = Q \operatorname{diag}(\lambda_1, \ldots, \lambda_n) Q^{-1}$ with $Q = [\operatorname{Id}]_{\beta}^{\alpha}$. In particular, if $V = F^n$, $T = L_A$ with $A \in F^{n \times n}$, and α is the standard ordered basis, we recover the familiar eigendecomposition from MATH1030:

$$A = \begin{pmatrix} | & & | \\ v_1 & \dots & v_n \\ | & & | \end{pmatrix} \begin{pmatrix} \lambda_1 & & \\ & \ddots & \\ & & \lambda_n \end{pmatrix} \begin{pmatrix} | & & | \\ v_1 & \dots & v_n \\ | & & | \end{pmatrix}^{-1}$$

¹Such eigenvalue is said to be *semisimple*.

1.1 (Optional) Interpretation of Diagonalizability

Suppose $T \in L(V)$ is diagonalizable with (complete set of distinct) eigenvalues $\lambda_1, \ldots, \lambda_k$ and associated eigenspace $E_1 = \mathbb{N}(T - \lambda_1 \text{Id}), \ldots, E_k$. From the matrix representation in eigenbasis, we can see the following decompositions:

- $V = E_1 \oplus \ldots \oplus E_k^2$
- If $P_i \in L(V)$ is the projection map onto E_i along $\sum_{j \neq i} E_j$, then $P_i P_j = 0$ for $i \neq j$, $\sum P_i = Id$ and $\sum \lambda_i P_i = T$

Recall from textbook Sec. 2.3 Q17 (Homework 5 Optional part) that a linear map $P \in L(V)$ is a projection if and only if $P^2 = P$.

Conversely, if V is a direct sum of eigenspaces of T, then T is diagonalizable: on basis β_i of eigenspace E_i of T, it is easy to verify that $\beta = \bigcup \beta_i$ is an eigenbasis of V. So, we have the following theorem:

Theorem 1.3. T is diagonalizable if and only if V is a direct sum of eigenspaces of T.

This decomposition is *sometimes* useful when working with diagonalizable operators. We will see more about this decomposition later when we are talking about a similar theorem on inner product spaces.

2 Cayley–Hamilton Theorem

In the lecture the following theorem is proven:

Theorem 2.1 (Cayley–Hamilton theorem). If V is a finite dimensional vector and $T \in L(V)$ with characteristic polynomial f_T , then $f_T(T) = 0^3$.

The proof of this theorem is done by the following two concepts and one theorem:

Definition 2.1. The *T*-cyclic subspace generated by $v \in V / Krylov$ subspace generated by *T* and *v* is K(T, v) = Span({ $T^i v : i \ge 0$ }), which is the smallest *T*-invariant subspace that contains *v*.

Definition 2.2. For polynomial $p(X) = (-1)^n (X^n + c_{n-1}X^{n-1} + \ldots + c_0) \in P(F)$, the corresponding *companion* matrix is

$$A = \begin{pmatrix} 0 & 0 & \dots & 0 & -c_0 \\ 1 & & & -c_1 \\ & 1 & & & -c_2 \\ & & \ddots & & \vdots \\ & & & 1 & -c_{n-1} \end{pmatrix} \in F^{n \times n}$$

which, as you can verify, has characteristic polynomial det(A - tI) = p(t)

Theorem 2.2. If W is a T-invariant subspace, then the characteristic polynomial f_{T_W} of the restriction T_W of T on W is a factor of f_T : there exists a polynomial g such that $f_T(t) = g(t) f_{T_W}(t)$

Occasionally this last theorem is quite powerful.

If $\dim(V) = n$, we have $\dim(L(V)) = n^2$ and so for a general linear map $T \in L(V)$ we may only expect p(T) = 0 for some polynomial with degree up to $n^2 - 1$, with little information on what this polynomial can be. Cayley–Hamilton theorem claims that this can always be done with a polynomial of degree n by choosing the characteristic polynomial of T.

One use of Cayley–Hamilton theorem is to quickly compute T^m with large m (or in general p(T) for some polynomial p with high degree), with typical approaches like

²Here, $V = W_1 \oplus \ldots \oplus W_k$ means that for each $v \in V$ there exists unique $w_i \in W_i$ for each *i* such that $v = \sum w_i$. You can show that this is equivalent to $V = W_i \oplus (\sum_{j \neq i} W_j)$ for each *i*.

³Note that the characteristic polynomial f_T is just one of many polynomials that makes p(T) = 0 (annihilates T). With some knowledge from e.g. MATH3030, you can show that (a) there exists a unique nonzero polynomial p_{\min} (the *minimal polynomial*) with leading coefficient 1 and has minimal degree that annihilates T, and (b) every (nonzero) polynomial that annihilates T is a multiple of p_{\min} . Usually p_{\min} is not the characteristic polynomial.

- on $f_T(X) = (-1)^n X^n + \sum_{i=0}^{n-1} c_i X^i$, reduce each high order term X^k with $k \ge n$ to a lower degree polynomial via the identity $T^n = (-1)^n \sum_{i=0}^{n-1} c_i T^i$, then evaluate the low degree polynomial directly; or (equivalently)
- find the remainder polynomial r with $\deg(r) < n$ such that $X^m = f_T(X)q(X) + r(X)$, then evaluate r(T)

There are many ways to use Cayley–Hamilton theorem to simplify such computations.

3 Exercises

- 1. Let V be a finite dimensional vector space. Find all diagonalizable linear maps $T \in L(V)$ such that $(T \text{Id})^k = 0$ for some $k \ge 1$.
- 2. For $A = \begin{pmatrix} 1 & 4 \\ -1 & -3 \end{pmatrix} \in \mathbb{R}^{2 \times 2}$, compute $A^{14}(A + 2I)^{13}$.
- 3. Let $T \in L(V)$ be a linear map on a finite dimensional vector space V over scalar field F, and $r = \operatorname{rank}(T)$. Show that there exists a polynomial $p \in \mathsf{P}_{r+1}(F)$ such that p(T) = 0.
- 4. Let V be a nontrivial finite dimensional vector space over *complex number*, and $T, U \in L(V)$ be such that TU = UT. Show that there exists a nonzero vector in V that is an eigenvector to both T, U.