
MATH2040A Homework 4 suggested answer

Compulsory Part

Q2.1.4.

Solution: Let A =

(
a11 a12 a13
a21 a22 a23

)
, B =

(
b11 b12 b13
b21 b22 b23

)
∈ M2×3(F ), α ∈ F . Then

T (A+B) = T

(
a11 + b11 a12 + b12 a13 + b13
a21 + b21 a22 + b22 a23 + b23

)
=

(
2(a11 − b11)− (a12 − b12) (a13 + b13) + 2(a12 + b12)

0 0

)
=

(
2a11 − a12 a13 + 2a12

0 0

)
+

(
2b11 − b12 b13 + 2b12

0 0

)
= T (A) + T (B)

and

T (αA) = T

(
αa11 αa12 αa13
αa21 αa22 αa23

)
=

(
2αa11 − αa12 αa13 + 2αa12

0 0

)
= α

(
2a11 − a12 a13 + 2a12

0 0

)
= αT (A)

As A,B ∈ M2×3(F ) and α ∈ F are arbitrary, T is a linear transformation.

The kernel of T is then

N(T ) = {A ∈ M2×3(F ) | T (A) = 0}

=

{(
a11 a12 a13
a21 a22 a23

) ∣∣∣∣ aij ∈ F, i ∈ {1, 2}, j ∈ {1, 2, 3},
(
2a11 − a12 a13 + 2a12

0 0

)
= 0

}
=

{(
a11 2a11 −4a11
a21 a22 a23

) ∣∣∣∣ aij ∈ F, i ∈ {1, 2}, j ∈ {1, 2, 3}
}

= Span

((
1 2 −4
0 0 0

)
,

(
0 0 0
1 0 0

)
,

(
0 0 0
0 1 0

)
,

(
0 0 0
0 0 1

))

It is easy to verify that

{ (
1 2 −4
0 0 0

)
,

(
0 0 0
1 0 0

)
,

(
0 0 0
0 1 0

)
,

(
0 0 0
0 0 1

) }
forms a basis of N(T ), and nullity T =

dimN(T ) = 4. Similarly the range is

R(T ) = {T (A) | A ∈ M2×3(F )}

=

{(
2a11 − a12 a13 + 2a12

0 0

) ∣∣∣∣ a11, a12, a13 ∈ F

}
= Span

((
1 0
0 0

)
,

(
0 1
0 0

))
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It is easy to verify that

{ (
1 0
0 0

)
,

(
0 1
0 0

) }
forms a basis of R(T ), and rankT = dimR(T ) = 2

As dimM2×3(F ) = 2× 3 = 6, we have nullity T + rankT = dimM2×3(F ). So the dimension theorem is verified for
T .

Since nullity T = 4 ̸= 0, T is not one-to-one. Since rankT = 2 ̸= 4 = dimM2×2(F ), T is not onto.

Q2.1.5.

Solution: Let α ∈ F , p(x) = a0 + a1x + a2x
2, q(x) = b0 + b1x + b2x

2 ∈ P2(F ) where a0, a1, a2, b0, b1, b2 ∈ F .
Then T (p(x) + q(x)) = x(p(x) + q(x)) + (p(x) + q(x))′ = xp(x) + p′(x) + xq(x) + q′(x) = T (p(x)) + T (q(x)), and
T (αp(x)) = x(αp(x)) + (αp(x))′ = α(p(x) + p′(x)) = αT (p(x)).

As p(x), q(x), α are arbitrary, T is a linear transformation.

The kernel of T is

N(T ) = {p(x) ∈ P2(F ) | T (p(x)) = 0}
=

{
a0 + a1x+ a2x

2
∣∣ a0, a1, a2 ∈ F, a1 + (a0 + 2a2)x+ a1x

2 + a2x
3 = 0

}
=

{
a0 + a1x+ a2x

2
∣∣ a0, a1, a2 ∈ F, a0 = a1 = a2 = 0

}
= {0}

So a basis of N(T ) is ∅, and nullity T = dim{0} = 0.

