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1. compulsory part

Exercise 1. Let T : R2 → R3 be de�ned by T(a1, a2) = (a1 − a2, a1, 2a1 + a2).
Let β be the standard ordered basis for R2 and γ = {(1, 1, 0), (0, 1, 1), (2, 2, 3)}.
Compute [T]γβ . If α = {(1, 2), (2, 3)}, compute [T]γα.

Solution. Since

T(1, 0) = (1, 1, 2) = −1

3
· (1, 1, 0) + 0 · (0, 1, 1) + 2

3
· (2, 2, 3),

T(0, 1) = (−1, 0, 1) = −1 · (1, 1, 0) + 1 · (0, 1, 1) + 0 · (2, 2, 3),

therefore

[T]γβ =

− 1
3 −1
0 1
2
3 0

 .

Since

T(1, 2) = (−1, 1, 4) = −7

3
· (1, 1, 0) + 2 · (0, 1, 1) + 2

3
· (2, 2, 3),

T(2, 3) = (−1, 2, 7) = −11

3
· (1, 1, 0) + 3 · (0, 1, 1) + 4

3
· (2, 2, 3),

therefore

[T]γα =

− 7
3 − 11

3
2 3
2
3

4
3

 .

Exercise 2. Let

α =

{(
1 0
0 0

)
,

(
0 1
0 0

)
,

(
0 0
1 0

)
,

(
0 0
0 1

)}
,

β = {1, x, x2},

and

γ = {1}.

(a) De�ne T : M2×2(F) → M2×2(F) by T(A) = At. Compute [T]α and [T

(
1 4
−1 6

)
]α.

(b) De�ne

T : P2(R) → M2×2(R) by T(f(x)) =

(
f ′(0) 2f(1)
0 f ′′(3)

)
,

where ′ denotes di�erentiation. Compute [T]αβ and [T(4− 6x+ 3x2)]αβ .
1
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Solution. (a) Since

T

(
1 0
0 0

)
= 1 ·

(
1 0
0 0

)
+ 0 ·

(
0 1
0 0

)
+ 0 ·

(
0 0
1 0

)
+ 0 ·

(
0 0
0 1

)
,

T

(
0 1
0 0

)
= 0 ·

(
1 0
0 0

)
+ 0 ·

(
0 1
0 0

)
+ 1 ·

(
0 0
1 0

)
+ 0 ·

(
0 0
0 1

)
,

T

(
0 0
1 0

)
= 0 ·

(
1 0
0 0

)
+ 1 ·

(
0 1
0 0

)
+ 0 ·

(
0 0
1 0

)
+ 0 ·

(
0 0
0 1

)
,

T

(
0 0
0 1

)
= 0 ·

(
1 0
0 0

)
+ 0 ·

(
0 1
0 0

)
+ 0 ·

(
0 0
1 0

)
+ 1 ·

(
0 0
0 1

)
,

therefore

[T]α =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 ,

and

[T

(
1 4
−1 6

)
]α = [

(
1 −1
4 6

)
]α =


1
−1
4
6

 .

(b) Since

T(1) =

(
0 2
0 0

)
= 0 ·

(
1 0
0 0

)
+ 2 ·

(
0 1
0 0

)
+ 0 ·

(
0 0
1 0

)
+ 0 ·

(
0 0
0 1

)
,

T(x) =

(
1 2
0 0

)
= 1 ·

(
1 0
0 0

)
+ 2 ·

(
0 1
0 0

)
+ 0 ·

(
0 0
1 0

)
+ 0 ·

(
0 0
0 1

)
,

T(x2) =

(
0 2
0 2

)
= 0 ·

(
1 0
0 0

)
+ 2 ·

(
0 1
0 0

)
+ 0 ·

(
0 0
1 0

)
+ 2 ·

(
0 0
0 1

)
,

therefore

[T]αβ =


0 1 0
2 2 2
0 0 0
0 0 2

 ,

and

[T(4− 6x+ 3x2)]αβ = [

(
−6 2
0 6

)
]αβ =


−6
2
0
6

 .

Exercise 3. Let V be a vector space with the ordered basis β = {v1, v2, ..., vn}.
De�ne v0 = 0. There exists a linear transformation T : V → V such that T(vj) =
vj + vj−1 for j = 1, 2, ..., n. Compute [T]β .

Solution. Since

[T(vj)]β = [vj ]β + [vj−1]β ,

therefore

([T]β)ij = δji + δj−1,i,
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for i, j = 1, 2, ..., n, where

δij =

{
1, i = j,

0, i ̸= j.

