
MATH3360: Mathematical Imaging

Chapter 3: Image Enhancement in the Frequency Domain

Image enhancement refers to the process, by which we improve the image so that it looks subjectively
better. We do not really know what the image should look like, but we can tell whether it has been
improved or not, by considering, for example, whether more detail can be seen, or whether unwanted
flickering has been removed, or the contrast is better.

Image enhancement is broadly defined. It can be referred to as different imaging tasks, which
include image denoising, image deblurring, image sharpening and so on. In this chapter, some
image enhancement tasks will be discussed.

Image denoising aims to restore an image corrupted by noise. Below is a simple example.

The image on the left is a noisy image. The image on the right is the restored image. The noises
are removed using a mathematical model (which we are going to learn in this chapter).

Image deblurring aims to restore an image, whose features are blurry due to various factors (e.g.
motion, atmospheric turbulence). Here is a simple example of motion blur.

In the above figure, the left shows a blurry image caused by motion (e.g. taking the photo on a
moving car). The right shows the restored image using a mathematical model (which we are going
to learn in this chapter).

Image enhancement can either be done in the spatial domain or the frequency domain. In this
chapter, we will firstly look at how image enhancement can be done in the frequency domain.

Simply speaking, image processing in the frequency domain is done as follows. The image is firstly
transformed using discrete Fourier transform (which can be computed efficiently using fast Fourier
transform (FFT)). The Fourier coefficients are then adjusted according to different imaging tasks.
The restored image can be obtained by taking the inverse Fourier transform (which can again be
computed efficiently using FFT). In fact, instead of using DFT, wavelet transform (such as Haar
transform) can also be applied.

1

1 Image denoising in the frequency domain

We will first discuss image denoising algorithms in the frequency domain.

1.1 Image denoising by low-pass filtering

Our goal in this subsection is as follows.

Goal:

1. Remove high frequency component (low pass filter) for image de-noising.

2. Remove low frequency component (high pass filter) for extraction of image details.

In order to denoise an image in the frequency domain, we need to identify the high/low frequency
components of the DFT of f .

Let F be a N ×N image, where N is even. Let F̂ be the DFT of F .

High / Low frequency components of F̂

Recall:

F̂ (k, l) =
1

N2

N−1∑
m=0

N−1∑
n=0

F (m,n)e−j 2π
N (mk+nl)

F̂ (k, l) is called the Fourier coefficient at (k, l).

Observe that: for 0 ≤ k, l ≤ N

2
− 1

F̂

(
N

2
+ k,

N

2
+ l

)
=

1

N2

N−1∑
m=0

N−1∑
n=0

F (m,n)e−j 2π
N (m(N

2 +k)+n(N
2 +l))

=
1

N2

N−1∑
m=0

N−1∑
n=0

F (m,n)(−1)m+ne−j 2π
N (m(−k)+n(−l))

=
1

N2

N−1∑
m=0

N−1∑
n=0

F (m,n)e−j 2π
N (m(N

2 −k)+n(N
2 −l))

= F̂

(
N

2
− k,

N

2
− l

)
Remark. Computing part of F̂ can determine the rest!

2

From above, we deduce that:

F (m,n) =
∑

0≤k,l≤N
2 −1

[
F̂

(
N

2
+ k,

N

2
+ l

)
ej

2π
N [(N

2 +k)m+(N
2 +l)n]

]

+
∑

1≤k,l≤N
2 −1

[
F̂

(
N

2
+ k,

N

2
+ l

)
ej

2π
N [(N

2 −k)m+(N
2 −l)n]

]

+
∑

0≤k,l≤N
2 −1

[
F̂

(
N

2
+ k,

N

2
− l

)
ej

2π
N [(N

2 +k)m+(N
2 −l)n]

]

+
∑

1≤k,l≤N
2 −1

[
F̂

(
N

2
+ k,

N

2
− l

)
ej

2π
N [(N

2 −k)m+(N
2 +l)n]

]

+
∑

0≤l≤N
2 −1

F̂

(
0,

N

2
+ l

)
ej

2π
N [(N

2 +l)n] +
∑

1≤l≤N
2 −1

F̂

(
0,

N

2
+ l

)
ej

2π
N [(N

2 −l)n]

