
MATH2040A Homework 2 suggested answer

Compulsory Part

Q1.4.10.

Solution: Denote the set of 2× 2 symmetric matrices by Sym2.

To show that Span ({M1,M2,M3} ) is exactly Sym2, we need to show 2 things: every such matrix can be generated
by these 3 matrices (Sym2 ⊆ Span ({M1,M2,M3} )), and every matrix generated is 2 × 2 symmetric (Sym2 ⊇
Span ({M1,M2,M3} )).
We first show the ⊆ direction:

Let A be a symmetric 2×2 matrix. By the assumption on A, we may assume that A =

(
a c
c b

)
with a, b, c ∈ F . Then

A =

(
a c
c b

)
= a

(
1 0
0 0

)
+ b

(
0 0
0 1

)
+ c

(
0 1
1 0

)
= aM1 + bM2 + cM3 ∈ Span ({M1,M2,M3} ). Since A ∈ Sym2 is

arbitrary, Sym2 ⊆ Span ({M1,M2,M3} ).
We now show the ⊇ direction:

Let A ∈ Span ({M1,M2,M3} ). By definition, we may assume that A = aM1 + bM2 + cM3 =

(
a c
c b

)
for some

a, b, c ∈ F . Trivially, A is a 2 × 2 matrix, and AT =

(
a c
c b

)T

=

(
a c
c b

)
= A, so A is also symmetric. Thus

A ∈ Sym2. Since A ∈ Span ({M1,M2,M3} ) is arbitrary, Span ({M1,M2,M3} ) ⊆ Sym2.

Therefore, Sym2 = Span ({M1,M2,M3} ).

Note

You are supposed to show that the two sets are equal, as the question is to show that “the span . . . is the set of all
2× 2 . . . ”. If the question only asks you to show that “every matrix in the span . . . is a 2× 2 . . . ” or “every 2× 2
. . . is spanned by . . . ”, then you only need to show one of the directions.

Q1.4.11.

Solution: We use the same approach of the last question. Denote S = {ax | a ∈ F }.
Let v ∈ Span ({x} ). Then by definition, v =

∑m
i=1 aivi for some positive integer m with a1, . . . , am ∈ F , v1, . . . , vm ∈

{x}.
Since {x} contains only one element x, vi = x for all i. So v =

∑m
i=1 aivi =

∑m
i=1 aix = (

∑m
i=1 ai)x ∈ S as∑m

i=1 ai ∈ F . As v ∈ Span ({x} ) is arbitrary, Span ({x} ) ⊆ S.

On the other hand, let v ∈ S. Then v = ax for some a ∈ F . As x ∈ {x} and a ∈ F , v = ax ∈ Span ({x} ). As v ∈ S
is arbitrary, S ⊆ Span ({x} ).
Therefore, Span ({x} ) = S = {ax | a ∈ F }.
In the case of R3:

1. If x = 0⃗, Span ({x} ) = {ax | a ∈ R } = {0}, which is the singleton containing the origin.

2. If x ̸= 0⃗, Span ({x} ) = {ax | a ∈ R } is the straight line that passes through 0⃗ and x.
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Note

Please do not write something like Span ({x} ) = ax, a ∈ F . The left-hand side is a set of vectors (the span set),
while the right-hand side is a single vector (a multiple of x, where the scalar is arbitrarily fixed in F ). Please write
proper set notations.

Please note that the definition does not say anything about Span ({x} ) = {ax | a ∈ F }. If you go back to the
definition (e.g. the one in the lecture note), Span (S ) for nonempty S is defined as the set of all (finite) linear
combinations of vectors in S (represented a sum). There is no restriction on how the vectors are chosen, and the
same vector can be chosen multiple times.

You are expected to argue that each of such combinations can be represented as ax for some a ∈ F , and for all a ∈ F ,
ax is a linear combination of elements in S = {x}. Despite this is very straightforward, you still need to show this.

Q1.4.13.