Exercise 4. Let V and W be vector spaces, and let T and U be nonzero linear
transformations from V into W. If R(T) ∩ R(U) = {0}, prove that {T,U} is a
linearly independent subset of L(V,W).

Solution. Since T and U are nonzero linear transformations, then there exists
v1, v2 ∈ V such that T(v1) ̸= 0 and U(v2) ̸= 0. Assume there exist c1, c2 ∈ F such
that

c1T+ c2U = 0L(V,W),

then

c1T(v1) + c2U(v1) = 0W, c1T(v2) + c2U(v2) = 0W,

which implies that

T(c1v1) = U(−c2v1), T(c1v2) = U(−c2v2).

Since R(T) ∩ R(U) = {0}, therefore

T(c1v1) = 0W, U(−c2v2) = 0W,

which implies that

c1 = c2 = 0,

therefore T and U are linearly independent.

Exercise 5. Let V = P(R), and for j ≥ 1 de�ne Tj(f(x)) = f (j)(x), where

f (j)(x) is the jth derivative of f(x). Prove that the set {T1,T2, ...,Tn} is a linearly
independent subset of L(V) for any positive integer n.

Solution. Let α1, ..., αn ∈ F such that

n∑
i=1

αiTi = 0,

then
n∑

i=1

αiTi(x) = α1 = 0,

n∑
i=1

αiTi(x
2) = α1 · 2x+ α2 · 2 = 0,

...
n∑

i=1

αiTi(x
n) = α1 · nxn−1 + α2 · n(n− 1)xn−2 + · · ·+ αn · n! = 0,

therefore

α1 = α2 = · · · = an = 0,

which implies {T1,T2, ...,Tn} is a linearly independent subset.
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Exercise 6. Let g(x) = 3+ x. Let T : P2(R) → P2(R) and U : P2(R) → R3 be the
linear transformations respectively de�ned by

T(f(x)) = f ′(x)g(x) + 2f(x) and U(a+ bx+ cx2) = (a+ b, c, a− b).

Let β and γ be the standard ordered bases of P2(R) and R3, respectively.
(a) Compute [U]γβ , [T]β , and [UT]γβ directly.

(b) Let h(x) = 3− 2x+ x2. Compute [h(x)]β and [U(h(x))]γ .

Solution. (a) Since

U(1) = (1, 0, 1) = 1 · (1, 0, 0) + 0 · (0, 1, 0) + 1 · (0, 0, 1),
U(x) = (1, 0,−1) = 1 · (1, 0, 0) + 0 · (0, 1, 0) + (−1) · (0, 0, 1),
U(x2) = (0, 1, 0) = 0 · (1, 0, 0) + 1 · (0, 1, 0) + 0 · (0, 0, 1),

then

[U]γβ =

1 1 0
0 0 1
1 −1 0

 .

Since

T(1) = 2 = 2 · 1 + 0 · x+ 0 · x2,

T(x) = 3 + 3x = 3 · 1 + 3 · x+ 0 · x2,

T(x2) = 6x+ 4x2 = 0 · 1 + 6 · x+ 4 · x2,

then

[T]β =

2 3 0
0 3 6
0 0 4

 .

Since

UT(1) = (2, 0, 2) = 2 · (1, 0, 0) + 0 · (0, 1, 0) + 2 · (0, 0, 1),
UT(x) = (6, 0, 0) = 6 · (1, 0, 0) + 0 · (0, 1, 0) + 0 · (0, 0, 1),
UT(x2) = (6, 4,−6) = 6 · (1, 0, 0) + 4 · (0, 1, 0) + (−6) · (0, 0, 1),

then

[UT]γβ =

2 6 6
0 0 4
2 0 −6

 .

(b) Since

h(x) = 3 · 1 + (−2) · x+ 1 · x2,

then

[h(x)]β =

 3
−2
1

 .

Since

U(h(x)) = (1, 1, 5) = 1 · (1, 0, 0) + 1 · (0, 1, 0) + 5 · (0, 0, 1),
then

[U(h(x))]γ =

1
1
5

 .
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Exercise 7. Let T, W, and Z be vector spaces, and let T : V → W and U : W → Z
be linear.

(a) Prove that if UT is one-to-one, then T is one-to-one. Must U also be one-to-
one ?

(b) Prove that if UT is onto, then U is onto. Must T also be onto ?
(c) Prove that if U and T are one-to-one and onto, then UT is also.