Similarly, the range of T is

R(T ) = {T (p(x)) | p(x) ∈ P2(F )}
=

{
a1 + (a0 + 2a2)x+ a1x

2 + a2x
3
∣∣ a0, a1, a2 ∈ F

}
= Span

({
1 + x2, x, 2x+ x3

})
It is easy to see that

{
1 + x2, x, 2x+ x3

}
forms a basis of R(T ), so rankT = dimR(T ) = 3.

As dimP2(F ) = 3, we have nullity T + rankT = dimP2(F ). So the dimension theorem is verified for T .

Since N(T ) = {0}, T is one-to-one. Since rankT = 3 ̸= 4 = dimP3(F ), T is not onto.

Q2.1.14.

Solution:

(a) Suppose T is one-to-one. Let S ⊆ T be an linearly independent set. If S = ∅, T (S) = ∅ is linearly
independent. So we may assume that S ̸= ∅.
Let T (v1), . . . , T (vn) ∈ T (S) be distinct with v1, . . . , vn ∈ S where n ∈ Z+. Let a1, . . . , an ∈ F be
scalars such that

∑n
i=1 aiT (vi) = 0. So T (

∑n
i=1 aivi) = 0. As T is one-to-one,

∑n
i=1 aivi = 0. As

v1, . . . , vn ∈ S, {v1, . . . , vn} is linearly independent. Thus a1 = . . . = an = 0. Since this is the only
solution, {T (a1), . . . , T (an)} is linearly independent.

As T (v1), . . . , T (vn) ∈ T (S) and n ∈ Z+ are arbitrary, T (S) is linearly independent.

As S is arbitrary, T maps linearly independent sets to linearly independent sets.

Suppose on the other hand that T maps linearly independents sets in V to linearly independent sets in W .
Let v ∈ N(T ). Then T (v) = 0. As {T (v)} = {0} is linearly dependent, {v} cannot be linearly independent,
for otherwise T ({v}) = {T (v)} = {0} is also linearly independent. Since {x} is always linearly independent
for x ∈ V \ {0}, we have v = 0. As v ∈ N(T ) is arbitrary, N(T ) ⊆ {0}. Trivially {0} ⊆ N(T ), so N(T ) = {0}
and thus T is one-to-one.

(b) Suppose S is linearly independent. By the previous part, T (S), the image of S under T is linearly indepen-
dent.
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Suppose on the other hand that T (S) is linearly independent. The proposition is trivial if S = ∅, so we may
assume that S ̸= ∅.
Let v1, . . . , vn ∈ S be distinct with n ∈ Z+. Let a1, . . . , an ∈ F be scalars such that

∑n
i=1 aivi = 0.

Then 0 = T (0) = T (
∑n

i=1 aivi) =
∑n

i=1 aiT (vi). As T is one-to-one, T (v1), . . . , T (vn) are distinct. Since
{T (v1), . . . , T (vn)} ⊆ T (S) and T (S) is linearly independent, {T (v1), . . . , T (vn)} is linearly independent and
so a1 = . . . = an = 0. Thus {v1, . . . , vn} is linearly independent.

As v1, . . . , vn ∈ S and n ∈ Z+ are arbitrary, S is linearly independent.

(c) Since β is a basis and T is one-to-one, by the previous part T (β) is linearly independent. So to show that
T (β) is a basis, it suffices to show that Span (T (β) ) = W .

Since T (β) ⊆ W , Span (T (β) ) ⊆ W .

Let w ∈ W . As T is onto, there exists v ∈ V such that w = T (v). As β = {v1, . . . , vn} is a basis of V ,
there exists scalars a1, . . . , an ∈ F such that v =

∑n
i=1 aivi. So w = T (v) = T (

∑n
i=1 aivi) =

∑n
i=1 aiT (vi) ∈

Span (T (β) ). As w ∈ W is arbitrary, W ⊆ Span (T (β) ) and so W = Span (T (β) ).

As T (β) is linearly independent and spans W , T (β) is a basis of W .

Note

Do not assume that S is a finite set. The proposition holds even when S is an infinite set. Similarly, do not assume
that V is finite dimensional and use the dimension theorem.

