Topic#3 Span & linear (in-)dependence

 $(V,+,\cdot)$: v.s. over \mathbb{F}

<u>Def.</u>

•

$$\sum_{i=1}^m a_i v_i = a_1 v_1 + \cdots + a_m v_m \in V$$

is called a **linear combination** of $v_1, \dots, v_m \in V$ with combination coefficients $a_1, \dots, a_m \in \mathbb{F}$.

• Let $\emptyset \neq S \subset V$.

 $\operatorname{span}(S) \stackrel{\operatorname{def}}{=} \operatorname{a}$ set of all possible linear combinations of vectors in S

$$=\{\sum_{i=1}^{n}a_{i}v_{i}: \mathsf{each}\ a_{i}\in\mathbb{F}, \mathsf{each}\ v_{i}\in\mathcal{S}, 1\leq i\leq m, m=1,2,\cdots$$

 ${\cal P}$ consists of all vectors of the form

$$ec{s}ec{a}+tec{b}$$
 (linear combination), $ec{s},t\in\mathbb{R}$ $\mathcal{P}=\mathit{span}\{ec{a},ec{b}\}$ (span of $\{ec{a},ec{b}\}$)

Note:

- (1) Any linear combination contains only finite many terms.
- (2) Even if S is infinite, we can still define span(S) well.
- (3) Convention: if $S = \emptyset$, then span(\emptyset) = $\{0\}$.

An example: $f, f_1, f_2 \in \mathbb{P}_3(\mathbb{R})$: How to find $a, b \in \mathbb{R}$ s.t.

$$f = af_1 + bf_2$$
?

(generally, $v \in V = \sum_{i=1}^{m} a_i v_i$, how to determine a_i ?)

Claim: it is equivalent to solve a linear system Ax = b

$$f = 2x^3 - 2x^2 + 12x - 6$$
, $f_1 = x^3 - 2x^2 - 5x - 3$,

$$f_2 = 3x^3 - 5x^2 - 4x - 9.$$

Plug the three equations to $f = af_1 + bf_2$.

Get:
$$2 = a + 3b$$
, $-2 = -2a - 5b$, $12 = -5a - 4b$, $-6 = -3a - 9b$.

$$\Rightarrow \exists ! a = -4 \in \mathbb{R}, b = 2 \in \mathbb{R}$$

Prop. $(V, +, \cdot)$: v.s. over \mathbb{F} . $S \subset V$. Then

- (1). span(S) is a subspace of V, and
- (2). span(S) is the smallest subspace of V containing S in the sense that if W is a subspace with $W \supset S$, then

$$W \supset \operatorname{span}(S)$$
.

namely, any subspace containing S must contain span(S).

<u>Proof.</u> $S = \emptyset$, by convention, span(\emptyset) = $\{0\}$ is a subspace of V Of course is a smallest subspace of V containing \emptyset .

Assume $V \supset S \neq \emptyset$.

- (1) to show span(S) is a subspace of V. Indeed,
- (a) span(S) $\subset V$.

In fact, take $v \in \text{span}(S)$.

By def of span, $v = \sum_{i=1}^{m} a_i v_i$ with $v_i \in S$, $a_i \in \mathbb{F}$.

 $:: S \subset V :: \text{all } v_i \in V.$

$$\therefore$$
 Since V is a v.s., $v = \sum_{i=1}^{m} a_i v_i \in V$.

(b) $0 \in \operatorname{span}(S)$

Indeed, $S \neq \emptyset$, $\exists v \in S$. $0 = 0v \in \text{span}(S)$

since LHS is zero of V, 0 at RHS is zero scalar of $\mathbb F$ and $v \in S$.

(c) Let
$$u, v \in \text{span}(S)$$
, to show $u + v \in \text{span}(S)$. Indeed, $\because u, v \in \text{span}(S)$

$$u=\sum_{i=1}^m a_iu_i, \quad v=\sum_{i=1}^n b_iv_i \quad \text{with} a_i,b_i\in\mathbb{F},u_i,v_i\in\mathcal{S},$$
 then $u+v=(a_1u_1+\cdots+a_mv_m)+(b_1v_1+\cdots+b_nv_n)$

is still a linear combination of vectors $u_1, \dots, u_m, v_1, \dots, v_n \in \operatorname{span}(S)$ and $a_1, \dots, a_m, b_1, \dots, b_n \in \mathbb{F}$.

$$\therefore u + v \in \operatorname{span}(S)$$
.