Solution. (a) Assume that there exists v ∈ V such that

T(v) = 0W,

then

UT(v) = 0Z,

since UT is one-to-one, therefore

v = 0V,

which implies that T is one-to-one.
However, U is not necessarily one-to-one. Indeed, consider

U :R2 → R T :R → R2

(x, y) 7→ x, x 7→ (x, 0),

then T is one-to-one but U is not one-to-one.
(b) For arbitrary z ∈ Z, since UT is onto, there exists v ∈ V such that

UT(v) = z,

therefore

U(T(v)) = z,

which implies that U is onto.
However, T is not necessarily onto. Indeed, consider

U :R2 → R T :R → R2

(x, y) 7→ x, x 7→ (x, 0),

then U is onto but T is not onto.
(c) To prove UT is one-to-one, assume that there exists v ∈ V such that

UT(v) = 0Z,

since U is one-to-one, therefore

T(v) = 0W,

since T is one-to-one, therefore

v = 0V,

which implies that UT is one-to-one.
To prove that UT is onto. For arbitrary z ∈ Z, since U is onto, there exists

w ∈ W such that

U(w) = z,

since T is onto, there exists v ∈ V such that

T(v) = w,

which implies that

UT(v) = z,

therefore UT is onto.
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2. optional part

Exercise 8. Label the following statements as true or false. Assume that V and W
are �nite-dimensional vector spaces with ordered bases β and γ, respectively, and
T,U : V → W are linear transformations.

(a) For any scalar a, aT+ Uis a linear transformation from V to W.
(b) [T]γβ = [U]γβ implies that T = U.

(c) If m = dim(V) and n = dim(W), then [T]γβ is an m× n matrix.

(d) [T+ U]γβ = [T]γβ + [U]γβ .

(e) L(V,W) is a vector space.
(f) L(V,W) = L(W,V).

Solution. (a) True.
(b) True.
(c) False. Indeed, [T]γβ is a n×m matrix.

(d) True.
(e) True.
(f) False. Indeed, consider V = R and W = R2.

Exercise 9. Let β and γ be the standard ordered bases for Rn and Rm, respectively.
For each linear transformation T : Rn → Rm, compute [T]γβ .

(a) T : R2 → R de�ned by T(a1, a2) = (2a1 − a2, 3a1 + 4a2, a1).
(b) T : R3 → R2 de�ned by T(a1, a2, a3) = (2a1 + 3a2 − a3, a1 + a3).
(c) T : R3 → R de�ned by T(a1, a2, a3) = 2a1 + a2 − 3a3.
(d) T : R3 → R3 de�ned by T(a1, a2, a3) = (2a2 + a3,−a1 + 4a2 + 5a3, a1 + a3).
(e) T : Rn → Rn de�ned by T(a1, a2, ..., an) = (a1, a1, ..., a1).
(f) T : Rn → Rn de�ned by T(a1, a2, ..., an) = (an, an−1, ..., a1).
(g) T : Rn → R de�ned by T(a1, a2, ..., an) = a1 + an.

Solution. (a) Since

T(1, 0) = (2, 3, 1) = 2 · (1, 0, 0) + 3 · (0, 1, 0) + 1 · (0, 0, 1),
T(0, 1) = (−1, 4, 0) = −1 · (1, 0, 0) + 4 · (0, 1, 0) + 0 · (0, 0, 1),

therefore

[T]γβ =

2 −1
3 4
1 0

 .

(b) Since

T(1, 0, 0) = (2, 1) = 2 · (1, 0) + 1 · (0, 1),
T(0, 1, 0) = (3, 0) = 3 · (1, 0) + 0 · (0, 1),
T(0, 0, 1) = (−1, 1) = −1 · (1, 0) + 1 · (0, 1),

therefore

[T]γβ =

(
2 3 −1
1 0 1

)
.

(c) Since

T(1, 0, 0) = 2,

T(0, 1, 0) = 1,

T(0, 0, 1) = −3,
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therefore

[T]γβ =

 2
1
−3

 .

(d) Since

T(1, 0, 0) = (0,−1, 1) = 0 · (1, 0, 0) + (−1) · (0, 1, 0) + 1 · (0, 0, 1),
T(0, 1, 0) = (2, 4, 0) = 2 · (1, 0, 0) + 4 · (0, 1, 0) + 0 · (0, 0, 1),
T(0, 0, 1) = (1, 5, 1) = 1 · (1, 0, 0) + 5 · (0, 1, 0) + 1 · (0, 0, 1),

therefore

[T]γβ =

 0 2 1
−1 4 5
1 0 1

 .

