Topic#6 Null space, range, and Dimension Theorem

<u>Def.</u> V, W: v.s. over \mathbb{F} . $T: V \to W$ linear.

$$N(T) \stackrel{def}{=} \{x \in V : T(x) = 0_W\}$$

is called the null space (or kernel) of T.

$$R(T) \stackrel{\text{def}}{=} \{T(x) : x \in V\} \subset W$$

is called the range (or image) of T.

Prop. $T: V \to W$ is linear. Then, N(T) is a subspace of \overline{V} , and R(T) is a subspace of W.

Proof. N(T) is a subspace of V. Indeed, $N(T) \subset V$, and

(1)
$$T(0_V) = 0_W...0_V \in N(T)$$

(2) Let
$$x, y \in N(T)$$
, $a \in \mathbb{F}$.

$$T(x + y) = T(x) + T(y) = 0_W + 0_W = 0_W$$

$$T(ax) = aT(x) = a0_W = 0_W$$

$$\therefore x + y \in N(T), ax \in N(T).$$

R(T) is s subspace of W. Indeed, $R(T) \subset W$, and

(1)
$$T(0_V) = 0_W$$
. $\therefore 0_W \in R(T)$

(2) Let
$$x, y \in R(T)$$
, $a \in \mathbb{F}$. Then $\exists v, w \in V$, s.t.

$$x = T(v), y = T(w).$$

$$\therefore x + y = T(v) + T(w) = T(v + w) (T: linear)$$

with
$$v + w \in V$$
 $(v, w \in V, V : v.s)$

$$ax = aT(v) = T(av)$$
 with $av \in V$

$$\therefore x + y \in R(T), ax \in R(T).$$

 $\underline{\mathbf{e.g.:}}\ (1)\ T_0:V o W\ (\mathsf{zero\ transf.}):$

$$I_V:V o V$$
 (identity transf.): $N(I_V)=\{0_V\}, R(I_V)=V.$

(2)
$$A \in M_{m \times n}(\mathbb{F}), L_A : \mathbb{F}^n \to \mathbb{F}^m$$
 (left-multiplication)

 $N(T_0) = V, R(T_0) = \{0_N\}.$

$$N(L_A) = N(A)$$
: null space of A .
 $R(L_A) = C(A) : C(A)$ is the column space of A . Note

$$Ax = (\mathbb{I}, \mathbb{I}, \cdots, \mathbb{I}) \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} = x_1 \mathbb{I} + x_2 \mathbb{I} + \cdots + x_n \mathbb{I}.$$

(3)
$$T: P_n(\mathbb{R}) \to P_{n-1}(\mathbb{R}), \ f \in P_n(\mathbb{R}) \mapsto Tf \in P_{n-1}(\mathbb{R})$$
 by
$$Tf(x) = f'(x), \ \forall x \in \mathbb{R}.$$

$$N(T) = \{ \text{ const. poly. } \} = P_0(\mathbb{R})$$

 $R(T) = P_{n-1}(\mathbb{R}).$

Goal 1: Let $T \in \mathcal{L}(V, W)$, to find a spanning set of R(T) in terms of a basis for V.

<u>Thm:</u> let $T \in \mathcal{L}(V, W)$ where V, W are v.s. and V is finite-dimensional. Let V has a basis $\beta = \{v_1, v_2, \dots, v_n\}$. Then:

$$R(T) = \operatorname{span}(T(\beta)) = \operatorname{span}(\{T(v_1), T(v_2), \cdots, T(v_n)\}).$$

<u>Proof.</u> " \supset ": $\beta \subset V$, $R(T) \supset T(\beta)$, R(T) is a subpsace of W containing $T(\beta)$, and span $(T(\beta))$ is the smallest subspace of W containing $T(\beta)$. $\therefore R(T) \supset \text{span}(T(\beta))$.

"C": Let $w \in R(T)$. $\exists v \in V$, s.t. w = T(v). β is a basis for V. $\exists ! a_1, \cdots, a_n \in \mathbb{F}$, s.t. $v = \sum_{i=1}^n a_i v_i$. Then $w = T(v) = T(\sum_{i=1}^n a_i v_i) = \sum_{i=1}^n a_i T(v_i) \in \text{span}(T(\beta))$. Note w is linear combination of vectors in $T(\beta)$. $\therefore R(T) \subset \text{span}(T(\beta))$.

Remark: Thm is also true even if β is infinite (countable or uncountable).

