Topic#4 Basis & dimension

 $\underline{\mathbf{Def.}}\;(V,+,\cdot)\!\colon \text{v.s. over }\mathbb{F}.\;\beta\subset V.\;\beta\;\text{is a basis for }V\;\text{if}$

- (a) β is I. indep. (b) $V = \operatorname{span} \beta$.

Examples:

- (1) \mathbb{F}^n : $\{e_1, \dots, e_n\}$ is a bsis (standard basis)
- (2) $P_n(\mathbb{F}) : \{1, x, \dots, x^n\}$ is a basis $P(\mathbb{F}): \{1, x, \dots\}$ is a basis
- (3) $M_{m \times n}(\mathbb{F}) : \{E_{ij} : 1 \le i \le m, 1 \le j \le n\}$ is a basis, where

$$E_{ij}=i^{th}\begin{pmatrix} \vdots \\ \vdots \\ \ddots \\ \vdots \end{pmatrix}.$$

Def.: A v.s. V is **finite-dimensional** if V has a finite spanning set, i.e., \exists a finite set $S \subset V$ s.t.

$$V = \operatorname{span}(S)$$
.

Otherwise, V is **infinite-dimensional**.

Thm. A finite spanning set can be reduced to a basis, namely, let $(V, +, \cdot)$: v.s. over \mathbb{F} . If $V = \operatorname{span}(S)$ where $S \subset V$ is of finite size, then $\exists \beta \subset S$ which is a basis for V.

Proof.

- If S is I. indep., take $\beta = S$, done.
- Otherwise, S is I. dep. By a previous prop., $\exists v_1 \in S$ s.t. spanS=span $(S \setminus \{v_1\})$. If $S \setminus \{v_1\}$ is I. indep., take $\beta = S \setminus \{v_1\}$, done.
- Otherwise, repeat the same process.
- :: S is finite
- \therefore After finite steps, we reach a l. indep. subst $S' \subset S$ s.t.

$$span S' = span S$$
,

then take $\beta = S'$, done!

Coro.: V is finite-dimensional **iff** V has a finite basis.

Prop. $(V, +, \cdot)$: v.s. over \mathbb{F} . $\beta = \{u_1, u_2, \dots, u_n\} \subset V$. Then β is a basis for V iff $\forall v \in V$, $\exists ! a_1, a_2, \dots, a_n \in \mathbb{F}$ s.t.

$$v = a_1 u_1 + a_2 u_2 + \cdots + a_n u_n$$
.

Proof. " \Rightarrow " Assume: β is a basis. Let $v \in V$.

V= span $eta\Rightarrow v$ is a linear combination of $u_1,\cdots,u_n.$

If $v = a_1u_1 + \cdots + a_nu_n = b_1u_1 + \cdots + b_nu_n$ are two representations, then $(a_1 - b_1)u_1 + \cdots + (a_n - b_n)u_n = 0$ $\therefore \beta$ is l. indep.

∴
$$a_i - b_i = 0, 1 \le i \le n$$
, i.e. $a_i = b_i, 1 \le i \le n$.

$$\Leftarrow$$
 Let $\forall v \in V$. Then, $\exists ! a_1, \cdots, a_n \in \mathbb{F}$ s.t. $v = \sum_{i=1}^n a_i u_i$,

∴
$$v \in \operatorname{span}\beta$$

$$\therefore V \subset \operatorname{span}\beta . \therefore V = \operatorname{span}\beta$$

Also, let $a_1u_1 + \cdots + a_nu_n = 0$.

Then, $a_i = 0 \ (1 \le i \le n)$ by uniqueness.

$$\therefore \beta$$
 is I. indep.

$$\therefore \beta$$
 is a bsis for V .

Thm. (Replacement Theorem)

 $(V,+,\cdot)$: v.s. over \mathbb{F} .

 $V = \operatorname{span} G$ with $\sharp G = n$.

 $L \subset V$ is I. indep. with $\sharp L = m$.

Then $m \le n$ and $\exists H \subset G$ with $\sharp H = n - m$ such that

$$V = \operatorname{span}(L \cup H)$$
.

