Topic#06

Null space, range, and
Dimension Theorem



Def. V,W: vs. over F. T : V — W linear.

NT)E {xeV:T(x)=0un}

is called the null space (or kernel) of T.

RTYE {T(x):xeVIicw

is called the range (or image) of T.
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Prop. T : V — W is linear. Then, N(T) is a subspace of
V, and R(T) is a subspace of W.

Proof. N(T) is a subspace of V. Indeed, N(T) C V, and

(1) T(0v) =0w... 0y € N(T)

(2) Let x,y € N(T), aeF.

Tx+y)=Tx)+ T(y) =0w + 0w =0w

T(ax) = aT(x) = a0y = O

Sox+yeN(T),ax € N(T). O

R(T) is s subspace of W. Indeed, R(T) C W, and

(1) T(Ov) =O0w. ..Ow € R(T)

(2) Let x,y € R(T), acF. Then 3v,w € V, s.t.

x=T(v),y = T(w).

Sox+y=T(v)+ T(w)=T(v+w) (T: linear)

withv+weV (v,we V,V:vs)

ax =aT(v) = T(av) with ave V

Sox+y€eR(T),ax € R(T). OO
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e.g.: (1) To: V — W (zero transf.):

N(To) = V,R(To) = {On}-
ly : V — V (identity transf.):

N(lv) ={0v}, R(Iv) = V.

(2) A€ Mpsn(F), La: F" — F™ (left-multiplication)
N(La) = N(A): null space of A.
R(La) = C(A) : C(A) is the column space of A. Note
X1
X2
Ax = L0 --- D) | | =xal+xl+ -+ x,l.

(3) T: Pa(R) = Pr_1(R), f € Py(R) — Tf € Pp_1(R) by
Tf(x) = f'(x), Vx € R.

N(T) = { const. poly. } = Py(R)
R(T) = Pnfl(R)'
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Goal 1: Let T € L(V, W), to find a spanning set of R(T) in
terms of a basis for V.

Thm: let T € L(V, W) where V, W are v.s. and V is finite-
dimensional. Let V has a basis 8 = {v1,va,---, vp}. Then:

R(T) = span(T(B)) = span({T(v1), T(v2), -+, T(va)})-

Proof. “2": pC V, R(T) D> T(B), R(T) is a subpsace of W
containing T(f), and span(T(3)) is the smallest subspace of W
containing T(8). .. R(T) Dspan(T(5)). O

“C": Let we R(T). 3ve V,st. w= T(v). S is a basis for V
co3lag, - ,ap €F, st v=>""ajvi. Then
w=T(v)=T(X7;avi) =37 aT(vi) € span(T(B)).

Note w is linear combination of vectors in T([3).

. R(T) Cspan(T(5)). OO
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Remark: Thm is also true even if 3 is infinite (countable or
uncountable). O

Remark: R(T) =span({T(vi), -+, T(va)}).
When T(8) ={T(v1),---, T(vn)}is | indep.?

Let 27:1 a,-T(v,-) = 0. Then, T(27:1 a,-v,-) =0.
Assume N(T) = {0}.

Then 27:1 ajvi = 0. .. dly =+ =dp= 0.

This shows:

If N(T) = {0},

then T is . indep. and thus T is a basis for R(T). []
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e.g.: T : Py(R) = May2(R) is defined by
fePy(R)— Tf = (f(l)_ f2) 0 )

1°. T € L(P2(R), Max2(R)) (i.e. T is linear)
2°. B = {1,x,x°} a basis for P>(R)

R(T) = span(T(8)) (thm)
=span({T(1), T(x), T(x*)})

ol (32). (1479 (5 2
—swan(((g3) (75 o)
(8 2) : (Ol 8) is a basis for R(T), dim(R(T)) = 2. O

7/16



Goal 2: measure the size of subspaces N(T), R(T) by their
dimensions.
note:

e The larger N(T) (its dim), the smaller R(T) (its dim),
for instance, T = Ty.

e The smaller N(T) (its dim), the larger R(T) (its dim),
for instance, T = Iy/.
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Def. Let T € L(V, W).
Assume N(T),R(T) are finite-dimensional.

nullity(T) < dim(N(T))

rank(T) & dim(R(T))
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Dimension Thm: Let T € L(V,W), and V be finite-
dimensional. Then,

nullity(T) + rank(T) = dim(V).