+
∑

0≤k≤N
2 −1

F̂

(
N

2
+ k, 0

)
ej

2π
N [(N

2 +k)m] +
∑

1≤k≤N
2 −1

F̂

(
N

2
+ k, 0

)
ej

2π
N [(N

2 −k)m] + F̂ (0, 0)

Observations:

• When k and l are close to
N

2
, F̂

N

2
+ k︸ ︷︷ ︸

≈N

,
N

2
+ l︸ ︷︷ ︸

≈N

 is associated to e−j 2π
N (k′m+l′n)︸ ︷︷ ︸

≈e−j 2π
N

(k̃m+l̃n)

, where k′

and l′ are close to N and k̃ and l̃ are close to 0.

Therefore, Fourier coefficients at bottom right corner are associated to low frequency com-
ponents.

• Similarly, we can check Fourier coefficients at the four corners are associated to low frequency
components.

• On the other hand, Fourier coefficients in the middle are associated to high frequency com-
ponents.

Remark. • High pass filtering = Remove Fourier coefficients at the four corners

• Low pass filtering = Remove Fourier coefficients in the middle.

Centralization of Frequency domain

Let F (x, y) be a N ×N image with 0 ≤ x ≤ N − 1, 0 ≤ y ≤ N − 1
Let F̂ (u, v) be the DFT of F with 0 ≤ u ≤ N − 1, 0 ≤ v ≤ N − 1

Note that:

• High-frequency components are located near

(
N

2
,
N

2

)
.

• Low-frequency components are located near 4 corners.

So, if we let F̃ (u, v) = F̂

(
u− N

2
, v − N

2

)
where 0 ≤ u ≤ N − 1, 0 ≤ v ≤ N − 1, then

• High-frequency components are located at the four corners of F̃ (u, v).

• Low-frequency components are located at the middle part of F̃ (u, v).

3

Consider the discrete Fourier transform of (−1)x+yF (x, y):

DFT (F (x, y)(−1)x+y)(u, v)

=
1

N2

N−1∑
x=0

N−1∑
y=0

f(x, y)ejπ(x+y)exp
(
−j2π

(ux
N

+
vy

N

))

=
1

N2

N−1∑
x=0

N−1∑
y=0

f(x, y)exp

(
−j2π

(
(u−N/2)x

M
+

(v −N/2)y

N

))
=F̂

(
u− N

2
, v − N

2

)
Therefore, to compute F̃ (u, v), we can compute DFT of (−1)x+yf(x, y).

The idea of centralization is illustrated below:

After centralization, the blue window is considered.

Definition 1.1. A low-pass filter (LPF) leaves low frequencies unchanged, while attenuating
the high frequencies.

A high-pass filter (HPF) leaves high frequencies unchanged, while attenuating the low frequen-
cies.

Basic steps of filtering in the frequency domain

1. Multiply f(x, y) by (−1)x+y, i.e. f̃(x, y) = (−1)x+yf(x, y).

2. Compute F̃ (u, v) = DFT (f̃)(u, v) .

3. Multiply F̃ by a real “filter” function H̃(u, v) to get

G(u, v) = H̃(u, v)F̃ (u, v)

(point-wise multiplication, but not matrix multiplication)

4. Compute inverse DFT of G(u, v).

4

5. Take real part of the result in Step 4.

6. Multiply the result in Step 5 by (−1)x+y.

Remark. 1. H is taken to either remove low-frequency or high-frequency components.

2. In the spatial domain,

F−1(G) = g = N2F−1(H) ∗ F−1(F̃) = N2h ∗ f̃

Hence, filtering in frequency domain ⇔ Linear filtering in spatial domain.

Examples of Low-Pass filters for image denoising

Note: From now on, we will assume we work on the centered spectum. That is, we consider

F̂ (u, v) where −N

2
≤ u ≤ N

2
− 1 and −N

2
≤ v ≤ N

2
− 1.

