
MATH2040A Week 8 Tutorial Notes

In this tutorial, we will consider only finite dimensional vector spaces.

1 Diagonalizability

A linear map T ∈ L(V ) on a vector space V is diagonalizable if there exists a basis of V that consists only of
eigenvectors of T . If T is diagonalizable with eigenbasis β, [T ]β is then a diagonal matrix. As noted in lecture,
diagonalizability depends on the behavior of the characteristic polynomial fT (t) = det([T ]α − tI):

Theorem 1.1. T is diagonalizable if and only if fT splits and the algebraic multiplicity of each eigenvalue is the
same as their geometric multiplicity1.

Here,

• a polynomial splits if it can be factorized into linear factors (of form X − a) (optionally multiplied by a
constant): p(X) = c(X − a1) . . . (X − ak)

• the algebraic multiplicity of a root λ of a polynomial p(X) is the largest integer mλ ≥ 1 such that (X−λ)mλ

is a factor of p(X)

• the geometric multiplicity of an eigenvalue λ of a linear map T is nullity(T − λI) = dimN ( T − λI )

As noted in lecture,

• a complex polynomial always splits

• for eigenvalue λ of T , 1 ≤ nullity(T − λI) ≤ mλ ≤ n

• if p(X) splits and all (unique) roots are λ1, . . . , λk, then
∑

mλi
= n

So, to check if a linear map T is diagonalizable, typically you would need to

1. compute the characteristic polynomial, usually by computing the determinant

2. factorize the characteristic polynomial and check if it splits

3. for each eigenvalue, compute the dimension of N ( T − λI ), usually by finding a basis

4. check for each eigenvalue if the two multiplicities match

Once diagonalizability is verified, it is simple to find a diagonalizing basis:

Theorem 1.2. If T is diagonalizable with (unique) eigenvalues λ1, . . . , λk, and βi is a basis of N ( T −λI ), then
β = β1 ∪ . . . ∪ βk is an eigenbasis of V

So, to construct an eigenbasis, you just need to merge all bases you find in step 3 above into one basis.
By definition of diagonalizability, [T ]β = diag(λ1, . . . , λn) is diagonal if β = {v1, . . . , vn} is an eigenbasis with

associated eigenvalues λ1, . . . , λn, and so on a basis α of V we have [T ]α = Qdiag(λ1, . . . , λn)Q
−1 with Q = [Id]αβ .

In particular, if V = Fn, T = LA with A ∈ Fn×n, and α is the standard ordered basis, we recover the familiar
eigendecomposition from MATH1030:

A =

 | |
v1 . . . vn
| |


λ1

. . .

λn


 | |
v1 . . . vn
| |

−1

1Such eigenvalue is said to be semisimple.
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1.1 (Optional) Interpretation of Diagonalizability

Suppose T ∈ L(V ) is diagonalizable with (complete set of distinct) eigenvalues λ1, . . . , λk and associated eigenspace
E1 = N ( T − λ1Id ) , . . . , Ek. From the matrix representation in eigenbasis, we can see the following decomposi-
tions:

• V = E1 ⊕ . . .⊕ Ek
2

• If Pi ∈ L(V ) is the projection map onto Ei along
∑

j ̸=i Ej , then PiPj = 0 for i ̸= j,
∑

Pi = Id and∑
λiPi = T

Recall from textbook Sec. 2.3 Q17 (Homework 5 Optional part) that a linear map P ∈ L(V ) is a projection if
and only if P 2 = P .

Conversely, if V is a direct sum of eigenspaces of T , then T is diagonalizable: on basis βi of eigenspace Ei of
T , it is easy to verify that β =

⋃
βi is an eigenbasis of V . So, we have the following theorem:

Theorem 1.3. T is diagonalizable if and only if V is a direct sum of eigenspaces of T .

This decomposition is sometimes useful when working with diagonalizable operators. We will see more about
this decomposition later when we are talking about a similar theorem on inner product spaces.

2 Cayley–Hamilton Theorem

In the lecture the following theorem is proven:

Theorem 2.1 (Cayley–Hamilton theorem). If V is a finite dimensional vector and T ∈ L(V ) with characteristic
polynomial fT , then fT (T ) = 03.

The proof of this theorem is done by the following two concepts and one theorem:

Definition 2.1. The T -cyclic subspace generated by v ∈ V / Krylov subspace generated by T and v is K(T, v) =
Span

( {
T iv : i ≥ 0

} )
, which is the smallest T -invariant subspace that contains v.

Definition 2.2. For polynomial p(X) = (−1)n(Xn+cn−1X
n−1+ . . .+c0) ∈ P (F ), the corresponding companion

matrix is

A =


0 0 . . . 0 −c0
1 −c1

1 −c2
. . .

...
1 −cn−1

 ∈ Fn×n

which, as you can verify, has characteristic polynomial det(A− tI) = p(t)

Theorem 2.2. If W is a T -invariant subspace, then the characteristic polynomial fTW
of the restriction TW of

T on W is a factor of fT : there exists a polynomial g such that fT (t) = g(t) fTW
(t)

Occasionally this last theorem is quite powerful.
If dim(V ) = n, we have dim(L(V )) = n2 and so for a general linear map T ∈ L(V ) we may only expect

p(T ) = 0 for some polynomial with degree up to n2 − 1, with little information on what this polynomial can be.
Cayley–Hamilton theorem claims that this can always be done with a polynomial of degree n by choosing the
characteristic polynomial of T .

One use of Cayley–Hamilton theorem is to quickly compute Tm with large m (or in general p(T ) for some
polynomial p with high degree), with typical approaches like

2Here, V = W1 ⊕ . . .⊕Wk means that for each v ∈ V there exists unique wi ∈ Wi for each i such that v =
∑

wi. You can show
that this is equivalent to V = Wi ⊕ (

∑
j ̸=i Wj) for each i.

3Note that the characteristic polynomial fT is just one of many polynomials that makes p(T ) = 0 (annihilates T ). With some
knowledge from e.g. MATH3030, you can show that (a) there exists a unique nonzero polynomial pmin (the minimal polynomial) with
leading coefficient 1 and has minimal degree that annihilates T , and (b) every (nonzero) polynomial that annihilates T is a multiple
of pmin. Usually pmin is not the characteristic polynomial.
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• on fT (X) = (−1)nXn+
∑n−1

i=0 ciX
i, reduce each high order termXk with k ≥ n to a lower degree polynomial

via the identity Tn = (−1)n
∑n−1

i=0 ciT
i, then evaluate the low degree polynomial directly; or (equivalently)

• find the remainder polynomial r with deg(r) < n such that Xm = fT (X)q(X) + r(X), then evaluate r(T )

There are many ways to use Cayley–Hamilton theorem to simplify such computations.

3 Exercises

1. Let V be a finite dimensional vector space. Find all diagonalizable linear maps T ∈ L(V ) such that (T−Id)k =
0 for some k ≥ 1.

2. For A =

(
1 4
−1 −3

)
∈ R2×2, compute A14(A+ 2I)13.

3. Let T ∈ L(V ) be a linear map on a finite dimensional vector space V over scalar field F , and r = rank(T ).
Show that there exists a polynomial p ∈ Pr+1(F ) such that p(T ) = 0.

4. Let V be a nontrivial finite dimensional vector space over complex number, and T,U ∈ L(V ) be such that
TU = UT . Show that there exists a nonzero vector in V that is an eigenvector to both T,U .
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