Please note that the dimension theorem presented in lecture note 06 requires the the domain to be finite dimensional.
If you want to use it on (possibly) infinite dimensional spaces, you may need to prove it first. Notes for Q1.6.21 in
homework 2 are also applicable here.

Note that for part (b) in proving the “if” part you would need to emphasize that the images are distinct, which is
due to the injectivity of T (and possibly the only part where the injectivity is used). For a simple example why this
is necessary, consider T : R2 → R2 which maps (x, y) ∈ R2 to (x, 0). The map is clearly not one-to-one, but for the
linear dependent set S = {(1, 0), (1, 1), (1, 2)} ⊆ R2 we have T (S) = {(1, 0)} which is linearly independent.

Note that part (c) is just the lemma on page 6 of lecture note 8.

Q2.1.17.

Solution: The two results are simple consequences of the dimension theorem, which states that nullity T +rankT =
dimV .

(a) Since V,W are finite dimensional and N(T ) ⊆ V , dimV,dimW, nullity T are all finite nonnegative. Also,
R(T ) ⊆ W .

By dimension theorem, dimR(T ) = rankT = dimV − nullity T ≤ dimV < dimW . So R(T ) ̸= W , and thus
T is not onto.

(b) Since V,W are finite dimensional and R(T ) ⊆ W , dimV,dimW, rankT are all finite. Also, as R(T ) ⊆ W ,
rankT ≤ dimW .

By dimension theorem, dimN(T ) = nullity T = dimV − rankT ≥ dimV − dimW > 0. So N(T ) ̸= {0}, and
thus T is not one-to-one.

Note

You can also prove by contradiction with passing bases between the domain and the codomain.

Q2.1.22.
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Solution: Let a = T (1, 0, 0), b = T (0, 1, 0), c = T (0, 0, 1) ∈ R. Since for (x, y, z) ∈ R3 we have (x, y, z) = x(1, 0, 0) +
y(0, 1, 0) + z(0, 0, 1), we also have T (x, y, z) = T (x(1, 0, 0) + y(0, 1, 0) + z(0, 0, 1)) = xT (1, 0, 0) + yT (0, 1, 0) +
zT (0, 0, 1) = ax+ by + cz.

The general result for linear T : Fn → Fm is as follows:

there exists scalars aij ∈ F for i ∈ {1, . . . ,m}, j ∈ {1, . . . , n} such that
T (x1, . . . , xn) = (

∑n
j=1 a1jxj , . . . ,

∑n
j=1 amjxj) for (x1, . . . , xn) ∈ Fn.

This generalization includes the cases for T : Fn → F with m = 1, where the proposition becomes

there exists scalars a1, . . . , an ∈ F such that T (x1, . . . , xn) =
∑n

i=1 aixi for (x1, . . . , xn) ∈ Fn

The proof is similar to the original proposition.

For each j ∈ {1, . . . , n} let ej ∈ Fn be the vector which the jth entry is 1 and all other entries are 0, and
a1j , . . . , amj ∈ F such that T (ej) = (a1j , . . . , amj) ∈ Fm. Such aij is well-defined as { E1, . . . , Em } forms a basis
(the natural basis) of Fm where Ei ∈ Fm is defined similarly as ej ∈ Fn.

As for each x = (x1, . . . , xn) ∈ Fn we have x =
∑n

j=1 xjej , we also have T (x) = T (
∑n

j=1 xjej) =
∑n

j=1 xjT (ej) =∑n
j=1 xj(a1j , . . . , amj) = (

∑n
j=1 a1jxj , . . . ,

∑n
j=1 amjxj).

Note

Writing the vectors in matrices it is easier to see what this proposition means:

For linear transformation T : Fn → Fm there exists a matrix A =

a11 . . . a1n
...

. . .
...

am1 . . . amn

 ∈ Fm×n such that

T (x) = Ax when elements in Fn, Fm are regarded as column vectors. By Theorem 2.6, such A is unique.

Similar proposition also holds if the spaces are not Fn and Fm but generic (finite dimensional) vector spaces with
the same scalar field. In this case, the scalars depends on the choice of representations of vectors.