1. Ideal low-pass filter (ILPF):

H(u, v) =

{
1 if D(u, v) := dist(u,MZ)2 + dist(v,NZ)2 ≤ D2

0

0 if D(u, v) > D2
0

,

where for any x ∈ Z and y ∈ N \ {0},

dist(x, yZ) = min{|x− ky| : k ∈ Z} =

{
x− ⌊x

y ⌋y = mody(x) if mody(x) ≤ y
2 ,

⌈x
y ⌉y − x = y −mody(x) if mody(x) ≥ y

2 .
,

where the value of mody(x) is taken from {0, 1, · · · , y − 1} (agrees with the topological
definition of distance between a point and a set).

In the spatial domain, the filter looks like (in one dimensional case):

Good: Simple

Bad: Produce the ringing effect (A pixel can be affected by pixels far away from it)

Ideal low-pass filter is applied to the following image with different D0. Ringing effect is
obviously observed.

5

2. Butterworth low-pass filter (BLPF) of order n (n ≥ 1 integer):

H(u, v) =
1

1 + (D(u, v)/D2
0)

n

Good: Produce less (or no visible) ringing effect if the order n is carefully chosen.

Butterworth low-pass filter is applied to the following image with different D0 and n. No
visible ringing is observed.

6

3. Gaussian low-pass filter:

H(u, v) = exp

(
−D(u, v)

2σ2

)
σ is called the spread of the Gaussian function.

Good: Produce no visible ringing.

Why? Inverse DFT of a Gaussian function is also Gaussian.
Therefore, no visible ringing effect.

Gaussian low-pass filter is applied to the following image with different D0 and n. No visible
ringing is observed.

Experimental results of image denoising by low pass filtering in the frequency domain

Image denoising using ideal low-pass filter in the frequency domain:

Note that ringing is obviously observed.

Image denoising using butterworth low-pass filter in the frequency domain:

7

Image denoising using Gaussian low-pass filter in the frequency domain:

Examples of high-pass filter:

1. Ideal high-pass filter (IHPF):

H(u, v) =

{
0 if D(u, v) ≤ D2

0

1 if D(u, v) > D2
0

Bad: Produce ringing effect

2. Butterworth high-pass filter (BHPF) of order n:

H(u, v) =
1

1 + (D2
0/D(u, v))n

Good: Less ringing.

3. Gaussian high-pass filter:

H(u, v) = 1− exp

(
−D(u, v)

2σ2

)
Good: No ringing.

The ideal high-pass filter is applied on the following image on the left. The result after the high-pass
filter is shown on the right:

8

2 Image deblurring in the frequency domain

2.1 Basic idea of image deblurring

Observation: Image can be degraded due to motion, turbulence, out of focus and so on. Below
are some examples of blurred/degraded images.

Below shows an example of degraded image by the atmospheric turbulence:

Below shows an example of motion blur:

Goal: We would like to model image blur/degradation

In general, an observed image g can be modeled as:

g = H(f) + n

where H is the degradation function/operator and n is the additive noise.

Assumption on H:

9

1. H is position invariant: Let g(x, y) = H(f)(x, y) and let f̃(x, y) := f(x− α, y − β). Then:

H(f̃)(x, y) = g(x− α, y − β)

2. Linear: H(f1+f2) = H(f1)+H(f2) and H(αf) = αH(f) where α is a scalar multiplication.

With the above assumptions, image degradation is in fact a convolution. Consider an impluse
signal:

δ(x, y) =

{
1 if (x, y) = (0, 0)

0 if (x, y) ̸= (0, 0)

Then,

f(x, y) = f ∗ δ(x, y) =
M
2 −1∑

α=−M
2

N
2 −1∑

β=−N
2

f(α, β)δ(x− α, y − β)

∴ g(x, y) = H(f)(x, y)

=
∑
α

∑
β

f(α, β)H(δ)(x− α, y − β) by linearity and position invariant

=
∑
α

∑
β

f(α, β)h(x− α, y − β) where h(x, y) = H(δ)(x, y)

= f ∗ h(x, y)

Hence, the degradation with the above assumption is actually a convolution.

Remark.