Remark:
$$R(T) = \text{span}(\{T(v_1), \dots, T(v_n)\})$$
.
When $T(\beta) = \{T(v_1), \dots, T(v_n)\}$ is I. indep.?

Let
$$\sum_{i=1}^{n} a_i T(v_i) = 0$$
. Then, $T(\sum_{i=1}^{n} a_i v_i) = 0$.

Assume
$$N(T) = \{0\}.$$

Then
$$\sum_{i=1}^{n} a_i v_i = 0$$
. $a_1 = \cdots = a_n = 0$.

This shows:

If
$$N(T) = \{0\}$$
,

then $T(\beta)$ is I. indep. and thus $T(\beta)$ is a basis for R(T).

e.g.: $T: P_2(\mathbb{R}) \to M_{2\times 2}(\mathbb{R})$ is defined by

$$f \in P_2(\mathbb{R}) \mapsto Tf = \begin{pmatrix} f(1) - f(2) & 0 \\ 0 & f(0) \end{pmatrix}$$

1°.
$$T \in \mathcal{L}(P_2(\mathbb{R}), M_{2\times 2}(\mathbb{R}))$$
 (i.e. T is linear) 2°. $\beta = \{1, x, x^2\}$ a basis for $P_2(\mathbb{R})$

$$R(T) = \operatorname{span}(T(\beta)) \quad \text{(thm)}$$

$$= \operatorname{span}(\{T(1), T(x), T(x^2)\})$$

$$= \operatorname{span}(\{\begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 - 2 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 1^2 - 2^2 & 0 \\ 0 & 0^2 \end{pmatrix}\})$$

$$= \operatorname{span}(\{\begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} -1 & 0 \\ 0 & 0 \end{pmatrix}\})$$

$$\therefore \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} -1 & 0 \\ 0 & 0 \end{pmatrix} \text{ is a basis for } R(T), \dim(R(T)) = 2.$$

Goal 2: measure the size of subspaces N(T), R(T) by their dimensions.

note:

- The larger N(T) (its dim), the smaller R(T) (its dim), for instance, $T = T_0$.
- The smaller N(T) (its dim), the larger R(T) (its dim), for instance, $T = I_V$.

<u>Def.</u> Let $T \in \mathcal{L}(V, W)$.

Assume N(T), R(T) are finite-dimensional.

 $\mathsf{nullity}(T) \stackrel{\mathit{def}}{=} \mathsf{dim}(\mathit{N}(T))$

 $\operatorname{rank}(T) \stackrel{\operatorname{def}}{=} \dim(R(T))$

<u>Dimension Thm:</u> Let $T \in \mathcal{L}(V, W)$, and V be finite-dimensional. Then,

$$\operatorname{nullity}(T) + \operatorname{rank}(T) = \dim(V).$$

<u>Proof.</u> Note N(T) is a subspace of finite-dimensional V, N(T) is finite-dimensional.

```
Assume: n = \dim(V), k = \dim(N(T)), with k \le n, \{v_1, \dots, v_k\} is a basis for N(T), extend \{v_1, \dots, v_k\} to be a basis \beta = \{v_1, \dots, v_n\} for V. To show: \gamma \stackrel{def}{=} \{T(v_{k+1}), \dots, T(v_n)\} is a basis for R(T).
```

Indeed, 1°. $R(T) = \operatorname{span} \gamma$. In fact, from the previous thm, $R(T) = \operatorname{span}(\{T(v_1), \cdots, T(v_n)\}) = \operatorname{span}(\{T(v_{k+1}), \cdots, T(v_n)\}) = \operatorname{span} \gamma$ $(:T(v_i) = 0, 1 \le i \le k)$.

2°. γ is l. indep. In fact, let $\sum_{i=k+1}^{n} a_i T(v_i) = 0$, $a_i \in \mathbb{F}$, then $T(\sum_{i=k+1}^{n} a_i v_i) = 0$ (\because T is linear) $\therefore \sum_{i=k+1}^{n} a_i v_i \in N(T) = \operatorname{span}(\{v_1, \cdots, v_k\})$ $\therefore \exists b_1, b_2, \cdots, b_k \in \mathbb{F}, \text{ s.t. } \sum_{i=k+1}^{n} a_i v_i = \sum_{i=1}^{k} b_i v_i$ i.e. $\sum_{i=1}^{k} (-b_i) v_i + \sum_{i=k+1}^{n} a_i v_i = 0$ $\therefore a_{k+1} = \cdots = a_n = 0$ ($\because \beta = \{v_1, \cdots, v_n\}$ is a basis for V) $\therefore \gamma \text{ is l. indep.}$