Proof. Induction in m:

m = 0: $L = \emptyset$, take H = G.

Assume "TRUE" for some $m \ge 0$, to show "TRUE" for m + 1.

Assume: $L = \{v_1, \dots, v_{m+1}\} \subset V$ I. indep. with $\sharp L = m+1$.

 $\therefore L' = \{v_1, \dots, v_m\}$ I. indep. with $\sharp L' = m$ \therefore By I.A., $m < n \& \exists H' = \{u_1, \dots, u_{n-m}\} \subset G$ s.t.

 $V = \operatorname{span}(L' \cup H') = \operatorname{span}(\{v_1, \dots, v_m, u_1, \dots, u_{n-m}\}).$

Consider $v_{m+1} \in V$.

$$\therefore v_{m+1} = a_1v_1 + \dots + a_mv_m + b_1u_1 + \dots + b_{n-m}u_{n-m}$$
 for some $a_1, \dots, a_m, b_1, \dots, b_{n-m} \in \mathbb{F}$

 $\therefore L = \{v_1, \cdots, v_{m+1}\}$ I. indep.

$$\therefore b_1, \dots, b_{n-m}$$
 not all zero, i.e. $n-m>0$, i.e. $n\geq m+1$.

For instance, $b_1 \neq 0$, then

$$u_1 \in \text{span}\{v_1, \dots, v_m, v_{m+1}, u_2, \dots, u_{n-m}\}.$$

Take $H \stackrel{def}{=} \{u_2, \cdots, u_{n-m}\}.$

Then
$$V = \operatorname{span}(\{v_1, \dots, v_{m+1}, u_2, \dots, u_{n-m}\}) = \operatorname{span}(L \cup H)$$
.

 \therefore TRUE for m+1.

Two quick consequences of R.T.:

(1) Let V be a finite-dimensional v.s., then any linearly independent subset of V must be finite.

Indeed, otherwise, let $\{v_1, v_2, ...\} \subset V$ be a linear independent infinite subset. Let β be a finite basis for V with $\#\beta = n$. Note that $\{v_1, ..., v_{n+1}\}$ is linearly independent with # = n + 1. By R.T., $n+1 \leq m = n$, which is a contradiction.

(2) By (1), one then can conclude that if V has an infinite linearly independent subset, then V must be infinite-dimensional.

Fact: Let V be a finite-dimensional v.s., then all bases for V have the same size, for instance, let β, γ be two finite bases for V, then $\sharp \beta = \sharp \gamma$.

Pf. Direct consequence of Replacement Theorem:

let
$$V = \operatorname{span}\beta$$
. $\gamma \subset V$ I. indep. $\Rightarrow \sharp \gamma \leq \sharp \beta$ $V = \operatorname{span}\gamma$. $\beta \subset V$ I. indep. $\Rightarrow \sharp \beta \leq \sharp \gamma$

<u>Def.</u> $(V, +, \cdot)$: v.s. over \mathbb{F} . When V is **finite-dimensional**, we write the **dimension** of V as

$$\dim(V) = \sharp \beta$$

where β is a finite basis of V.

Examples:

- (1) $\dim(\mathbb{F}^n) = n$.
- \mathbb{F}^{∞} is ∞ -dimensional.
- (2) dim $P_n(\mathbb{F}) = 1 + n$.
- $P(\mathbb{F})$ is ∞ -dimensional.
- (3) dim $M_{m \times n}(\mathbb{F}) = mn$.
- (4) $V = (\mathbb{C}, +, \cdot)$: v.s. over \mathbb{F} .
- When $\mathbb{F} = \mathbb{C}$ (complex v.s.), dim(V) = 1 (why?);
- When $\mathbb{F} = \mathbb{R}$ (real v.s.), dim(V) = 2 (why?).

<u>Basic Facts</u>: Let $(V, +, \cdot)$: v.s over \mathbb{F} with $\dim V = n$.

- (1) If $V = \operatorname{span} S$ with finite S, then $\sharp S \geq n$.
- (2) If $V = \operatorname{span} S$ with $\sharp S = n$, then S is a basis for V.
- (3) If $S \subset V$ is I. indep. with $\sharp S = n$, then S is a basis for V.
- (4) Every I. indep. subset of V can be extended to a basis for V.

