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Compulsory Part

Sec. 2.4

14 Q: Let

15

Sol:

Sol:

V:{<a a+b> :a,b,ceF}.
0 c

Construct an isomorphism from V to F3.
Define T :V — F3 by VA € V, T(A) = (AH, A12 — AH, Agg). We first show that T is a
linear transformation. Indeed, VA, B € V and Va € F,
T(A+ B) = (A1 + B, (A12 + B12) — (A1 + Bii1), A2 + Baa)
= (A11, A1z — A11, Agz) + (B, Biz — B, Bag) = T(A) + T(B),

T(aA) = (aA11,aA12 — aAi1,aA2) = a(Ai1, Aig — A1, Ag) = aT'(A).
Suppose A € V and T(A) = 0. Then (411, A12 — A11, A22) = (0,0,0), implying that
A1 = Ajg = Ay = 0. Also, as A €V, Ay; = 0. Hence, A is the 2 x 2 zero matrix over

F. This shows that T : V — F3 is one-to-one.
Also, T : V — F3 is onto because Va,b,c € F,

T(g af’) — (4, (a+b) —a,¢) = (a,b,c).

Therefore, T is an isomorphism from V to F3.

: Let V and W be n-dimensional vector spaces, and let T': V' — W be a linear transfor-

mation. Suppose that § is a basis for V. Prove that T is an isomorphism if and only if
T'(B) is a basis for W.

Write 8 = {uy, ..., un }, where uy, ..., u, are distinct vectors in V.
(=) Suppose T is an isomorphism. Then T'(uy), ..., T'(u,) are distinct. Suppose ay, ..., an,
are scalars such that

a1 T(u1) + - + anT(uy,) = 0.
Then

aruy + -+ apty, =T Hay T(uy) + - + anT(uyp)) = T7H0) = 0.

As 3 is a basis for V' and in particular linearly independent, a1 = --- = a,, = 0. Thus,
T(B) = {T(u1),...,T(uy)} is also linearly independent.

Since dim W = n and the cardinality of T'(3) is also n, T'(8) is a basis for V.
(Alternatively, suppose w € W. Then 3 scalars ay, ..., a, such that 7= (w) = "1 | a;u;
and hence w = T(T~H(w)) = Y. ; a;T(w;) € spanT(B). Thus, T'(3) spans W. To con-
clude, T'(B) is a basis for W.)



16 Q: Let B be an n x n invertible matrix. Define ® : My, xn(F) — Myxn(F) by ®(A) =
B~1'AB. Prove that ® is an isomorphism.

Sol: VA, A" € Myxn(F) and Va € F,

DA+ A)=B YA+ A)B=B'AB+ B 'A'B=0(A) +d(4)
®(aA) = B Y(aA)B = a(B ' AB) = a®(A).

Hence, @ is a linear transformation.

Method 1: Suppose A € My, (F) and ®(A) is the n X n zero matrix O over F.
Then A = B®(A)B~! = BOB™! = O. Hence, ® : M5, (F) — M5, (F) is one-to-one.
VO € Myxn(F), BOCB™! € My (F) and ®(BCB™!) = B(B~'CB)B~! = C. Hence,
D : Myxn(F) = My xpn(F) is also onto. Therefore, ® is an isomorphism.

Method 2: Suppose A € My, (F) and ®(A) is the n X n zero matrix O over F.
Then A = B®(A)B~! = BOB~! = O. Hence, ® : My, (F) — My, (F) is one-to-one.
By Theorem 2.5 in Sec. 2.1, ® is also onto. Therefore, ® is an isomorphism.

Method 3: VC € M5, (F), BCB™! € M5, (F) and ®(BCB~!) = B(B~!CB)B~! =
C'. Hence, ® : My, xn(F) — My (F) is onto.
By Theorem 2.5 in Sec. 2.1, ® is also one-to-one. Therefore, ® is an isomorphism.

Sec. 2.5

2  Q: For each of the following pairs of ordered bases 3 and /' for R?, find the change of
coordinate matrix that changes (3’-coordinates into S-coordinates.