Please note that the map T is already given. You are asked to show the existence of such a, b, c (or aij), not to verify
that the map (x, y, z) 7→ ax+ by + cz is linear.

You can also prove the proposition by Theorem 2.6. For brevity we show only the case T : Fn → Fm.

Solution: Let aij ∈ F for i ∈ {1, . . . ,m}, j ∈ {1, . . . , n} be defined such that T (ei) = (a1i, . . . , ami), where {ei |
i ∈ {1, . . . , n}} is the natural basis of Fn. We define U(x) = (

∑n
j=1 a1jxj , . . . ,

∑n
j=1 amjxj) for x = (x1, . . . , xn) =∑n

i=1 xiei ∈ Fn. The map is well-defined and linear as the decomposition by the basis {ei | i ∈ {1, . . . , n}} is
unique. It suffices to show that T = U .

By Theorem 2.6, it suffices to compare the values at some basis. By definition, for each i ∈ {1, . . . , n} we have

T (ei) = (a1i, . . . , ami) = (
∑n

j=1 a1jδij , . . . ,
∑n

j=1 amjδij) = U(ei) where δij =

{
1 if i = j

0 if i ̸= j
. As {ei | i ∈ {1, . . . , n}}

is a basis of Fn, we have T = U .

Therefore there exists scalars aij ∈ F for i ∈ {1, . . . ,m}, j ∈ {1, . . . , n} such that T (x1, . . . , xn) =
∑n

i=1 aixi for
(x1, . . . , xn) ∈ Fn.

Note

Please note how the behavior of a linear map is controlled by its images on a basis.

Q2.1.28.
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Solution:

(a) Since T (0) = 0, T ({0}) = {T (0)} = {0}. So {0} is T -invariant.

(b) Since T maps V to V , for each v ∈ V we have T (v) ∈ V . Thus T (V ) = {T (v) | v ∈ V } ⊆ V . So V is
T -invariant.

(c) Let v ∈ R(T ). Then v ∈ V . So T (v) ∈ T (V ) = R(T ). As v ∈ R(T ) is arbitrary, T (R(T )) ⊆ R(T ). So R(T ) is
T -invariant.

(d) Let v ∈ N(T ). Then T (v) = 0. As T (0) = 0, T (v) = 0 ∈ N(T ). As v ∈ N(T ) is arbitrary, T (N(T )) ⊆ N(T )
and so N(T ) is T -invariant.

Q2.1.35.

Solution:

(a) Since V = R(T ) + N(T ), to show that V = R(T )⊕ N(T ) it suffices to show that R(T ) ∩ N(T ) = {0}.
Since V is finite dimensional, R(T ), N(T ), R(T ) ∩ N(T ) are all finite dimensional. By dimension theorem,
dimV = nullity T+rankT . So by Q1.6.29(a), dim(R(T )∩N(T )) = dimR(T )+dimN(T )−dim(R(T )+N(T )) =
rankT + nullity T − dimV = 0. This implies that R(T ) ∩ N(T ) = {0}.

(b) Since R(T ) ∩ N(T ) = {0}, to show that V = R(T )⊕ N(T ) it suffices to show that R(T ) + N(T ) = V .

Since V is finite dimensional, R(T ), N(T ), R(T ) ∩ N(T ) are all finite dimensional. By dimension theorem,
dimV = nullity T + rankT . So by Q1.6.29(a), dim(R(T ) + N(T )) = dimR(T ) + dimN(T ) − dim(R(T ) ∩
N(T )) = rankT + nullity T − dim{0} = rankT + nullity T = dimV . As R(T ) + N(T ) ⊆ V , this implies that
R(T ) + N(T ) = V .

Note

Note that the requirement that V is finite dimensional is necessary: please refer to Q2.1.36.

You can also show the propositions by passing the bases between the spaces.

Optional Part

Q2.1.1.

Solution:

(a) True

(b) False. Consider the conjugation map defined as a map from C to C with C as a complex vector space. Note
that the proposition may still hold in certain situations (e.g. Q2.1.37)

(c) False. This only holds if T is linear.

(d) True

(e) False. This only holds if dimV = dimW .