1. Recall that h is called the point spread function.

2. In general, an observed image can be modelled as:

g(x, y) = h ∗ g(x, y) + n(x, y)

In the frequency domain, we have:

G(u, v) = cH(u, v)F (u, v) +N(u, v)

for some constant c.

2.2 Examples of degradation functions

1. Atmospheric turbulence blur:

In frequency domain, define:

H(u, v) = exp
(
−k(u2 + v2)5/6

)
where k = degree of turbulence.

Remark. Usually,
k = 0.0025: severe turbulence
k = 0.001: mild turbulence
k = 0.00025: low turbulence

10

2. Out of focus blur:

In the frequency domain, define H(u, v) as the inverse DFT of

h(x, y) =

{
1 if x2 + y2 ≤ D2

0

0 otherwise

In some situations, a simple model will be used to describe out of focus blur by letting:

H(u, v) =

{
1 if u2 + v2 ≤ D2

0

0 otherwise

But this model is usually too simple and inaccurate.

3. Uniform Linear Motion Blur:

Assume the image f(x, y) undergoes planar motion during acquisition. Let (x0(t), y0(t)) be
the motion components in the x- and y-directions. Denote the time by t and the duration of
exposure by T .

Then the observed image can be written as:

g(x, y) =

∫ T

0

f(x− x0(t), y − y0(t)) dt

We want to understand the motion blur in the frequency domain.

Let G(u, v) = DFT (g)(u, v), then:

G(u, v) =
∑
x

∑
y

g(x, y)e−j 2π
N (ux+vy) (assume the image is a N ×N image)

=
∑
x

∑
y

∫ T

0

f(x− x0(t), y − y0(t)) dt e
−j 2π

N (ux+vy)

=

∫ T

0

[∑
x

∑
y

f(x− x0(t), y − y0(t))e
−j 2π

N (ux+vy)

]
dt

Now, using the property that for

f̃(x, y) = f(x− x0, y − y0),

DFT (f̃)(u, v) = DFT (f)(u, v)e−j 2π
N (ux0+vy0),

we have

G(u, v) =

∫ T

0

[
DFT (f)(u, v)e−j 2π

N (ux0(t)+vy0(t))
]
dt

= DFT (f)(u, v)

∫ T

0

e−j 2π
N (ux0(t)+vy0(t)) dt︸ ︷︷ ︸

H(u,v)

,

Therefore, degradation function in the frequency domain is given by:

H(u, v) =

∫ T

0

e−j 2π
N (ux0(t)+vy0(t)) dt

11

2.3 Image deblurring algorithms in the frequency domain

A blurred image g can be modelled as: g = h ∗ f(x, y) + n(x, y)
where h = blur function in the spatial domain;
f(x, y) is the original image (clean) and
n(x, y) is the noise.

In the frequency domain:

G(u, v) = F(g)(u, v) = cF(h)(u, v)F(f)(u, v) + F(n)(u, v)

= cH(u, v)F (u, v) +N(u, v)

for some constant c > 0. By replacing H by cH(u, v), we can ignore the constant c.

Deblurring methods (Suppose H is known)

Method 1: Direct inverse filtering

Let T (u, v) =
1

H(u, v) + εsgn(H(u, v))
. Compute F̂ (u, v) = G(u, v)T (u, v). Find inverse DFT of

F̂ (u, v) to get an image f̂(x, y).

(Here, sgn(z) = 1 if Re(z) ≥ 0 and sgn(z) = −1 otherwise.)

Good: Simple.

Bad: F̂ (u, v) = G(u, v)T (u, v) = F (u, v) +
N(u, v)

H(u, v) + εsgn(H(u, v))

H(u, v) is usually big for (u, v) close to (0, 0) (associated to low frequency components) while small

for (u, v) away from (0, 0). Therefore,
N(u, v)

H(u, v) + εsgn(H(u, v))
is big (large gain in high frequency)

and noise dominants.

Below is an illustration of how direct inverse filtering can boast up noises.