(d) B = {(_47 3)7 (27 _1)} and 6/ = {(27 1)7 (_47 1)}
Sol: (d) Let @ be the change of coordinate matrix that changes f’-coordinates into /-
coordinates. Then

{(2, 1) =Qui(—4,3) + Qa1 (2, —1);
(—4,1) = Qu2(—4,3) + Q22(2,-1).

We rewrite this system into matrix form:

2 —4 —4 2
(1 1 ) - ( 3 —1> @
On solving,

o_ (4 2\ /2 -\ /Loy [2 -4\ (2 -1
3 -1 1 1) \&2)\1 1) \5 —4)
3 Q: For each of the following pairs of ordered bases  and ' for P2(R), find the change of
coordinate matrix that changes 3’-coordinates into S-coordinates.

(f) B={202—2+1,224+32—2, —22+22x+1} and B’ = {929, 2% +212x—2, 322+ 5x+2}.



Sol: (f) Let @ be the change of coordinate matrix that changes [’-coordinates into [-
coordinates. Then
9z — 9 =Qu (222 — 2+ 1) + Q21(2® + 3z — 2) + Q31 (—2* + 2z + 1);
2?2 4+21x -2 = Q12222 —x + 1) + Qoo(2® + 31 — 2) + Qa2(—22 + 22 + 1);
322 +52+2 = Qu3(22% — 2z + 1) + Qa3(2® 4+ 32 — 2) + Qa3(—2? + 2z + 1).

We rewrite this system into matrix form:

0 1 3 2 1 -1
9 21 5|=|-1 3 2|0
-9 -2 2 1 -2 1
On solving,
2 1 -1\ /0 1 3
Q=|(-1 3 2 9 21 5
1 -2 1 -9 -2 2
1 7 1 5 0 1 3 -2 1 2
=13 3 -3 9 21 5|=13 41
-1 5 7 -9 -2 2 -1 5 2

4 Q: Let T be the linear operator on R? defined by

r(3)= ()

Let 3 be the standard ordered basis for R?, and let

- {0)-0))

Use Theorem 2.23 and the fact that
11\ (2 -1
1 2 C\-1 1
to ﬁnd [T]ﬁ’

Sol: We first find out the change of coordinate matrix ) that changes (’-coordinates into

[B-coordinates, which is
10 11
o=(o 1)e-( o)

Note that we have

Now, by Theorem 2.23 in Sec. 2.5,

me=ame=(1 1) (2 1) ()
G060 5)

3



6 Q: For each matrix A and ordered basis 3, find [L4]g. Also, find an invertible matrix @
such that [La]s = Q1AQ.

13 1 4 1 1 1
(d A=[1 13 4 |and B= 1, l=1],11
4 4 10 —2 0 1

Sol: (d) By the Corollary in page 115 in Sec. 2.5,

1 1 1
Q=1 -1 1
—2 0 1

1 1 1 =2
Q—l_6 3 -3 0
2 2 2
Hence, we get
1 1 1 =2 13 1 4 1 1 1 6 0 O
[LA]5:63—30 1 13 4 1 -1 1])=10 12 0
2 2 2 4 4 10 -2 0 0 0 18

7 Q: In R2, let L be the line y = ma where m # 0. Find an expression for T'(x,y) where
(a) T is the reflection of R? about L.

(b) T is the projection on L alone the line perpendicular to L.

Sol: (a) We assume T'(z,y) = (Z,7), then we have ¥ = mZHL and (z—2) +m(y—y) = 0.
Solving the equation we obtain

1—m?2 2m
T z — 14+m? 14+m?2 z
Y __2m 1—m? Y :
1+m?2  14+m?2

1-m 2m
Hence T = [ 1tm* 14m?

2m m2—1
1+m?2  1+m?

(b) Siimlarly we assume T'(x,y) = (Z,y), solving § = mz, and (z —z) + m(y —y) =0,

we have
1 m
(o) - (oe ) 6)
y Fm?  T4m?/) \Y

1 m
2 2
Hence T = | 1tm° 1+tm

m m
1+m?2 1+m?2



Optional Part

Sec. 2.4
Q:

1

11

17

Sol:

Sol:

Label the following statements as true or false. In each part, V and W are vector spaces
with ordered (finite) bases o and 3, respectively, T': V' — W is linear, and A and B are
matrices.