Solution: Suppose S1 = ∅. Then Span (S1 ) = {0}, so Span (S1 ) = {0} ⊆ Span (S2 ).

Suppose S1 ̸= ∅. Let v ∈ Span (S1 ). Then there exists a positive integer m, a1, . . . , am ∈ F , v1, . . . , vm ∈ S1 such
that v =

∑m
i=1 aivi.

Since S1 ⊆ S2, each of vi is contained in S2. So v =
∑m

i=1 aivi for some positive integer m, a1, . . . , am ∈ F ,
v1, . . . , vm ∈ S2. In particular, v ∈ Span (S2 ).

As v ∈ Span (S1 ) is arbitrary, Span (S1 ) ⊆ Span (S2 ).

Suppose now that Span (S1 ) = V . Since S2 ⊆ V and V is a vector space, Span (S2 ) ⊆ Span (V ) = V . By the above
argument, we have V = Span (S1 ) ⊆ Span (S2 ) = V , so Span (S2 ) = V .

Note

Note that Span (S1 ) = {
∑m

i=1 aivi | m ∈ Z+, a1, . . . , am ∈ F, v1, . . . , vm ∈ S1 } holds only when S1 ̸= ∅. When
S1 = ∅, there is no vector in S1, so the set defined on the right-hand side is the empty set, which is not equal to
Span (∅ ) = {⃗0}. (Refer to this answer or this question on Math Stack Exchange for a quick refresh on the set-builder
notation) For the same reason, you cannot pick an element x ∈ S1 without assuming S1 ̸= ∅.
Also, note that you cannot simply assume S1 = {v1, . . . , vn} even if you assume S1 is nonempty. Such assumption
implies that S1 is a finite set (unless you specify an appropriate n), which requires an additional assumption.

Q1.4.14.

Solution: If S1 is empty, then Span (S1 ∪S2 ) = Span (S2 ) = {0}+Span (S2 ) = Span (S1 ) + Span (S2 ). Similarly,
the equality holds if S2 is empty. Hence in the remain part we may assume that both S1 and S2 are nonempty.

Let v ∈ Span (S1 ∪S2 ). Then there exists some positive integer m such that v =
∑m

i=1 aivi for some a1, . . . , am ∈ F ,
v1, . . . , vm ∈ S1 ∪ S2.

For each i ∈ {1, . . . ,m}, vi ∈ S1 ∪S2, so vi ∈ S1 or vi ∈ S2. We may without loss of generality rearrange the indices
such that v1, . . . , vr ∈ S1 and vr+1, . . . , vm ∈ S2 \ S1 for some integer r ∈ {0, . . . ,m}. (If none of vi ∈ S1 we simply
take r = 0 and the corresponding sum in the following part 0⃗; similar when none of vi ∈ S2 \ S1)

Then v = (
∑r

i=1 aivi) +
(∑m

j=r+1 ajvj

)
∈ Span (S1 ) + Span (S2 ) with

∑r
i=1 aivi ∈ Span (S1 ),

∑m
j=r+1 ajvj ∈

Span (S2 ). As v ∈ Span (S1 ∪ S2 ) is arbitrary, Span (S1 ∪ S2 ) ⊆ Span (S1 ) + Span (S2 ).

To show the other direction, let v ∈ Span (S1 ) + Span (S2 ). Then there exists u ∈ Span (S1 ), w ∈ Span (S2 ) such
that v = u + w. By definition, there exists some positive integers m,n such that u =

∑m
i=1 aiui, w =

∑n
j=1 bjwj

with a1, . . . , am, b1, . . . , bn ∈ F , u1, . . . , um ∈ S1, w1, . . . , wn ∈ S2.

Since S1 ⊆ S1 ∪ S2 and S2 ⊆ S1 ∪ S2, we have v = u + w = a1u1 + . . . + amum + b1w1 + . . . + bnwn where each of
ai, bi ∈ F , ui, wi ∈ S1 ∪ S2. So v ∈ Span (S1 ∪ S2 ). As v is arbitrary, Span (S1 ) + Span (S2 ) ⊆ Span (S1 ∪ S2 ).