Proof. Note N(T) is a subspace of finite-dimensional V, N(T) is
finite-dimensional.

Assume: n=dim(V), k =dim(N(T)), with kK < n,

{v1, -+, v} is a basis for N(T),

extend {vi, -+, v} to be a basis 8 = {vi, -+, v,} for V.

To show: « =4 {T(vk+1), -+, T(vn)} is a basis for R(T).

Indeed, 1°. R(T) =span+y. In fact, from the previous thm,

R(T) =span({T(w0), - T(va)}) = span({ T (vics1),- - » T(va)})
=spany

(- T(v;))=0,1<i<k).
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2°. vis . indep. In fact, let >, 1 a;T(v;) =0,a; € F,

then T(D i, 1aiv;) =0 (. T is linear)

Sy @ivi € N(T) = span({vy, -+, v})

codby, by, - b €, sit. Z?:k—f—l ajvi = Zf:l b;v;

i.e. Zﬁ;l(—b,’)vi + Z?:k—&-l a;jvi=0

agr1=--=apn=0(. f={vi, -, vp}is a basis for V)

oy is l.indep. O

11/16



Following the previous example:

nullity(T) + rank(T) = dim(P2(R))
—_— ~—
=dim(N(T)) dim(R(T))=2 =3
codim(N(T)) =1.
It is also direct to compute:

Tf=0

& f(0) =0,f(1) = £(2),f = ap + arx + axx?
S a9 =0,a1 4+ ax =2a; +4a;

< ag=0,a1+3a,=0

& f(x) = —3axx + apx? = ax(—3x + x?)

L dim(N(T)) =1
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Goal 3: Let T € L(V, W), find relations between

| T is one-to-one or onto | «—— | N(T), R(T) & their dimensions
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Thm#1: T € L(V,W). Then T is one-to-one iff N(T) =
{0}.

Proof. “=" Let T be one-to-one, it is sufficent to show:

N(T) c {0}.

Let x € N(T).

“T(x)=0=T(0y), ..x =0y (. T is one-to-one) O

“<" Let N(T) = {0}, to show: T is one-to-one.

Let T(x)=T(y),x,y € V.

S 0=T(x)—T(y)=T(x—y) (T: linear)
Sox—y=0,(-N(T)=1{0})

i.e. x =y, then T is one-to-one. L]
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Thm#2: Let T € £(V, W) with dim(V) = dim(W) < oo.
Then the following are equivelent:
(a) T is one-to-one.

(b) T is onto.
(c) rank(T) = dim(V).
(d) nullity(T) = 0.

Proof. to show (a) < (d) < (c) < (b):

(a) & (d): T is ont-to-one < N(T) =0 < dim(N(T)) =0
(d) < (c): due to dimension thm: nullity(T)+rank(T) = dim(V)
(c) & (b): rank(T) = dim(V)

< dim(R(T)) = dim(W)

< R(T)= W ("<" obvious, "=" R(T) is a
subspace of W. R(T) has the same dim as W)

< T is onto O
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e.g.: Construct T € L(V, W) with dim(V) # dim(W) s.t. T is
one-to-one but not onto.

T : Py(R) — P3(R) is defined by

f(x) € Py(R) = T(f(x)) € P3(R) : T(f(x)) & 2f'(x)+ /0 X3f(t)dt.

1°. T € L(P2(R), P3(R)) (verify this as an exercise).

2°. B ={1,x,x%}: basis for P»(R)

T(B) = {T(1), T(x), T(x*)} = {3x,2 + 3x2,4x + x}
(Itis I. indep. Why?) A basis for R(T)

. R(T) =span(T(B))=span({3x,2 + 3x2,4x + x})
. rank(T)=dim(R(T))=3<dim(P3;)=4

.. T is not onto

3°. Dimension thm:

nullity(T) = dim(N(T)) = dim(P2(R)) —rank(T) =3 -3 =0
.. T is one-to-one.
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