Following the previous example:

$$\underbrace{\operatorname{nullity}(T)}_{=\dim(N(T))} + \underbrace{\operatorname{rank}(T)}_{\dim(R(T))=2} = \underbrace{\dim(P_2(\mathbb{R}))}_{=3}$$

$$\therefore \dim(N(T)) = 1.$$

It is also direct to compute:

$$Tf = 0$$

 $\Leftrightarrow f(0) = 0, f(1) = f(2), f = a_0 + a_1x + a_2x^2$
 $\Leftrightarrow a_0 = 0, a_1 + a_2 = 2a_1 + 4a_2$
 $\Leftrightarrow a_0 = 0, a_1 + 3a_2 = 0$
 $\Leftrightarrow f(x) = -3a_2x + a_2x^2 = a_2(-3x + x^2)$

$$\therefore \operatorname{dim}(N(T)) = 1$$

Goal 3: Let $T \in \mathcal{L}(V, W)$, find relations between

T is one-to-one or onto \longleftrightarrow N(T), R(T) & their dimensions

Thm#1: $T \in \mathcal{L}(V, W)$. Then T is one-to-one iff $N(T) = \{0\}$.

<u>Proof.</u> " \Rightarrow " Let T be one-to-one, it is sufficent to show: $N(T) \subset \{0\}$.

Let $x \in N(T)$.

$$T(x) = 0 = T(0_V), \quad x = 0_V \quad T \text{ is one-to-one}$$

" \Leftarrow " Let $N(T) = \{0\}$, to show: T is one-to-one.

Let
$$T(x) = T(y), x, y \in V$$
.

$$\therefore 0 = T(x) - T(y) = T(x - y)$$
 (T: linear)

$$\therefore x - y = 0, (\because N(T) = \{0\})$$

i.e. x = y, then T is one-to-one.

```
Thm#2: Let T \in \mathcal{L}(V, W) with \dim(V) = \dim(W) < \infty.
```

Then the following are equivelent:

- (a) T is one-to-one.
- (b) T is onto.
- (c) rank(T) = dim(V).
- (d) nullity(T) = 0.

```
Proof. to show (a) \Leftrightarrow (d) \Leftrightarrow (c) \Leftrightarrow (b):

(a) \Leftrightarrow (d): T is ont-to-one \Leftrightarrow N(T) = 0 \Leftrightarrow \dim(N(T)) = 0

(d) \Leftrightarrow (c): due to dimension thm: nullity(T)+rank(T) = \dim(V)

(c) \Leftrightarrow (b): rank(T) = \dim(V)

\Leftrightarrow \dim(R(T)) = \dim(W)

\Leftrightarrow R(T) = W ("\Leftarrow" obvious, "\Rightarrow" R(T) is a subspace of W. R(T) has the same dim as W.)

\Leftrightarrow T is onto
```

e.g.: Construct $T \in \mathcal{L}(V, W)$ with $\dim(V) \neq \dim(W)$ s.t. T is one-to-one but not onto.

 $T: P_2(\mathbb{R}) \to P_3(\mathbb{R})$ is defined by

2°. $\beta = \{1, x, x^2\}$: basis for $P_2(\mathbb{R})$

$$f(x) \in P_2(\mathbb{R}) \mapsto T(f(x)) \in P_3(\mathbb{R}) : T(f(x)) \stackrel{\text{def}}{=} 2f'(x) + \int_0^x 3f(t)dt.$$

1°. $T \in \mathcal{L}(P_2(\mathbb{R}), P_3(\mathbb{R}))$ (verify this as an exercise).

$$T(\beta) = \{T(1), T(x), T(x^2)\} = \{3x, 2 + \frac{3}{2}x^2, 4x + x^3\}$$

(It is I. indep. Why?) A basis for $R(T)$
 $\therefore R(T) = \text{span}(T(\beta)) = \text{span}(\{3x, 2 + \frac{3}{2}x^2, 4x + x^3\})$
 $\therefore \text{rank}(T) = \text{dim}(R(T)) = 3 < \text{dim}(P_3) = 4$

T is not onto

3°. Dimension thm:

nullity(
$$T$$
) = dim($N(T)$) = dim($P_2(\mathbb{R})$) - rank(T) = 3 - 3 = 0 $\therefore T$ is one-to-one.