Therefore Span (S1 ) + Span (S2 ) = Span (S1 ∪ S2 )
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Note

If you are more familiar with this notation, rather than rearranging the indices you can simply write v =
∑

i∈{1,...,n}
vi∈S1

aivi+

∑
j∈{1,...,n}
vj∈S2\S1

ajvj with the sum on empty set being 0⃗ (as a convention)

Alternatively, to show that Span (S1 ) + Span (S2 ) ⊆ Span (S1 ∪ S2 ), you can also use the result from Q1.4.13:

Solution: Since S1 ⊆ S1 ∪ S2 and S2 ⊆ S1 ∪ S2, by the result of Q1.4.13 we have Span (S1 ) ⊆ Span (S1 ∪ S2 ) and
Span (S2 ) ⊆ Span (S1 ∪ S2 ).

Let x ∈ Span (S1 ) + Span (S2 ). Then there exists v1 ∈ Span (S1 ), v2 ∈ Span (S2 ) such that x = v1 + v2. Since
v1 ∈ Span (S1 ) ⊆ Span (S1 ∪ S2 ), v2 ∈ Span (S2 ) ⊆ Span (S1 ∪ S2 ) and Span (S1 ∪ S2 ) is a subspace (of V ),
x = v1 + v2 ∈ Span (S1 ∪ S2 ). As x is arbitrary, Span (S1 ) + Span (S2 ) ⊆ Span (S1 ∪ S2 ).

Q1.4.15.

Solution: If S1∩S2 = ∅, Span (S1∩S2 ) = {0}. Since 0 ∈ Span (S1 ) and 0 ∈ Span (S1 ), 0 ∈ Span (S1 )∩Span (S2 )
and thus Span (S1∩S2 ) = {0} ⊆ Span (S1 )∩Span (S2 ). Hence in the following proof we may assume that S1∩S2 ̸= ∅.
In particular both S1, S2 are nonempty.

Let v ∈ Span (S1 ∩S2 ). Then there exists some positive integer m such that v =
∑m

i=1 aivi for some a1, . . . , am ∈ F ,
v1, . . . , vm ∈ S1 ∩ S2. In particular, v =

∑m
i=1 aivi ∈ Span (S1 ) as for each i, vi ∈ S1. Similarly, v ∈ Span (S2 ).

Thus v ∈ Span (S1 ) ∩ Span (S2 ).

As v is arbitrary, Span (S1 ∩ S2 ) ⊆ Span (S1 ) ∩ Span (S2 ).

For the examples, we can construct two examples as follow: consider V = R2 is the (usual) real plane,

1. For S1 =

{ (
1
0

)
,

(
1
1

) }
, S2 =

{ (
0
1

)
,

(
1
1

) }
, we can show that Span (S1 ∩ S2 ) = Span

({ (
1
1

) })
={(

x
x

) ∣∣∣∣ x ∈ R
}

⫋ R2 = R2 ∩ R2 = Span (S1 ) ∩ Span (S2 )

2. For S1 =

{ (
1
0

) }
, S2 =

{ (
0
1

) }
, we can show that Span (S1 ∩ S2 ) = Span (∅ ) = {0} =

{(
x
0

) ∣∣∣∣ x ∈

R
}
∩
{(

0
x

) ∣∣∣∣ x ∈ R
}

= Span (S1 ) ∩ Span (S2 )

Note

Please also specify the base vector space in your construction of examples.

Alternatively, you can use the result from Q1.4.13:

Solution: Since S1∩S1 ⊆ S1, by Q1.4.13 we have Span (S1∩S2 ) ⊆ Span (S1 ). Similarly, we have Span (S1∩S2 ) ⊆
Span (S2 ). Therefore, Span (S1 ∩ S2 ) ⊆ Span (S1 ) ∩ Span (S2 ).

The example can be constructed as above and is omitted here.