(f) False. Consider the case where T maps every vector to 0W .

(g) True

(h) False. Consider the case where x1 = 0V but y1 ̸= 0W .

Q2.1.2.
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Solution: Let x = (x1, x2, x3), y = (y1, y2, y3) ∈ R3, α ∈ R. Then

T (x+ y) = T (x+ y) = T (x1 + y1, x2 + y2, x3 + y3)

= (x1 + y1 − x2 − y2, 2(x3 + y3))

= (x1 − x2, 2x3) + (y1 − y2, 2y3)

= T (x) + T (y)

and

T (αx) = T (α(x1, x2, x3)) = T (αx1, αx2, αx3)

= (αx1 − αx2, 2αx3)

= α(x1 − x2, 2x3)

= αT (x)

As x, y, α are arbitrary, T is linear.

The kernel of T is

N(T ) =
{
x ∈ R3

∣∣ T (x) = 0
}

= { (x1, x2, x3) | x1, x2, x3 ∈ R, (x1 − x2, 2x3) = (0, 0)}
= { (x, x, 0) | x ∈ R }
= Span ({(1, 1, 0)} )

It is easy to see that {(1, 1, 0)} is a basis of N(T ), so nullity T = dimN(T ) = 1. Similarly the range of T is

R(T ) =
{
T (x)

∣∣ x ∈ R3
}

=
{
(x1 − x2, 2x3)

∣∣ (x1, x2, x3) ∈ R3
}

= R2

So rankT = dimR(T ) = 2.

Since dimR3 = 3, we have dimR3 = nullity T + rankT . So the dimension theorem is verified for T .

Since nullity T = 1 ̸= 0, T is not one-to-one. Since R(T ) = R2, T is onto.

Q2.1.9.

Solution:

(a) T (0R2) = T (0, 0) = (1, 0) ̸= 0R2 . So T is not linear.

(b) T (2 · (1, 1)) = T (2, 2) = (2, 4) ̸= (2, 2) = 2 · T (1, 1). So T is not linear.

(c) T (2 · (π2 , 0)) = T (π, 0) = (0, 0) ̸= (2, 0) = 2 · T (π2 , 0). So T is not linear.

(d) T (−2 · (−1, 0)) = T (2, 0) = (2, 0) ̸= (−2, 0) = −2 · T (−1, 0). So T is not linear.

(e) T (0R2) = T (0, 0) = (0 + 1, 0) = (1, 0) ̸= (0, 0) = 0R2 . So T is not linear.

Q2.1.12.

Solution: Suppose there exists such linear map T : R3 → R2. Then (2, 1) = T (−2, 0,−6) = T (2 · (1, 0, 3)) =
2 · T (1, 0, 3) = 2 · (1, 1) = (2, 2). Contradiction arises. So no such linear map exists.

Q2.1.15.
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Solution: Let f(x), g(x) ∈ P(R), α ∈ R. Then by the property of integration we have T (f(x) + g(x)) =
∫ x

0
(f +

g)(t)dt =
∫ x

0
f(t)dt +

∫ x

0
g(t)dt = T (f(x)) + T (g(x)), T (αf(x)) =

∫ x

0
αf(t)dt = α

∫ x

0
f(t)dt = αT (f(x)). As f, g, α

are arbitrary, T is a linear transformation.

Let f(x) =
∑n

i=0 aix
i ∈ P(R) with a0, . . . , an ∈ R such that 0 = T (f(x)) =

∫ x

0
f(t)dt =

∫ x

0

∑n
i=0 ait

idt =∑n
i=0 ai

∫ x

0
tidt =

∑n
i=0

ai

i+1x
i+1. Since {1, x, . . . , xn+1} forms a basis, for i ∈ {0, . . . , n} we have ai

i+1 = 0, so
ai = 0. Thus f(x) = 0 is the zero polynomial. Since the zero polynomial is the only polynomial in the kernel, T is
one-to-one.

