
Topic#12

Invariant subspace and
Cayley-Hamilton theorem
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The goal of this topic is to show

Thm (Cayley-Hamilton). Let T ∈ L(V ) with dim(V ) <
∞, and f (t) be the c.p. of T . Then, T satisfies the charac-
teristic equation in the sense that

f (T ) = T0,

where T0 is the zero transformation, i.e., f (T ) is a zero trans-
formation.

Note:

• If one has f (t) =
∑n

k=0 akt
k , then f (T ) means

f (T ) =
n∑

k=0

akT
k ∈ L(V ).

• It is also convenient to write the zero transformation T0 as 0
and hence f (T ) = T0 as f (T ) = 0.
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Def. Let T ∈ L(V ), and W be a subspace of V . Then, W
is T -invariant if T (W ) ⊆W , i.e.

T (v) ∈W , ∀v ∈W .
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Lemma#1. Let T ∈ L(V ), 0 6= x ∈ V . Then

W
def
= span({x ,T (x),T 2(x), · · · })

is T -invariant. And, W is the
:::::::
smallest

:::::::::::
T -invariant

:::::::::
subspace

::
of

::
V

::::::::::
containing

::
x in the sense that any T -invariant subspace

of V containing x must contain W .

Proof. T k(x) ∈ V for k = 0, 1, · · · , so, W is a subspace of V . To
show W is T-invariant, take v ∈W , then ∃m ≥ 1 &
a0, a1, · · · , am ∈ F s.t.

v = a0x + a1T (x) + · · ·+ amT
m(x).

∴ T (v)
T∈L
= T (a0x + a1T (x) + · · ·+ amT

m(x))

= a0T (x) + a1T
2(x) + · · ·+ amT

m+1(x) ∈W .

∴ W is T -invariant.
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Let U be T-invariant with x ∈ U. To show W ⊂ U, take v ∈W .
As before, one can write v = a0x + a1T (x) + · · ·+ amT

m(x).
Since x ∈ U and U is T-invariant, all vectors x ,T (x), ...,Tm(x)
are in U. Noting that U is a subspace of V , the linear combination
v = a0x + a1T (x) + · · ·+ amT

m(x) is still in U. This shows
W ⊂ U.

Due to the above lemma, we introduce

Def. For 0 6= x ∈ V and T ∈ L(V ),

span({x ,T (x),T 2(x), · · · })

is called the T -cyclic subspace of V generated by x .

Note: We let x 6= 0 to avoid the trivial case.
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Lemma#2. Let T ∈ L(V ) with n = dim(V ) < ∞, and
W = span({v ,T (v),T 2(v), · · · }) be the T -cyclic subspace
of V generated by 0 6= v ∈ V . Let k = dim(W ) ≤ n, then

{v ,T (v),T 2(v), · · · ,T k−1(v)}

is a basis for W .

Proof. Recall that W is the smallest T-invariant subspace of V
containing v . Let

j
def
= max{m ≥ 1 : γ = {v ,T (v), · · · ,Tm−1(v)} is l.indep’t }.

Note ]γ = m ≤ k , then j is well defined with 1 ≤ j ≤ k .

We write

β = {v ,T (v), · · · ,T j−1(v)}

that is l.indep subset of W, and define Z
def
= span(β), then Z is a

subspace of W with the basis β.
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Claim: Z = W , i.e.

span({v ,T (v), · · · ,T j−1(v)}) = span({v ,T (v), · · · }),

then j = k . (think about why!)
Proof of Claim:

“⊆”: Direct to see.

“⊇”: It suffices to show Z =span{v ,T (v), · · · ,T j−1(v)} is a
T -invariant subspace containing v . (why?)

Let z ∈ Z , then z = c0v + c1T (v) + · · ·+ cj−1T
j−1(v).

∴ T (z) = c0T (v) + c1T
2(v) + · · ·+ cj−1T

j(v).

By def of j , β ∪ {T j(v)} is I. dep., then T j(v) ∈span(β) = Z .

∴ T (z) is a linear combination of vectors in Z

Then, T (z) ∈ Z , since Z is a v.s.

This proves Z is T-invariant.

7/11



We need one more lemma to prove CH theorem.

Note: For T ∈ L(V ), let W be a T -invariant subspace of V .
Then, TW ∈ L(W ,W ) = L(W ). (It is well defined because
W is T invariant, T (W ) ⊂W .)

Lemma#3. Let T ∈ L(V ) with dim(V ) <∞, and W be a
T -invariant subspace of V . Then the c.p. of TW divides the
c.p. of T .
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Proof. Set dim(W)=k ≤ n<∞. Let γ
def
= {v1, · · · , vk}: o.b. for

W ,
extend it to an o.b. β = {v1, · · · , vk , vk+1, · · · , vn} for V .
Set [T ]β = A, [TW ]γ = B. Then A = ([T (v1)]β| · · · |[T (vk)]β| · · · )

=

(
B B1

0 B2

)
.

Let f (t) : c.p. of T , g(t) : c.p. of TW , then

f (t) = det(A− tIn) = det

(
B − tIk B1

0 B2 − tIn−k

)
= det(B − tIk) · det(B2 − tIn−k)

= g(t) · det(B2 − tIn−k)

∴ g(t) divides f (t) where g(t) is the c.p. of TW .
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Proof of Cayley-Hamilton Thm: Let f (t) be the c.p. of T .
To show: f (T ) ∈ L(V ) is a zero transformation, i.e.

f (T )(v) = 0v for ANY v ∈ V .

Case v = 0: TRUE, since f (T ) is linear.
Case v 6= 0: Note that from now on we FIX such nonzero v .

Let W
def
= span({v ,T (v), · · · }) be the T -cyclic subspace of V

generated by v with k = dim(W ) ≤ n = dim(V ). By Lemma#2,
β = {v ,T (v), · · · ,T k−1(v)} is an o.b. for W . By T k(v) ∈W ,
we see that there are a0, · · · , ak−1 ∈ F such that

a0v + a1T (v) + · · ·+ ak−1T
k−1(v) + T k(v) = 0. (∗)

Then, [TW ]β = ([TW (v)]β| · · · |[TW (T k−1(v)]β) =
([T (v)]β| · · · |[T (T k−1(v)]β) = ([T (v)]β| · · · |[T k(v)]β)

=


0 0 −a0
1

... −a1
...

. . .
...

...
0 1 −ak−1

.
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Let g(t) := det([TW ]β − tIk) be the c.p. of TW , then

g(t) = (−1)k(a0 + a1t + · · ·+ ak−1t
k−1 + tk). (Exercise!)

(Hint: multiply the k-th row by t, added to the (k − 1)-th row,
then repeat it.)

By (∗), we have g(T )(v) = 0v .

Moreover, by Lemma#3, g(t) divides f (t), i.e., ∃ poly q(t) s.t.
f (t) = q(t)g(t), so that f (T ) = q(T ) ◦ g(T ).

Therefore,

f (T )(v) = [q(T ) ◦ g(T )](v) = q(T )(g(T )(v)) = q(T )(0v ) = 0v .
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