
Chapter 5: Three topics:

Topic#10 Eigenvalue & Eigenvector

Topic#11 Diagonalizability

Topic#12 Cayley-Hamilton Theorem
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Topic#10

Eigenvalue & eigenvectors

2/19



Def. Let T ∈ L(V ).

0V 6= v ∈ V is an eigenvector of T if

∃λ ∈ F s.t. T (v) = λv .

Here, action becomes scalar multiplication.

Here, λ ∈ F is the eigenvalue of T ∈ L(V ) associated with
the (nonzero) eigenvector v .
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Examples:

(1) ∃T ∈ L(V ) which has no eigenvectors.

For instance, T ∈ L(R2) is a rotation by θ = π/2.

R2

0

vT (v)

Obviously see: for any
0 6= v ∈ R2, T (v) can not be a
multiple of v .
(∵ v&T (v) is not colinear)
T has no eigenvectors, hence no
eigenvalues.
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(2) Let T : C∞(R)→ C∞(R), f 7→ T (f ) = f ′, where

C∞(R) = {f : R→ R | f and its derivatives up to any order
are continuous in R}.

Note: T ∈ L(C∞(R)).
Solve: T (f ) = λf , f 6= 0,
i.e. look for λ ∈ R and f 6= 0 s.t. f ′(t) = λf (t).

∴ f (t) = ceλt(c 6= 0).

Then, any λ ∈ R is an eigenvalue of T , corresponding to the
eigenvector ceλt(c 6= 0).

Note: Associated with the eigenvalue λ = 0, the eigenvector is the
nonzero constant function.
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(3) Let A ∈ Mn×n, and LA ∈ L(Fn). Note: for 0 6= x ∈ Fn, λ ∈ F

LA(x) = λx ⇔ Ax = λx .

Thus,

Def. 0 6= x ∈ Fn is an eigenvector of A if

Ax = λx for some λ ∈ F.

Here, λ is called the eigenvalue of A corresponding to the
eigenvector x .
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Def. Let T ∈ L(V ), dim(V )<∞.

T is diagonalizable if

∃ an ordered basis β for V s.t. [T ]β is a diagonal matrix.
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Thm. Let T ∈ L(V ), dim(V )<∞. Then T is diagonaliz-
able iff V has an o.b. β in which each basis vector is an
eigenvector of T .

Pf. “⇒” Assume: T diagonalizable.

By def., ∃ an o.b. β s.t. [T ]β is a diagonal matrix.

For dim(V )<∞, let β = {v1, · · · , vn}, [T ]β = D
def .
=


d1

·
·
dn

.

Then

T (vj) =
∑n

i=1 Dijvi = Djjvj = djvj , j = 1, · · · , n, i.e. T (vj) = djvj

i.e. each vector in β is an e-vector of T .

8/19



“⇐ Let β = {v1, · · · , vn} be an o.b. for V s.t.

T (vj) = λjvj , (1 ≤ j ≤ n) for some λ1, · · · , λn ∈ F.

We see

[T ]β = ([T (v1)]β| · · · |[T (vn)]β) =


λ1

λ2

·
·
λn


(here, j th column is the β-coord. of T (vj)).
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Remark. The proof of “⇐” says that

to ensure that T is diagonalizable,
we need to

::::
look

:::
for

::
a

:::::
basis

::
of

::::::::::::
eigenvectors

::
of

:::
T ,

i.e., to
:::::::::
determine

:::
the

::::::::::::
eigenvectors

::::
and

:::::::::::
eigenvalues

:::
of

:::
T :

T (v) = λv , 0 6= v ∈ V , λ ∈ F.

e.g. Rotation Tπ/2 ∈ L(R2) has no e-vectors, and thus Tπ/2 is
NOT diagonalizable.
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Observe: Let T ∈ L(V ), dim(V ) = n, β : o.b. for V , then

T (v) = λv , v 6= 0
⇔ [T (v)]β = λ[v ]β, [v ]β 6= 0
⇔ [T ]β[v ]β = λ[v ]β, [v ]β 6= 0
⇔ ([T ]β − λIn)[v ]β = 0, [v ]β 6= 0
⇔ [T ]β − λIn ∈ Mn×n(F) is NOT invertible
⇔ det([T (v)]β − λIn) = 0

This shows:

Claim: If T ∈ L(V ) with dim(V ) <∞ and β is an o.b. for
V , then λ is an eigenvalue of T iff

λ is an eigenvalue of [T ]β.
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e.g. Tπ/2 ∈ L(R2). Tπ/2 = LA with A =

(
0 −1
1 0

)
. Thus

0 = det(A− λI2) = det

(
−λ −1
1 −λ

)
= λ2 + 1

has no solution in R. (Note: Tπ/2 ∈ L(R2) so ’no sol in R’)

∴ A has no eigenvalues
∴ Tπ/2 = LA has no eigenvalue.
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Def. Let T ∈ L(V ), dim(V ) = n, β : o.b. for V .

fT (t)
def
= det([T ]β − tIn)

is called the characteristic polynomial (c.p.) of T .
i.e. Zeros of fT (t) give all possible eigenvalues in F for T.