By the computation above, a polynomial of degree n ≥ 0 is mapped by T to a polynomial of degree n + 1, and
T (0) = 0. Since a nonzero polynomial must have its image degree n+1 ≥ 1, no polynomial is mapped to polynomial
of degree 0. In particular, the constant polynomial g(x) = 1 is not in the range. So T is not onto.

Q2.1.16.

Solution: Let f(x) =
∑n

i=0 aix
i ∈ P(R) with a0, . . . , an ∈ R. Let g(x) =

∑n
i=0

ai

i+1x
i+1. Then g(x) ∈ P(R), and

T (g(x)) = g′(x) =
∑n

i=0
ai

i+1
d
dxx

i+1 =
∑n

i=0
ai

i+1 (i + 1)xi =
∑n

i=0 aix
i = f(x). So f(x) ∈ R(T ). As f(x) ∈ P(R) is

arbitrary, T is onto.

Let h(x) = 1 be the constant 1 function. Then h(x) ∈ P(R) \ {0}, and T (h(x)) = d
dx1 = 0 = T (0). So T is not

one-to-one.

Q2.1.18.

Solution: Let T : R2 → R2 be defined by T (x, y) = (y, 0) for (x, y) ∈ R2. It is easy to see that T is linear.

The kernel of T is N(T ) = { (x, y) | x, y ∈ R, (y, 0) = (0, 0)} = { (x, 0) | x ∈ R } = Span ({(1, 0)} ). The range of T is
R(T ) =

{
T (x, y)

∣∣ (x, y) ∈ R2
}
= { (y, 0) | y ∈ R } = Span ({(1, 0)} ). So N(T ) = R(T ).

Q2.1.19.

Solution: Let V = R be the real line as a real vector space. Let T,U : R → R be defined as T (x) = x, U(x) = −x
for x ∈ V . It is easy to see that T,U are linear.

Also, it is easy to verify that N(T ) = {0} = N(U), and R(T ) = V = R(U).

Q2.1.21.

Solution:

(a) Let v = (v1, v2, . . .), w = (w1, w2, . . .) ∈ V , α ∈ F . Then T (v+w) = T ((v1+w1, v2+w2, . . .)) = (v2+w2, v3+
w3, . . .) = (v2, v3, . . .)+ (w2, w3, . . .) = T (v)+T (w), U(v+w) = U((v1+w1, v2+w2, . . .)) = (0, v1+w1, v2+
w2, . . .) = (0, v1, v2, . . .) + (0, w1, w2, . . .) = U(v) + U(w), T (αv) = T ((αv1, αv2, . . .)) = (αv2, αv3, . . .) =
α(v2, v3, . . .) = αT (v), U(αv) = U((αv1, αv2, . . .)) = (0, αv1, αv2, . . .) = α(0, v1, v2, . . .) = αU(v). Since
v, w, α are arbitrary, T,U are linear.

(b) Let v = (v1, v2, . . .) ∈ V . Then for w = (0, v1, v2, . . .), w ∈ V , T (w) = (v1, v2, . . .) = v ∈ R(T ). Since v ∈ V
is arbitrary, T is onto.

Let x = (1, 0, 0, . . .) ∈ V be the sequence such that only the first entry is 1 and all other entries are 0. Then
T (x) = (0, 0, . . .) = 0⃗ is the zero sequence. As x ̸= 0⃗ but T (x) = 0⃗, T is not one-to-one.

(c) Let v = (v1, v2, . . .) ∈ V such that U(v) = 0⃗. Then (0, 0, 0, . . .) = U((v1, v2, . . .)) = (0, v1, v2, . . .), so
v1 = v2 = . . . = 0. This implies that v = (v1, v2, . . .) = (0, 0, . . .) = 0. As U is linear, U is one-to-one.

Let w = (1, 0, 0, . . .) ∈ V be the sequence where only the first entry is 1 and all other entries are 0. Then for
all v = (v1, v2, . . .) ∈ V , U(v) = (0, v1, v2, . . .) ̸= (1, 0, 0, . . .). So w /∈ R(U). This implies that U is not onto.
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Q2.1.26.

