Topic#4

Basis & dimension



Def. (V,+,:): v.s. over F. 5 C V. [ is a basis for V if

(a) B is I. indep.
b) V = spang.

—

Examples:

(1) F": {e1,--- ,en} is a bsis (standard basis)
(2) Pp(F) : {1,x,--- ,x"} is a basis
P(F):{1,x,---} is a basis

(3) Mmxn(F) : {Ej : 1 <i<m,1<j<n}is a basis, where
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Def.: A v.s. V is finite-dimensional if V has a finite span-
ning set, i.e., 3 a finite set S C V s.t.

V = span(S).

Otherwise, V is infinite-dimensional.
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Thm. A finite spanning set can be reduced to a basis, namely,
let (V,+,-): v.s. over F. If V =span(S) where S C V is of
finite size, then 38 C S which is a basis for V.

Proof.
e If Sis |. indep., take 8 = S, done.

e Otherwise, S is |. dep.
By a previous prop., dv; € S s.t. spanS=span(S \ {w1}).
If S\ {vi}is |. indep., take B =S\ {v1}, done.

e Otherwise, repeat the same process.
.- S is finite
.. After finite steps, we reach a |. indep. subst S’ C S s.t.

spanS’=spans§,

then take 5 = S’, done! O
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Coro.: V is finite-dimensional iff V' has a finite basis.

5/16



Prop. (V,+,:): vs. over F. g = {u, w0, -+ ,un}t C V.
Then g is a basis for V iff Vv € V, dlaj,ay,--- ,a3, € F s.t.

vV =ajuy + axtp + -+ -+ aplp.

Proof. “=" Assume: (3 is a basis. Let v € V.

V =spanf = v is a linear combination of uy, - , u,.

If v=aju + - -+ apu, = bius + -+ + bpu, are two
representations, then (a1 — b1)us + -+ + (ap — bp)up =0
. Bis |. indep.

ai—b=0,1<i<n, ie a=bj,1<i<n.

< Let Vv e V. Then, Jlay,-- ,ap e Fst. v=>", auj,

;. v € spanf

.V Cspang. .V =spanf

Also, let ajuy + -+ -+ aju, = 0.

Then, a; =0 (1 </ < n) by uniqueness.

o B is | indep.

. B is a bsis for V. O
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Thm. (Replacement Theorem)
(V,+,): v.s. over F.

V =spanG with G = n.

L C Vsl indep. with fL = m.

Then m < n and 4H C G with §H = n — m such that

V =span(L U H).
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Proof. Induction in m:
m=0:L=0, take H=G.
Assume “TRUE"” for some m > 0, to show “TRUE" for m+ 1.
Assume: L={vq1, -+ ,vmy1} C V |. indep. with L = m+ 1.
S ={wv, - ,vn} | indep. with §L' = m
SBylA, m<n&3IH ={u, - ,up—m} C G s.t.

V =span(L’' U H)=span({vi, -, Vm, U1, , Up—m}).
Consider vp,41 € V.

SoVmil=a1vi+ o+ amVm + biuy + -+ by—mUn—m

for some a1, - ,am, b1, ,bp_m €F

L=A{vi,--+ ,vmi1} | indep.
c.obi,o-+ ,by_m not all zero, i.e. n—m>0,ie. n>m+ 1.
For instance, b; # 0, then

U €span{vi, -+, Vim, Vmt1, U2, , Un—m}-

Take H % {ug, "+ ,Up—m}.

Then V =span({v1, -, Vmt1, U2, -+ , Up—m})=span(L U H).
.. TRUE for m+ 1.
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Two quick consequences of R.T.:

(1)

Let V be a finite-dimensional v.s., then any linearly inde-
pendent subset of V must be finite.

Indeed, otherwise, let {v1, v2,...} C V be a linear independent
infinite subset. Let 5 be a finite basis for V with #5 = n. Note
that {v1, ..., vo+1} is linearly independent with # = n+ 1. By
R.T., n+1 < m = n, which is a contradiction.

By (1), one then can conclude that if V has an infinite linearly
independent subset, then V must be infinite-dimensional.
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Fact: Let V be a finite-dimensional v.s., then all bases for
V have the same size, for instance, let 3,y be two finite bases
for V, then §5 = tv.

Pf. Direct consequence of Replacement Theorem:

let V =spanfB. v C V I. indep. = fv <t
V =spanvy. 8 C V | indep. = #5 < v Ol

Def. (V,+,-): v.s. over F. When V is finite-dimensional,
we write the dimension of V as

dim(V) = 43

where [ is a finite basis of V.
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Examples:

(1) dim(F"™) = n.
F°° is co-dimensional.

(2) dim Po(F) =1+ n.
P(F) is oo-dimensional.

(3) dim M5 n(F) = mn.

(4) V= (C,+,-): vs. over F.
When [ = C (complex v.s.), dim(V) =1 (why?);
When F = R (real v.s.), dim(V) =2 (why?).
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Basic Facts: Let (V,+,): v.s over F with dim V' = n.

(1) If V =span$ with finite S, then §S > n.
(2) If V =span§ with S = n, then§ is a basis for V.
(3) If S C Visl. indep. with S = n, then S is a basis for V.

(4) Every I. indep. subset of V' can be extended to a basis
for V.
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Proof. Let 3 be a basis for V with §5 = n.
(1) direct consequence of R.T.

(2) S must be |. indep.,

otherwise 3G ; S I. indep. s.t. V =spanG.
c.n=dim(V) =14G < §S = n: contradiction!
. S is a basis for V.

(3) Replacement Theorem =
dH C Bwith fH=n—4S=n—n=0s.t. V =span(SU H).
‘*H=0 ..V =spanS. . S is a basis.

(4) Let L C V be l. indep. with L = m.

Replacement Theorem = m < n &

dH C B with fH = n—fL =n—ms.t. V =span(LU H).

Note: #(LU H) = n.

(why? < by #(LUH) <L+ #H = nand > by (1))

(2) =LUH is a basis. O
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Thm.: (V,+,:): v.s. over F with dim(V) < co. Wis a
subspace of V. Then

(1) W is finite-dimensional with dim(W) < dim(V).

(2) If dim(W) =dim(V) then W = V.
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Proof. Let n = dim(V).

IF W = {0}: W is finite-dim & dimW =0 < n.
Otherwise, W # {0}: Ju; #0s.t. ug € W. {u} is |. indep.

IF W =span({u1}): {u1} is a basis of W. W is finite-dim &
dmW =1<n.
Otherwise, Jup € W \ span({u1}). .. {u1, u2} I. indep.

IF W =span({u1, u2}): {u1,un} is a basis of W. W is finite-dim
& dimW =2<n.
Otherwise, Jus € W \ span({u1, u2}), repeat the procedure.

Note: f of a I. indep. subset of V < n.
.. the above process must stop with some k such that
W =span({u1, up, -+ ,ux}): {u1, - ,ux} |. indep.
coAu, -+, uk} is a basis for W, dim(W) = k < n. O

If dim(W) = n, then 8 = {u1,--- ,u,} is |. indep. subset of size n
in V, so 3 is also a basis for V. -, W =spang = V. O
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e.g.: Myxn(F), dim(M,xn(F)) = n?:

(1) w & {all diagonal matrices} is a subspace.
dim(W) = n.

(2) W . {all symmetric matrices} is also a subspace
dim(W)=n+(n—1)+---+1=1n(n+1)

Cor.: (V,+,): v.s. over F with dmV < co. W is a
subspace of V. Then any basis for W can be extent to be a
basis for V.

RK: This implies: 3 a subspace Q C V s.t.

V = W @& Q (tutorials for direct sum).
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