<u>Proof.</u> Let β be a basis for V with $\sharp \beta = n$.

- (1) direct consequence of R.T.
- (2) S must be I. indep., otherwise $\exists G \subsetneq S$ I. indep. s.t. $V = \operatorname{span} G$.

 $\therefore n = \dim(V) = \sharp G < \sharp S = n$: contradiction!

 \therefore S is a basis for V.

(3) Replacement Theorem \Rightarrow $\exists H \subset \beta$ with $\sharp H = n - \sharp S = n - n = 0$ s.t. $V = \operatorname{span}(S \cup H)$.

 $\therefore H = \emptyset \therefore V = \operatorname{span} S. \therefore S$ is a basis.

(4) Let $L \subset V$ be I. indep. with $\sharp L = m$.

Replacement Theorem $\Rightarrow m \leq n \&$

 $\exists H \subset \beta$ with $\sharp H = n - \sharp L = n - m$ s.t. $V = \operatorname{span}(L \cup H)$.

Note: $\sharp(L \cup H) = n$.

(why? \leq by $\sharp(L \cup H) \leq \sharp L + \sharp H = n$ and \geq by (1))

(2) $\Rightarrow L \cup H$ is a basis.

<u>**Thm.**</u>: $(V, +, \cdot)$: v.s. over \mathbb{F} with dim(V) < ∞. W is a subspace of V. Then

(1) W is finite-dimensional with $\dim(W) \leq \dim(V)$.

(2) If $\dim(W) = \dim(V)$ then W = V.

Proof. Let $n = \dim(V)$.

IF $W = \{0\}$: W is finite-dim & dim $W = 0 \le n$. Otherwise, $W \ne \{0\}$: $\exists u_1 \ne 0 \text{ s.t. } u_1 \in W$. $\{u_1\}$ is I. indep.

IF $W = \text{span}(\{u_1\})$: $\{u_1\}$ is a basis of W. W is finite-dim & dim $W = 1 \le n$.

Otherwise, $\exists u_2 \in W \setminus \text{span}(\{u_1\})$. $\therefore \{u_1, u_2\}$ I. indep.

IF $W = \text{span}(\{u_1, u_2\})$: $\{u_1, u_2\}$ is a basis of W. W is finite-dim & dim $W = 2 \le n$.

Otherwise, $\exists u_3 \in W \setminus \text{span}(\{u_1, u_2\})$, repeat the procedure.

Note: \sharp of a l. indep. subset of $V \leq n$.

... the above process must stop with some k such that $W = \text{span}(\{u_1, u_2, \dots, u_k\}): \{u_1, \dots, u_k\} \mid \text{l. indep.}$

$$W = \text{span}(\{u_1, u_2, \dots, u_k\}): \{u_1, \dots, u_k\} \text{ I. indep.}$$

 $\therefore \{u_1, \dots, u_k\}$ is a basis for W, $\dim(W) = k \le n$.

If $\dim(W) = n$, then $\beta = \{u_1, \dots, u_n\}$ is I. indep. subset of size n in V, so β is also a basis for V. $\therefore W = \operatorname{span}\beta = V$.

- **e.g.:** $M_{n\times n}(\mathbb{F})$, $\dim(M_{n\times n}(\mathbb{F})) = n^2$:
- (1) $W \stackrel{def}{=} \{ \text{all diagonal matrices} \}$ is a subspace. $\dim(W) = n$.
- (2) $W \stackrel{\text{def.}}{=} \{ \text{all symmetric matrices} \}$ is also a subspace $\dim(W) = n + (n-1) + \cdots + 1 = \frac{1}{2}n(n+1)$

<u>Cor.</u>: $(V,+,\cdot)$: v.s. over $\mathbb F$ with dim $V<\infty$. W is a subspace of V. Then any basis for W can be extent to be a basis for V.

RK: This implies: \exists a subspace $Q \subset V$ s.t.

 $V = W \oplus Q$ (tutorials for direct sum).