Solution:

(a) Let v, u ∈ V , α ∈ F . As V = W1 ⊕W2, there are unique decompositions v = v1 + v2, u = u1 + u2 where
v1, u1 ∈ W1, v2, u2 ∈ W2. We also have v+u = (v1+u1)+ (v2+u2) and αv = αv1+αv2 with v1+u1, αv1 ∈
W1, v2 + u2, αv2 ∈ W2. Then by definition, T (v + u) = T ((v1 + u1) + (v2 + u2)) = v1 + u1 = T (v) + T (u),
T (αv) = T (αv1 + αv2) = αv1 = αT (v). Since v, u, α are arbitrary, T is linear.

Denote S = {x ∈ V | T (x) = x}.
Let x ∈ W1. Then the unique decomposition of x is x = x+0 where x ∈ W1 and 0 ∈ W2. Then by definition,
T (x) = x, so x ∈ S. As x ∈ W1 is arbitrary, W1 ⊆ S.

Let x ∈ S ⊆ V . Since V = W1 ⊕ W2, there exists unique x1 ∈ W1, x2 ∈ W2 such that x = x1 + x2. By
definition, x = T (x) = x1 ∈ W1. As x ∈ S is arbitrary, S ⊆ W1.

Therefore W = S = {x ∈ V | T (x) = x}.

(b) By the definition of projection, R(T ) ⊆ W1. By the previous part, W ⊆ R(T ). So W = R(T ).

Let v ∈ W2. Then the decomposition of v is v = 0 + v where 0 ∈ W1, v ∈ W2. So T (v) = 0, v ∈ N(T ). As v
is arbitrary, W2 ⊆ N(T ).

Let v ∈ N(T ). Let the decomposition of v is v = v1 + v2 where v1 ∈ W1, v2 ∈ W2. Then 0 = T (v) = v1, so
v = v1 + v2 = v2 ∈ W2. As v is arbitrary, N(T ) ⊆ W2. Therefore W2 = N(T ).

(c) The only possible choice for W2 with V = W1 ⊕W2 is W2 = {0}. As every vector v ∈ V can be presented
as v = v + 0 with v ∈ V , T (v) = v for all v ∈ V . So T is the identity map.

(d) The only possible choice for W2 with V = W1 ⊕W2 is W2 = V . Also, R(T ) = W1 = {0}, T is the zero map.

Q2.1.27.

Solution:

(a) By the last part of the previous question, when W = V , W ′ = {0} and T is the identity map. Similarly,
when W = {0}, W ′ = V and T is the zero map. So we may assume that W is a nontrivial proper subspace
of V .

Since V is finite dimensional, W is also finite dimensional. Let {w1, . . . , wn} be a basis of W . By Extension
Theorem we may extend {w1, . . . , wn} to a basis {w1, . . . , wn, v1, . . . , vm} of V by appending v1, . . . , vm ∈ V .
Let W ′ = Span ({v1, . . . , vm} ). By the definition of basis, it is easy to verify that V = W ⊕W ′.

Since {w1, . . . , wn, v1, . . . , vm} is a basis of V , by Theorem 1.8 for each v ∈ V there exists unique scalars
a1, . . . , an, b1, . . . , bm such that v =

∑n
i=1 aiwi +

∑m
i=1 bivi. We define T : V → V be such that T (v) =∑n

i=1 aiwi. By the uniqueness of ai, T is well-defined.

We now show that T is a linear map and is a projection on W along W ′.

Let v, v′ ∈ V , α ∈ F . Then there exists unique a1, . . . , an, b1, . . . , bm, a′1, . . . , a
′
n, b

′
1, . . . , b

′
m ∈ F such that v =∑n

i=1 aiwi+
∑m

i=1 bivi, v
′ =

∑n
i=1 a

′
iwi+

∑m
i=1 b

′
ivi. So T (v) =

∑n
i=1 aiwi, T (v

′) =
∑n

i=1 a
′
iwi. By uniqueness

of the coefficients, we have v + v′ =
∑n

i=1(ai + a′i)wi +
∑m

i=1(bi + b′i)vi and αv =
∑n

i=1 αaiwi +
∑m

i=1 αbivi,
so T (v+ v′) =

∑n
i=1(ai + a′i)wi = T (v) + T (v′) and T (αv) =

∑n
i=1 αaiwi = αT (v). As v, v′, α are arbitrary,

T is linear.