(a) ([T)a)~" = [T "]a.

: Verify that the transformation in Example 5 is one-to-one.

(Example 5 in textbook) Define

T Pg(R) — M2><2(R) by T(f) - <;8; ;Eg) '

It is easily verified that T is linear. By use of the Lagrange interpolation formula in
Section 1.6, it can be shown (compare with Exercise 22) that T'(f) = O only when f is
the zero polynomial. Thus T is one-to-one (see Exercise 11).

Let fi1, fo € P3(R), T(f1) = T(f2), it suffice to show f1 = fa.

Since T is linear, we have

T(fi— f2) =T(f1) =T(f2) =0,

(fi—f)A)=(fr — f2)(2) = (1 — f2)3) = (f — f2)(4) = 0.

By interpolation, fi; — f2 is zero polynomial, so f1 = fo.

: Let V and W be finite-dimensional vector spaces and T : V' — W be an isomorphism.

Let Vp be a subspace of V.



23

24

Sol:

Sol:

Prove that T'(Vp) is a subspace of W.
(b) Prove that dim(Vp) = dim(7'(Vp)).
(a) For T'(x1),T(x2) € T(Vp), we have

—~~
5]
SN—

MT(z1) + AT (z2) = T( A1 + Aox2) € T(Vp), VA1, € F.

this is because A1z + Aazy € Vp since V| is a subspace of V. Hence T(Vp) is a
subspace of W.

(b) Since T is an isomorphism, T'|y, : Vo — T'(Vp) is also an isomorphism. Hence by
Theorem 2.19 we get dim(Vp) = dim(7'(Vp)).

: Let V' denote the vector space defined in Example 5 of Section 1.2, and let W = P(F).

Define

n
T:V—-W by T(o)= Za(i)xi,
i=0
where n is the largest integer such that o(n) # 0. Prove that T is an isomorphism.

To show that T is an isomorphism, we need to prove T is linear, one-to-one and onto.
Observe that if n is an non-negative integer such that o(m) = 0 for any integer m
greater than n, then T'(c) = Y ;o (i)z’. Let 0,7 € V and ¢ € F. Pick a non-negative
integer ny (resp. n,) such that o(m) = 0 (resp. 7(m) = 0 for any integer m greater
than n, (resp. n;). Let n = max{n,,n:}. Then for any integer m greater than n,
(o0 +cr)(m)=0+c-0=0. Hence,

n n n

T(o+er)=> (o+er)(i)a’ =) ol(i)a’+c¢d 7(i)a' = T(0) + cT(7).

i=0 i=0 i=0
T is thus linear.
Suppose 0 € N(T'). Pick a non-negative integer n such that V integer m with m > n,
o(m) =0. Then

By comparing coefficients, 0(0) = --- = o(n) = 0. Hence, o(m) = 0 for any non-negative
integer m. T is thus one-to-one.

Let f € W. Write f(z) = > i, a;z’, where n is a non-negative integer and ay, ..., a, € F.
Define o € V' by V non-negative integer m,

{am if m <mn;

o(m) =
(m) 0 if m > n.

Hence T is onto. We are done.

: Let T : V — Z be a linear transformation of a vector space V' onto a vector space Z.

Define the mapping
T:V/NT)— Z by T(v+N(T))=T()

for any coset v + N(T) in V/N(T).



(a) Prove that T is well-defined; that is, prove that if v + N(T)) = v’ + N(T'), then
T(v)=T().

(b) Prove that T is linear.

(c) Prove that T is isomorphism.

(d) Prove that the diagram shown in Figure 2.3 commutes; that is, prove that T = T1).

V- S — y Z
o =
U T
V/N(T)
Figure 2.3

Sol: (a) Suppose v,v" € V and v+ N(T) = v' + N(T'). Let w = v — v'. Then w € N(T) and
hence T'(v) = T(v' +w) = T(V") + T(w) = T(v'). Therefore, T is well-defined.
(b) Let v,v" € V and ¢ € F. Then

T((v+N(T)) + c(v' +N(T))) =

Therefore, T is linear.