Q1.5.9.
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Solution: Suppose {u, v} are linearly dependent. Then there exists a, b ∈ F not all zero such that au+ bv = 0. If
a ̸= 0, we then have u = − b

av and so u is a multiple of v. Similarly v is a multiple of u if b ̸= 0. Thus u or v is a
multiple of the other.

Suppose on the other hand that u or v is a multiple of the other. Without loss of generality we may assume that u
is a multiple of v. Then there exists λ ∈ F such that u = λv. Then 1u − λv = 0 with the coefficients not all zero.
So {u, v} is linearly dependent.

Therefore, {u, v} is linearly dependent if and only if u or v is a multiple of the other.

Note

To show the linear dependency of a (nonempty) set S of vectors, you would only need to find one (finite) subset of
vectors that have a nontrivial linear relation, i.e. find some v1, . . . , vn ∈ S and scalars a1, . . . , an such that

1. some of ai is not zero

2. a1v1 + . . .+ anvn = 0

On the other hand, to show a (nonempty) set S of vectors is linearly independent, you have to show that no such
nontrivial linear relation exists. In the case when S = {v1, . . . , vn} is finite, the proof using the very first definition
usually (but not always) follows this format:

Let a1, . . . , an ∈ F be scalars such that a1v1 + . . .+ anvn = 0.

(Something related to the properties of S)

So a1 = . . . = an = 0 is the only possible choice. By definition {v1, . . . , vn} is linearly independent.

Showing that a1v1 + . . .+ anvn = 0 for a1 = . . . = an = 0 does not constitute a proof of linear independence. This
holds for all choices of v1, . . . , vn as it follows directly from the axioms of vector space.

Please also be aware of the edge case where one of u, v is the zero vector. Your proof should cover this case too.

Q1.5.13.

Solution:

(a) Suppose {u, v} is linearly independent. Let a, b ∈ F such that a(u+v)+b(u−v) = 0. Then (a+b)u+(a−b)v =
0. Since {u, v} is linearly independent, a+ b = a− b = 0. Solving the system we have that a = b = 0 is the
only solution. So {u+ v, u− v} is linearly independent.

Suppose on the other hand that {u+ v, u− v} is linearly independent. Let a, b ∈ F such that au+ bv = 0.
Then a+b

2 (u+ v) + a−b
2 (u− v) = 0. Since {u+ v, u− v} is linearly independent, a+b

2 = a−b
2 = 0. Solving the

system we have that a = b = 0 is the only solution. So {u, v} is linearly independent.

Therefore, {u, v} is linearly independent if and only if {u+ v, u− v} is linearly independent.

(b) Suppose {u, v, w} is linearly independent. Let a, b, c ∈ F such that a(u+ v)+ b(u+w)+ c(v+w) = 0. Then
(a+ b)u+ (a+ c)v+ (b+ c)w = 0. Since {u, v, w} is linearly independent, a+ b = a+ c = b+ c = 0. Solving
the system we have that a = b = c = 0 is the only solution. So {u+ v, u+w, v+w} is linearly independent.

Suppose on the other hand that {u + v, u + w, v + w} is linearly independent. Let a, b, c ∈ F such that
au + bv + cw = 0. Then a+b−c

2 (u + v) + a+c−b
2 (u + w) + b+c−a

2 (v + w) = 0. Since {u + v, u + w, v + w} is

linearly independent, a+b−c
2 = a+c−b

2 = b+c−a
2 = 0. Solving the system we have that a = b = c = 0 is the

only solution. So {u, v, w} is linearly independent.

Therefore, {u, v, w} is linearly independent if and only if {u+ v, u+ w, v + w} is linearly independent.

Note

For the first part, you can also use the result from Q1.5.9 and show that no vector in the set is a multiple of the
other.
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You cannot show the linear independence of {u, v} by considering only the relation of form (a+ b)u+ (a− b)v = 0
with a, b ∈ F then reducing it to a(u+v)+b(u−v) = 0, unless you have also shown that the map (a, b) 7→ (a+b, a−b)
is surjective from F 2 to F 2.