Let x = x1+x2 ∈ V with x1 ∈ W , x2 ∈ W ′. By the property of bases, there exists unique a1, . . . , an, b1, . . . , bn ∈
F such that x1 =

∑n
i=1 aiwi and x2 =

∑m
i=1 bivi. So x = x1 + x2 =

∑n
i=1 aiwi +

∑m
i=1 bivi. By the unique-

ness of the coefficients and the definition of T we have T (x) =
∑n

i=1 aiwi = x1. Since x1, x2 are arbitrary,
T is a projection on W along W ′.

(b) Consider V = R2 be the usual real plane, W = { (x, 0) | x ∈ R } be the x-axis. Let W1 = { (0, y) | y ∈ R },
W2 = { (x, x) | x ∈ R }. It is easy to verify that W,W1,W2 are subspaces of V , and V = W ⊕W1 = W ⊕W2.
The corresponding projection maps are respectively T1(x, y) = (x, 0) and T2(x, y) = (x− y, 0) for (x, y) ∈ V .
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Note

Please refer to Q1.3.31, Q2.1.26, Q2.1.40 and this note by Prof. B. Binegar from OSU for a better understanding.

Q2.1.31.

Solution:

(a) Let w ∈ W , v = T (w) ∈ R(T ). Since V = R(T )⊕W , R(T )∩W = {0}. As W is T -invariant, v = T (w) ∈ W .
So v ∈ R(T ) ∩W = {0}, so v = 0, w ∈ N(T ). As w ∈ W is arbitrary, W ⊆ N(T ).

(b) Since V is finite dimensional, we may use the dimension theorem.

By the dimensional theorem, dimV = N(T )+ rankT . By the previous part, dimW ≤ dimN(T ) = nullity T .
Since V = R(T )+W , we have dimV ≤ dimR(T )+ dimW = rankT +dimW ≤ rankT +nullity T = dimV .
So all equal signs must hold. In particular, dimW = nullity T = dimN(T ). Since W ⊆ N(T ), W = N(T ).

(c) Consider V be the space of all real sequences equipped with entry-wise addition and scalar multiplication,
T : V → V is the right shift operator, and W = {0} is the trivial subspace. Then R(T ) = V , but
W = {0} ≠ { (0, a2, . . .) | a2, . . . ∈ R } = N(T ).

Note

Please refer to the dimension theorem (for infinite dimensional spaces).

Q2.1.37.

Solution: To show that T is linear, it suffices to show that T (λv) = λT (v) for all λ ∈ Q, v ∈ V .

By additivity, T (0V ) = T (0V + 0V ) = T (0V ) + T (0V ), so T (0V ) = 0W .

Also, for each v ∈ V , 0W = T (0V ) = T (v + (−v)) = T (v) + T (−v), so T (−v) = −T (v).

Trivially T (1 · v) = T (v) = 1 · T (v) for all v ∈ V .

Suppose for some n ∈ Z+, T (n · v) = n · T (v) for all v ∈ V . Then for v ∈ V , T ((n + 1) · v) = T (n · v + v) =
T (n · v) + T (v) = n · T (v) + T (v) = (n+ 1) · T (v) as T is additive.

So by induction, T (n · v) = n · T (v) for all v ∈ V , n ∈ Z.
For n ∈ Z \ {0} and v ∈ V , T (v) = T (n · ( 1nv)) = n · T ( 1nv), so T ( 1nv) =

1
nT (v).

Let v ∈ V , λ = p
q ∈ Q where p, q ∈ Z, q ̸= 0. Then T (λv) = T (pq v) = T (p · 1

q · v) = pT ( 1q · v) = p · 1
q ·T (v) =

p
qT (v) =

λT (v). As v, λ are arbitrary, T is linear.

Note

Note that this requires the scalar field of the vectors to be small enough (so that the every scalar is simply a ratio
of the integers).

9

https://math.okstate.edu/people/binegar/4063-5023/4063-5023-l14.pdf