(¢) By (b), it remains to show that T is one-to-one and onto.
Let v € V and v + N(T) € N(T). Then T'(v) = T(v + N(T)) = 0. In other words,
v € N(T). Hence v + N(T) = N(T). T is one-to-one.
Let z € Z. Since T is onto, v € V such that T(v + N(T)) = T'(v) = z. Thus, T is
also onto.
To conclude, T is an isomorphism.

(d) Fix v € V. Then
T(n(v)) =T(v+N(T)) = T(v).

Therefore, Tn = T.
Sec. 2.5

1 Q: Label the following statements as true or false.

(a) Suppose that f = {z1,22,...,2,} and ' = {z],5,...,2]} are ordered bases
for a vector space and @ is the change of coordinate matrix that changes /'-
coordinates into S-coordinates. Then the jth column of @ is [z;]s .

(b) Every change of coordinate matrix is invertible.

(c) Let T be a linear operator on a finite-dimensional vector space V, let 5 and
B’ be ordered bases for V, and let @ be the change of coordinate matrix that
changes 3’-coordinates into S-coordinates. Then [T]5 = Q[T]Q .

(d) The matrices A, B € My x,(F) are called similar if B = Q*AQ for some Q €
My xn (F).

(e) Let T be a linear operator on a finite-dimensional vector space V. Then for any
ordered bases  and v for V, [T is similar to [T7],.

Sol: (a) False.



11 Q:

Sol:

13 Q:

Sol:

(b) True.
(c) True.
(d) False.
(e) True.

Let V be a finite-dimensional vector space with ordered bases «, 8, and ~.

(a) Prove that if @Q and R are the change of coordinate matrices that change a-
coordinates into [-coordinates and [-coordinates into ~y-coordinates, respec-
tively, then R(@ is the change of coordinate matrix that changes a-coordinates
into «y-coordinates.

b) Prove that if changes a-coordinates into -Coordinates, then 1 changes
g g
ﬁ-coordinates into a-coordinates.

Write o = {ay, ..., an}, B8 = {b1,....,bn} and v = {c1, ..., cn}.
(a) We have

ag =71 Qjrb; Vk € {l,...,n}
bj =3 Rijei Vje{l,..,n}.
Thus, Vk € {1,.,.,77,}7 ap = Z?:l Z?:l RiijkCi = Z?:l(RQ)lkaz In other

words, RQ is the change fo coordinate matrix that changes a-coordinates into
~-coordinates.

b) Vi,j € {1,...n}, let 6;; = 1 if i = j; and &;; = 0 if i # j. Vk € {1,...,n},
J J

n

Q7 gna; =33 (Q7NkQuibi = 3 b = by
i=1

j=1 i=1 j=1
Therefore, Q' is the change of coordinate matrix that changes S-coordinates
into a-coordinates.

Let V be a finite-dimensional vector space over a field F', and let 8 = {z1,x2, ...,z }
be an ordered basis for V. Let @ be an n X n invertible matrix with entries from F'.
Define

n
ah = ZQijIEi forl < j <mn,
i—1

and set ' = {2}, ), ...,z],}. Prove that 3’ is a basis for V' and hence that @ is the
change of coordinate matrix changing 3’-coordinates into 3-coordinates.

Suppose ci,...,c, € Fland Y7 ¢;x) = 0. Then

n n
Z Z CjQijx'i == 6

i=1 j=1

Since S is linearly independent, we have a system of linear equations

Quier + -+ Quuen, =0,

incl + -+ ancn =0.



As Q@ is invertible, ¢; = -+ = ¢, = 0. Therefore, 3’ is linearly independent. This

also forces that zi,...,z;, are distinct (otherwise, say x; = 2 but i # j, then

Loai+(=1) 2% = 0 which leads to contradiction). As V is of dimension n and the
cardinality of 3’ is also n, 3’ is a basis for V.