Remarks:

(1) Note: Matrices [T ]β are similar for different β′s, and sim-
ilar matrices have the same c.p. Hence, the c.p. fT (t) =
det([T ]β − tIn) is independent of the choice of β, thus we also
often write fT (t) = det([T ]β − tIn).

(2) Let fT (t) = det([T ]β − tIn). Then

(a) fT (t) is a poly with deg = n and leading coefficient (−1)n.

(b) fT (t) has at most n zeros, thus T has at most n e-values.
If F = C, then it has exactly n e-values.
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Proof for (1):

[T ]β=[Iv ◦ T ◦ Iv ]β=[Iv ]ββ′ [T ]β
′

β′ [Iv ]β
′

β = Q−1[T ]β′Q

fT (t) = det([T ]β − tIn)=det(Q−1[T ]β′Q − Q−1tInQ)=· · ·

=det(Q−1) · det([T ]β′ − tIn) · det(Q)=det([T ]β′ − tIn)
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A basic fact: (without proof; left for exercises)

Let T ∈ L(V ). Let λ ∈ F be an eigenvalue of T . Then
v ∈ V is an eigenvector of T associated with λ iff

v 6= 0, and v ∈ N(T − λI ).
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Sum: Find e-values & e-vectors of T ∈ L(V ) with dim(V ) = n &
o.b. β = {v1, · · · , vn} for V .

V V

Fn Fn

T

[·]β=Φβ [·]β=Φβ

[T ]β

Recall: Tv = λv , v 6= 0⇔ ([T ]β − λIn)[v ]β = 0, [v ]β 6= 0.

1◦. Solve det([T ]β − λIn) = 0⇒ all eigenvalues λ′s of T .

2◦. For each λ, find all the λ-e.vectors x ∈ Fn by solving

([T ]β − λIm)x = 0,

then all v
def
= Φ−1

β (x) =
∑n

i=1 xivi are the λ-e.vectors of T .
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e.g. Let T : P2(R)→ P2(R)

f 7→ T (f ),T (f (x)) = f (x) + (1 + x)f ′(x).

Then T ∈ L(P2(R)). Let β = {1, x , x2} : s.o.b., then

A
def
= [T ]β =

1 1 0
0 2 2
0 0 3


(∵ T (1) = 1,T (x) = 1 + 2x ,T (x2) = 2x + 3x2)

1◦. Find e-values of T :
0 = det([T ]β − λI3) = −(t − 1)(t − 2)(t − 3). ∴ λ = 1, 2, 3.
2◦. Find e-vectors of T associated with each eigenvalue:
λ1 = 1:

[T ]β − λ1I3 =

0 1 0
0 1 2
0 0 2

 ,∴ N([T ]β − λ1I3) = span{

1
0
0

}
∴ Φ−1

β (

1
0
0

) = 1 · 0 + 0 · x + 0 · x2 = 1

is an eigenvector of T associated with λ1 = 0.
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λ2 = 2 :

[T ]β − λ2I3 =

−1 1 0
0 0 2
0 0 1

 ,∴ N([T ]β − λ2I3) = span{

1
1
0

}
∴ Φ−1

β (

1
1
0

) = 1 · 0 + 1 · x + 0 · x2 = 1 + x

is an eigenvector of T associated with λ2 = 2.

λ3 = 3 :

[T ]β − λ3I3 =

−2 1 0
0 −1 2
0 0 0

 ,∴ N([T ]β − λ3I3) = span{

1
2
1

}
∴ Φ−1

β (

1
2
1

) = 1 · 1 + 2 · x + 1 · x2 = 1 + 2x + x2

is an eigenvector of T associated with λ3 = 3.
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3◦. Let

γ = {1, 1 + x , 1 + 2x + x2},

then γ is an o.b. for P2(R) consisting of only e-vectors of T , and

T (1) = 1 · 1,
T (1 + x) = 2 · (1 + x),

T (1 + 2x + x2) = 3 · (1 + 2x + x2).

Therefore, T is digonablizable, and

[T ]γ =

1 0 0
0 2 0
0 0 3

 .
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