(d) Let $a \in \mathbb{F}$, $u \in \text{span}(S)$. Let $u = \sum_{i=1}^{m} a_i u_i$ for $a_i \in \mathbb{F}$, $u_i \in S$. Then for $a \in \mathbb{F}$.

$$au = a(\sum_{i=1}^{m} a_i u_i) = \sum_{i=1}^{m} (aa_i)u_i \in \operatorname{span}(S)$$
 since $aa_i \in \mathbb{F}, u_i \in S$

It is a linear combination.

$$\therefore$$
 span(S) is a subspace of V.

(2) Assume W is a subspace of V and $W \supset S$, to show: $W \supset \text{span}(S)$.

Take $v \in \text{span}(S)$. Then,

$$v = \sum_{i=1}^{m} a_i v_i, \quad a_i \in \mathbb{F}, v_i \in S.$$

Since $S \subset W$ all $v_i \in W$

 \therefore W is a subspace of V i.e. $W \subset V$ is a v.s., each $v_i \in W$.

$$\therefore v = \sum_{i=1}^{m} a_i v_i \in W.$$

∴ span(
$$S$$
) $\subset W$.

<u>Def.</u> $(V, +, \cdot)$: v.s. over \mathbb{F} . $S \subset V$. We say that S spans V if $V = \operatorname{span}(S)$ for some $S \subset V$

e.g. *
$$\mathbb{F}^n = \operatorname{span}\{e_1, \cdots, e_n\}$$
, where $e_i = (0, \cdots, 0, \frac{1}{i}, 0, \cdots)$

* $P_n(\mathbb{F}) = \operatorname{span}(\{1, x, x^2, \cdots, x^n\})$,

 $P(\mathbb{F}) = \operatorname{span}(\{1, x, x^2, \cdots, x^n\})$,

infinite

* $M_{m \times n}(\mathbb{F}) = \operatorname{span}(\{E_{ij} : 1 \le i \le m, 1 \le j \le n\})$

where E_{ij} is the matrix with all zero entries except 1 at i^{th} row and i^{th} column.

Basic question: V: v.s. over \mathbb{F} :

- (1). Does V have a finite spanning set?
- (2). If so, can one find a <u>finite spanning</u> set with the min size? (linearly (in)dependence)

$$(V,+,\cdot)$$
: v.s. over \mathbb{F}

<u>Def.</u> $S \subset V$ is **linearly dependent** if \exists distinct $v_1, \dots, v_m \in S$ and $a_1, \dots, a_m \in \mathbb{F}$ (not all zero), s.t.

$$a_1v_1+\cdots+a_mv_m=0.$$

Otherwise $S \subset V$ is **linearly independent**.

Remarks:

- (1) $\emptyset \subset V$ is I. indep.; Any I. dep. subset of V must be non-empty.
- (2) If $0 \in S \subset V$, then S is I. dep. $(: 1 \cdot 0 = 0)$
- (3) $S = \{v\}$ is I. indep. $\Leftrightarrow v \neq 0$.

More observations. Let $S_1 \subset S_2 \subset V$, then

- (a) $\operatorname{span}(S_1) \subset \operatorname{span}(S_2)$
- (b) if S_1 I. dep. then S_2 I. dep.

$$(S_1 \text{ l.dep.} \stackrel{def}{\Rightarrow} \exists \text{ distinct } v_1, \cdots, v_m \in S_1 \subset S_2$$
 and $a_1, \cdots, a_m \in \mathbb{F}$ (Not all zero) s.t. $a_1v_1 + \cdots + a_mv_m = 0$).

(c) If
$$V = \operatorname{span}(S_1)$$
 then $V = \operatorname{span}(S_2)$

Lemma. Let $S \subset V$.

(1).S is I. indep **iff** any finite subset of S is I. indep.

Proof: " \Rightarrow " Otherwise, \cdots

" \Leftarrow " Otherwise, S is l.dep., then by def., \exists distinct $v_1, \dots, v_m \in S$ and $a_1, \dots, a_m \in \mathbb{F}$ (not all zero) s.t. $a_1v_1 + \dots + a_mv_m = 0$).

Def $S_1 \stackrel{def}{=} \{v_1, \cdots, v_m\} \subset S$ contradiction with S_1 is l.indep.

- (2).Let $S = \{v_1, v_2, \cdots, v_n\}$ be a finite subset of V. Then, the following three are equivalent:
- (a).S is I. indep.

(b).If
$$\sum_{i=1}^{n} a_i v_i = 0$$
 $(a_i \in F)$ then $a_1 = \cdots = a_n = 0$.

(c).If $v = \sum_{i=1}^{n} a_i v_i \in \text{span}(S)$ $(a_i \in F)$ then a_1, \dots, a_n are unique.