(e) Since

T(1, 0, ..., 0) = (1, 1, ..., 1) = 1 · (1, 0, ..., 0) + · · ·+ 1 · (0, 0, ..., 1),
T(0, 1, ..., 0) = (0, 0, ..., 0) = 0 · (1, 0, ..., 0) + · · ·+ 0 · (0, 0, ..., 1),

...

T(0, 0, ..., 1) = (0, 0, ..., 0) = 0 · (1, 0, ..., 0) + · · ·+ 0 · (0, 0, ..., 1),

therefore

[T]γβ =


1 0 · · · 0
1 0 · · · 0
...

...
. . .

...
1 0 · · · 0

 .

(f) Since

T(1, 0, ..., 0) = (0, ..., 0, 1) = 0 · (1, 0, ..., 0) + · · ·+ 0 · (0, ..., 1, 0) + 1 · (0, 0, ..., 1),
T(0, 1, ..., 0) = (0, ..., 1, 0) = 0 · (1, 0, ..., 0) + · · ·+ 1 · (0, ..., 1, 0) + 0 · (0, 0, ..., 1),

...

T(0, 0, ..., 1) = (1, 0, ..., 0) = 1 · (1, 0, ..., 0) + · · ·+ 0 · (0, ..., 1, 0) + 0 · (0, 0, ..., 1),

therefore

[T]γβ =


0 0 · · · 1
...

... . .
. ...

0 1 · · · 0
1 0 · · · 0

 .

(g) Since

T(1, 0, ..., 0, 0) = 1,

T(0, 1, ..., 0, 0) = 0,

...

T(0, 0, ..., 1, 0) = 0,

T(0, 0, ..., 0, 1) = 1,
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therefore

[T]γβ =


1
0
...
0
1

 .

Exercise 10. Let V be an n-dimensional vector space, and let T : V → V be a linear
transformation. Suppose that W is T-invariant subspace of V having dimension k.
Show that there is a basis β for V such that [T]β has the form(

A B
O C

)
,

where A is a k × k matrix and O is the (n− k)× k zero matrix.

Solution. Let α = {w1, ..., wk} be an ordered basis for W. Then by Replacement
theorem, there exists a linearly independent subset α′ = {w′

1, ..., w
′
n−k} in V such

that β := α ∪ α′ is a basis for V. We claim that

[T]β =

(
A B
0 C

)
.

It su�ces to prove that ([T]β)ij = 0 for k + 1 ≤ i ≤ n, 1 ≤ j ≤ k. Indeed, since W
is T-invariant, then T(wj) ∈ W for 1 ≤ j ≤ k, which implies

([T(wj)]β)i = 0,

for k + 1 ≤ i ≤ n, 1 ≤ j ≤ k.

Exercise 11. Let V and W be vector spaces such that dim(V) = dim(W), and let
T : V → W be linear. Show that there exist ordered bases β and γ for V and W,
respectively, such that [T]γβ is a diagonal matrix.

Solution. By the dimension theorem,

dimN(T) + dimR(T) = dimW.

And dim(V) = dim(W). Then let αV = {v1, ..., vn} be an ordered basis of N(T) and
αW = {w1, ..., wm} be an ordered basis of R(T), by the Replacement theorem, there
exists a linearly independent subset α′

W = {w′
1, ..., w

′
n} such that γ := α′

W ∪ αW is
a basis of W. Moreover, denote

v′i := T−1(wi),

for i = 1, ...,m, and

α′
V := {v′1, ..., v′m}.

We claim that for β := α′
V∪αV and γ = αW∪α′

W, [T]γβ is a diagonal matrix. Indeed,

[T]γβ =

(
Im On

On Om

)
,

where On and Om are n-th and m-th zero matrices respectively.

Exercise 12. Label the following statements as true or false. In each part, V, W,
and Z denote vector spaces with ordered (�nite) bases α, β, and γ, respectively;
T : V → W and U : W → Z denote linear transformations; and A and B denote
matrices.
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(a) [UT]γα = [T]γβ [U]
γ
β .

(b) [T(v)]β = [T]βα[v]α for all v ∈ V.
(c) [U(w)]β = [U]βα[w]β for all w ∈ W.
(d) [IV]α = I.
(e) [T2]βα = ([T]βα)

2.
(f) A2 = I implies that A = I or A = −I.
(g) T = LA for some matrix A.
(h) A2 = O implies that A = O, where O denotes the zero matrix.
(i) LA+B = LA + LB .
(j) If A is square and Aij = δij for all i and j, then A = I.