In another word, knowing that a(u+ v) + b(u− v) = 0 implies a = b = 0 does not mean that you can simply rewrite
(a+ b)u+(a− b)v = a(u+ v)+ b(u− v) and conclude that u, v is linearly independent because a+ b = a− b = 0 with
a = b = 0. You would also need to show that { (a+b)u+(a−b)v | a, b ∈ F } contains all possible linear combinations
of u, v, i.e. { (a+ b)u+ (a− b)v | a, b ∈ F } = {cu+ dv | c, d ∈ F }. Similar for {u, v, w}.
For example, let us consider V = R as a R-vector space, and v⃗ = 1, u⃗ = −1 are vectors in V . Suppose I somehow
obtained the linear relation a2 · v⃗ + (−b2) · u⃗ = 0 with a, b ∈ R. Even when the only solution for this equation is
a = b = 0, I still cannot conclude that {v⃗, u⃗} is linearly independent as (trivially) {v⃗, u⃗} is linearly dependent with
1 · v⃗ + 1 · u⃗ = 0⃗: the witnessing choice of coefficients (1, 1) (or in general (λ, λ) with λ ∈ R \ {0}) is not contained in
the set

{
(a2,−b2)

∣∣ a, b ∈ R
}
of coefficients considered by the linear relation.

Also, just because a = b = 0 makes a(u + v) + b(u − v) = 0 and {u + v, u − v} is linearly independent, it does not
mean that {u, v} is also linearly independent when you plug a = b = 0 into a(u+ v) + b(u− v) = (a+ b)u+ (a− b)v
and get a 0 with the coefficients also 0.

Q1.5.15.

Solution: Suppose S is linearly dependent. Suppose further that u1 ̸= 0. Then there exists a1, . . . , an ∈ F not all
zero such that a1u1 + . . .+ anun = 0.

Let k ∈ {1, . . . , n− 1} be the largest index such that ak+1 ̸= 0, ak+2 = . . . = an = 0. k is well-defined as u1 ̸= 0 and
n is finite. Then a1u1 + . . .+ akuk + ak+1uk+1 = 0. So uk+1 = − a1

uk+1
a1 − . . .− ak

uk+1
ak ∈ Span ({u1, . . . , uk} ).

Thus u1 = 0 or uk+1 ∈ Span ({u1, . . . , uk} ) for some k ∈ {1, . . . , n− 1}.
Suppose on the other hand that u1 = 0 or uk+1 ∈ Span ({u1, . . . , uk} ) for some k ∈ {1, . . . , n − 1}. If u1 = 0 then
S is trivially linearly dependent.

If uk+1 ∈ Span ({u1, . . . , uk} ) for some k ∈ {1, . . . , n − 1}, then there exists a1, . . . , ak ∈ F not all zero such that
uk+1 = a1u1 + . . . + akuk. In particular, a1u1 + . . . + akuk − 1uk+1 = 0 with the coefficients not all zero. Since
u1, . . . , uk+1 ∈ S, S is linearly dependent.

Therefore S is linearly dependent if and only if u1 = 0 or uk+1 ∈ Span ({u1, . . . , uk} ) for some k ∈ {1, . . . , n− 1}.

Note

For the “only if” part, the logical equivalence (P → (Q∨R)) ⇐⇒ ((P ∧¬Q) → R) is used here. You can also show
the proposition by enumerating cases that give the desired results, or prove by contradiction with Theorem 1.7 (only
works when S is a finite set).

Alternatively, rather than considering a logically equivalent statement, we show the “only if” part directly by enumerating
the possible cases:

Solution: Suppose S is linearly dependent. Then there exists scalars a1, . . . , an ∈ F not all zero such that a1u1 +
. . .+ anun = 0.

1. Consider the case where an ̸= 0. Then un = − a1

an
u1 − . . .− an−1

an
un−1 ∈ Span ({u1, . . . , un−1} ).