Proof:

```
(a)\Leftrightarrow (b):
"\Rightarrow" Note: when S is l.indep., v_1, \dots, v_n are distinct. Let
\sum_{i=1}^m a_i v_i = 0 (a_i \in \mathbb{F}), to show: a_1 = \cdots = a_n = 0.
Indeed, otherwise, not all a; are zero.
S = \{v_1, \dots, v_n\} is l.dep. by def.. Contradiction!
"\Leftarrow" Otherwise, S is linearly dependent.
(b)\Leftrightarrow (c):
"
\leftarrow" Let \sum_{i=1}^{n} a_i v_i = 0. Note: \sum_{i=1}^{n} 0 v_i = 0 = \sum_{i=1}^{n} a_i v_i.
By (c), i.e. by uniqueness of a_i, a_1 = \cdots = a_n = 0.
"\Rightarrow" Let v = \sum_{i=1}^n a_i v_i \in \text{span}(S), to show: a_1, \dots, a_n are unique.
Indeed, let v = \sum_{i=1}^{n} a_i v_i = \sum_{i=1}^{n} b_i v_i, (b_i \in \mathbb{F})
\therefore \sum_{i=1}^{n} (a_i - b_i) v_i = 0.
By (b), a_i - b_i = 0 for each i, i.e. a_i = b_i, 1 < i < n.
```

Thinking:

- (1). span($\{v \neq 0\}$)=V, otherwise $\not\subset V, \cdots$
- (2).V = span(V), kick away some vectors of V without changing span.

Prop.
$$(V, +, \cdot)$$
: v.s. over \mathbb{F} . $S \subset V$ is I. dep. Then

$$\exists v \in S \text{ s.t. span}(S) = \text{span}(S \setminus \{v\}).$$

i.e. if S is l.dep., then one can remove at least one vector in S without changing its span.

<u>Proof.</u> S I. dep $\Rightarrow \exists$ distinct $v_1, \dots, v_m \in S \& a_1, \dots, a_m \in \mathbb{F}$ (not all zero) s.t. $a_1v_1 + \dots + a_mv_m = 0$. For instance $a_1 \neq 0$, then

$$v_1 = -\frac{a_2}{a_1}v_2 - \dots - \frac{a_m}{a_1}v_m \text{ with } -\frac{a_2}{a_1}, \dots, -\frac{a_m}{a_1} \in \mathbb{F}$$

Then choose $v = v_1$, then

$$\mathsf{span}(S) \subset \mathsf{span}(S \setminus \{v\})$$

Because: "
$$\supset$$
": $S \setminus \{v\} \subset S(\because v \in S)$
" \subset ": Let $u \in \text{span}(S)$, then $u = b_1u_1 + \cdots + b_nu_n, b_1, \cdots, b_n \in \mathbb{F}, u_1, \cdots, u_n \in S$.

In case, some of u_i is $v = v_1$, then one can replace such u_i by $u_i \in \text{span}(\{v_2, \dots, v_n\})$ where $\{v_2, \dots, v_n\} \subset S \setminus \{v\}$.

Then,
$$u \in \text{span}(S \setminus \{v\})$$
.

Proof. " \Rightarrow " Assume: $S \cup \{v\}$ is I. dep., to show: $v \in \text{span}(S)$. Indeed, by def, \exists distinct $u_1, \dots, u_m \in S \cup \{v\}$ and $a_1, \dots, a_m \in \mathbb{F}$ (not all zero)

s.t.
$$a_1u_1 + \cdots + a_mu_m = 0.$$
 (*)

Claim: At lease one of u_i should be v.

(otherwise, no u_i is v, it means that all $u_1, \dots, u_m \neq v$, then u_1, \dots, u_m are from S. Note: S is l.indep. then (*) is a contradiction)

For instance, assume $u_1 = v \& a_1 \neq 0$

$$\therefore v = u_1 = \left(-\frac{a_2}{a_1}\right) u_2 + \dots + \left(-\frac{a_m}{a_1}\right) u_m \in \operatorname{span}(S)$$

(Note:
$$u_2, \dots, u_m \in S \cup \{v\}$$
 are distinct with $u_1 = v$ $u_2, \dots, u_m \in S$.)

"\(\infty\)" Let
$$v \in \operatorname{span}(S)$$
 to show: $S \cup \{v\}$ is linearly dep. Indeed, $\because v \in \operatorname{span}(S)$

$$\therefore v = \sum_{i=1}^{m} a_i v_i, v_i \in S, a_i \in \mathbb{F}.$$
 (w.l.g., all v_i distinct)

Namely,
$$a_1v_1 + \cdots + a_mv_m + (-1)v = 0$$

(i)
$$v_1, \dots, v_m, v \in S \cup \{v\}$$
 distinct $(\because v \notin S)$.

(ii)
$$a_1, \dots, a_m, -1 \neq 0$$
: not all zero

By def, $S \cup \{v\}$ is I. dep.