Solution. (a) False. Indeed, [UT]γα = [U]γβ [T]
β
α.

(b) True.
(c) False. Indeed, [U(w)]β = [U]γβ [w]β .

(d) True.
(e) False. Indeed, it makes sense only α = β.
(f) False. Indeed, consider

A =

(
0 1
1 0

)
,

then A2 = I but A ̸= I and A ̸= −I.
(g) False. Indeed, T : V → W but LA : Fm → Fn.
(h) False. Indeed,

A =

(
0 1
0 0

)
,

then A2 = I but A ̸= O.
(i) True.
(j) True.

Exercise 13. Let V be a vector space, and let T : V → V be linear. Prove that
T2 = T0 if and only if R(T) ⊂ N(T).

Solution. ⇒: Let y ∈ R(T), then there exists x ∈ V such that

y = T(x),

then

T(y) = T0(x) = 0,

which implies that y ∈ N(T), by the arbitrary choice of y, we have R(T) ⊂ N(T).
⇐: Let x ∈ V, then T(x) ∈ R(T), which implies T(x) ∈ N(T), therefore

T2(x) = T(T(x)) = 0,

by the arbitrary choice of x, we have T2 = T0.

Exercise 14. Let A and B be n×n matrices. Recall that the trace of A is de�ned
by

tr(A) =

n∑
i=1

Aii.

Prove that tr(AB) = tr(BA) and tr(A) = tr(At).
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Solution. To prove tr(AB) = tr(BA), it su�ces to note that

tr(AB) =

n∑
i=1

n∑
j=1

AijBji = tr(BA).

To prove tr(A) = tr(At), it su�ces to note that Aii = (At)ii for 1 ≤ i ≤ n.

Exercise 15. Let V be a �nite-dimensional vector space, and let T : V → V be
linear.

(a) If rank(T) = rank(T2), prove that R(T) ∩ N(T) = {0}. Deduce that V =
R(T)⊕ N(T).

(b) Prove that V = R(Tk)⊕ N(Tk) for some positive integer k.

Solution. (a) Let y0 ∈ R(T)∩N(T), then T(y0) = 0V and there exists x0 ∈ V such
that

y0 = T(x0),

therefore

T2(x0) = 0V,

which implies that x0 ∈ N(T2). By the Dimension theorem,

dimN(T) = dimN(T2).

Then by the Replacement theorem, there exists a linearly independent subset α =
{y1, ..., yn−1} such that {y0, y1, ..., yn−1} is a basis for N(T). Since for arbitrary
yi ∈ {y0, y1, ..., yn−1}, 0 ≤ i ≤ n− 1,

T2(yi) = T(0V) = 0V,

which implies that {y0, y1, ..., yn−1} is also a basis for N(T2). Therefore there exists
c0, c1, ..., cn−1 such that

x0 =

n−1∑
i=0

ciyi,

then

T(x0) =

n−1∑
i=0

ciT(yi) = 0V,

which implies that y0 = 0V. Therefore we have R(T) ∩ N(T) = {0}.
By the Dimension theorem, we have

dimN(T) + dimR(T) = dimV.

Moreover, N(T) and R(T) are two subspaces of V, therefore V = N(T)⊕ R(T).
(b) It su�ces to prove that there exists k0 ∈ N such that rank(Tk0) = rank(Tk0+1).

Indeed, since

rank(Tk) ≥ rank(Tk+1) ≥ 0,

which implies that rank(Tk) is non-increasing as k goes to in�nity and bounded
below by 0. Therefore there exists a �nite k0 ∈ N such that

rank(Tk0) = rank(Tk0+1).

Exercise 16. Let V be a vector space. Determine all linear transformations T :
V → V such that T2 = T.
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Solution. We claim that T2 = T if and only if T is the projection on a subspace.
⇒: We prove that T is the projection on R(T). Indeed, for arbitrary y ∈ R(T),

then there exists x ∈ V such that

y = T(x),

then
T(y) = T2(x) = y,

by the arbitrary choice of y, we have T is the projection on R(T).
⇐: Assume that T is the projection on a subspace W of V, then for arbitrary

x ∈ V, since T(x) ∈ W, we haveT2(x) = T(x), which implies that T2 = T.