2. Consider the case where a2, . . . , an are all zero. Then a1 = 0, and the relation reduces to a1u1 = 0. Since
a1 ̸= 0, we must have u1 = 0.

3. Consider the case where a2 ̸= 0 and a3, . . . , an are all zero. Then a1u1+a2u2 = 0, so u2 = −a1

a2
u1 ∈ Span ({u1} ).

4. Consider the case where a3 ̸= 0 and a4, . . . , an are all zero. Then a1u1 + a2u2 + a3u3 = 0 with a3 ̸= 0, so
u3 = −a1

a3
u1 − a2

a3
u2 ∈ Span ({u1, u2} ).
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By enumerating all remaining cases where ak ̸= 0 and ak+1, . . . , an are all zero for k ∈ {4, . . . , n − 1} similarly, we
can show that uk ∈ Span ({uk+1, . . . , un} ). Since one of these cases must be true, the proposition is proven.

Alternatively, you can show the “only if” part by contradiction using Theorem 1.7 in the textbook:

Solution: Suppose S is linearly dependent. We assume that u1 ̸= 0 and for all k ∈ {1, . . . , n − 1}, uk+1 /∈
Span ({u1, . . . , uk} ).
Since u1 ̸= 0, {u1} is linearly independent.

Since u2 /∈ Span ({u1} ), by Theorem 1.7 {u1, u2} = {u1} ∪ {u2} is linearly independent.

Suppose {u1, . . . , uk} is linearly independent and uk+1 /∈ Span ({u1, . . . , uk} ) for some k ∈ {1, . . . , n− 1}. Then by
Theorem 1.7, we have {u1, . . . , uk+1} = {u1, . . . , uk} ∪ {uk+1} is also linearly independent.

By induction, {u1, . . . , uk} is linearly independent for all k ∈ {1, . . . , n}. In particular, S = {u1, . . . , un} is also
linearly independent. Contradiction arises as S is linearly dependent.

So u1 = 0, or for some k ∈ {1, . . . , n− 1}, uk+1 ∈ Span ({u1, . . . , uk} ).

Optional Part

Q1.4.1.

Solution:

(a) True

(b) False

(c) True. Refer to Theorem 1.4 and 1.5

(d) False. Some information may be lost. Refer to this question on Math Stack Exchange.

(e) True

(f) False

Q1.4.4.

Solution:

(a) Yes. (x3 − 3x+ 5)− 3(x3 + 2x2 − x− 1) + 2(x3 + 3x3 − 1) = 0

(b) No

(c) Yes. (−2x3 − 11x2 + 3x+ 2)− 4(x3 − 2x2 + 3x− 1) + 3(2x3 + x3 + 3x− 2) = 0

(d) Yes. −(x3 + x2 + 2x+ 13)− 2(2x3 − 3x2 + 4x+ 1) + 5(x3 − x2 + 2x+ 3) = 0

(e) No

(f) No

The proofs are standard computations and are omitted here.

Q1.4.5.
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Solution:

(a) Yes. (2,−1, 1) = (1, 0, 2)− (−1, 1, 1)

(b) No

(c) No

(d) Yes. (2,−1, 1,−3) = 2(1, 0, 1,−1)− (0, 1, 1, 1)

(e) Yes. −x3 + 2x2 + 3x+ 3 = −(x3 + x2 + x+ 1) + 3(x2 + x+ 1) + (x+ 1)

(f) No

(g) Yes.

(
1 2
−3 4

)
= 3

(
1 0
−1 0

)
+ 4

(
0 1
0 1

)
− 2

(
1 1
0 0

)
(h) No

The proofs are standard computations and are omitted here.

Q1.5.1.

Solution:

(a) False. Refer to Q1.5.10

(b) True

(c) False. It contains no vectors with nontrivial linear relation

(d) False. Consider the subset being a singleton of a (nonzero) vector

(e) True. Note that this includes the case where the subset is empty

(f) True

Q1.5.2.

Solution:

(a) Linearly dependent. 2

(
1 −3
2 4

)
+

(
−2 6
4 −8

)
=

(
0 0
0 0

)
(b) Linearly independent

(c) Linearly independent

(d) Linearly dependent. 4(x3 − x)− 3(2x2 + 4) + 2(−2x3 + 3x2 + 2x+ 6) = 0

(e) Linearly dependent. −3(1,−1, 2) + 2(1,−2, 1) + (1, 1, 4) = (0, 0, 0)

(f) Linearly independent

(g) Linearly dependent. 3

(
1 0
−2 1

)
+

(
0 −1
1 1

)
+

(
−1 2
1 0

)
−
(

2 1
−4 4

)
=

(
0 0
0 0

)
(h) Linearly independent

(i) Linearly independent

(j) Linearly dependent. 4(x4 − x3 +5x2 − 8x+6)+ 3(−x4 + x3 − 5x2 +5x− 3)− 3(x4 +3x2 − 3x+5)+ (2x4 +
x3 + 4x2 − 8x) = 0

The proofs are standard computations and are omitted here.
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Q1.5.10.

Solution: Consider

1
0
0

 ,

0
1
0

 ,

1
1
0

. The sum of the first 2 is the last vector, so they are linearly dependent.

However, it is easy to verify (omitted here) that any two vectors is linearly independent.

Q1.5.16.

Solution: Instead of the original proposition, we prove the following logically equivalent proposition:

a set S of vectors is linearly dependent if and only if there exists a finite subset of S that is linearly
dependent.

Suppose S is linearly dependent. By definition, there exists a positive integer m such that
∑m

i=1 aivi = 0 for some
a1, . . . , am ∈ F not all zero and some v1, . . . , vm ∈ S. Consider the set S′ = {v1, . . . , vm}. Obviously S′ is a finite
subset of S, and by the above relation S′ is linearly dependent. Hence there exist a finite linearly dependent subset.

On the other hand, suppose there exists a finite subset of S that is linearly dependent. Since this subset cannot be
empty, without loss of generality we may let this subset be {v1, . . . , vm} ⊆ S for some positive integer m. Then by
definition there exists a1, . . . , am ∈ F not all zero such that

∑m
i=1 aivi = 0. Since each vi ∈ S, by definition S is

linearly dependent.

Therefore S is linearly dependent if and only if there exists a finite linearly dependent subset. Equivalently, S is
linearly independent if and only if every finite subset is linearly independent.

Note

You can also prove this proposition without transposing.

Q1.5.18.

Solution: We prove the proposition by contradiction.

Suppose S is linearly dependent. By Q1.5.16, there exists a finite subset S′ ⊆ S such that S′ is linearly dependent.
WLOG let S′ = {p1, . . . , pm} for some positive integer m. Then there exists a1, . . . , am not all zero such that∑m

i=1 aipi = 0. By removing elements with zero ais we may further assume that all of ai are nonzero. By assumption,
the remaining set is nonempty.

Let pk be the polynomial in S′ with the highest degree. By assumption, such pk is unique, and all other polynomials
in S′ have degree smaller than pk. This implies that 0 =

∑m
i=1 aipi has the same degree of pk. Contradiction arises

as S contains only nonzero polynomials.

Therefore S is linearly independent.

Q1.5.20.

Solution: Let a, b ∈ R such that af + bg = 0. This implies that 0 = af(t) + bg(t) = aert + best for all t ∈ R. We
consider the value of the sum function at t = 0 and at t = 1: 0 = af(0)+bg(0) = a+b and 0 = af(1)+bg(1) = aer+bes.
This implies that a = −b and a(er − es) = 0. As r ̸= s, er ̸= es, and so a = b = 0 is the only solution. Thus f, g are
linearly independent.

Note

You can also prove this by showing that the Wronskian W (f, g) = (s− r)e(r+s)t is nowhere zero and use the related
result, or use the result of Q1.5.9 (with which the proof would still be similar to this one).
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