Method 2: Modified inverse filtering

Let B(u, v) =
1

1 + (u
2+v2

D2)n
, and T (u, v) =

B(u, v)

H(u, v) + εsgn(H(u, v))
, then

F̂ (u, v) = T (u, v)G(u, v) ≈ F (u, v)B(u, v) +
N(u, v)B(u, v)

H(u, v) + εsgn(H(u, v))

B(u, v)

H(u, v) + εsgn(H(u, v))
suppresses the high-frequency gain.

12

Bad: Has to choose D very carefully!!

Below is an illustration of how modified inverse filtering performs.

Method 3: Wiener Filter

The Wiener Filter is defined (in the frequency domain) as:

T (u, v) =
H(u, v)

|H(u, v)|2 + Sn(u, v)/Sf (u, v)

where Sn(u, v) = |N(u, v)|2, Sf (u, v) = |F (u, v)|2 (Add parameters to avoid singularities)

If Sn(u, v) and Sf (u, v) are not known, then we let K = Sn(u, v)/Sf (u, v) to get

T (u, v) =
H(u, v)

|H(u, v)|2 +K

Hence, Wiener Filter can be described as the inverse filtering as follows:

F̂ (u, v) =

 (
1

H(u, v)

)
︸ ︷︷ ︸

direct inverse filter

(
|H(u, v)|2

|H(u, v)|2 +K

)
︸ ︷︷ ︸

modifier

G(u, v)

Below is an illustration of how Wiener filtering performs.

13

And below is an illustration of how Wiener filtering performs on noisy and blurry images.

Finally, we show how Wiener filtering performs for deblurring the car license plate.

14

What does Wiener filter do mathematically? (Optional, will not be covered)

We can show that (under certain condition), the Wiener filter minimizes the mean-square error
(MSE).

(Sketch of proof)

We consider the continuous case to avoid the complicated indices. Let g = h ∗ f + n, where h is
the degradation function, n is the noise, f is the original clean image and g is our observed image.

Assume that f and n are spatially uncorrelated:

∫ ∞

−∞

∫ ∞

−∞
f(x, y)n(x+ r, y + s) dx dy = 0

for all r, s.

Then, we will show that the Wiener’s filter minimizes the mean square error:

E2(f̃) = E((f − f̃)2) :=

∫ ∞

−∞

∫ ∞

−∞
[f(x, y)− f̃(x, y)]2 dx dy

where: f(x, y) is the original image and f̃(x, y) = ω(x, y) ∗ g(x, y) (where g(x, y) is the observed
image) is the Wiener filtered image.

Note that by Parserval’s theorem:

E2 =

∫ ∞

−∞

∫ ∞

−∞
(f(x, y)− f̃(x, y))2 dx dy

= C

∫ ∞

−∞

∫ ∞

−∞
|F (u, v)− F̃ (u, v)|2 du dv (Parseval’s theorem)

for some constant C, where F (u, v) =
∫∞
−∞

∫∞
−∞ f(x, y)e−j(xu+yv)dxdy and F̃ (u, v) =

∫∞
−∞

∫∞
−∞ f̃(x, y)e−j(xu+yv)dxdy.

Let G(u, v) =
∫∞
−∞

∫∞
−∞ g(x, y)e−j(xu+yv)dxdy and N(u, v) =

∫∞
−∞

∫∞
−∞ n(x, y)e−j(xu+yv)dxdy.

Then, we know: F̃ = WG = W (HF +N). In other words, F − F̃ = (1−WH)F −WN and

E2 = C

∫ ∞

−∞

∫ ∞

−∞
|(1−WH)F −WN |2 du dv

Since f and n are spatially uncorrelated, we can show that:

E2 =

∫ ∞

−∞

∫ ∞

−∞
|(1−WH)F |2 + |WN |2 du dv.

We can regard E2 to be depending on W .

To minimize E2(W), we consider:

d

dt
|t=0E2(W + tV) = 0 for all V.

Hence,
∫∞
−∞

∫∞
−∞ −(1− W̄ H̄)H|F |2V − (1−WH)H̄|F |2V̄ + W̄ |N |2V +W |N |2V̄ = 0 for all V .

Put V = −(1−WH)H̄|F |2 +W |N |2, we get:∫ ∞

−∞

∫ ∞

−∞

∣∣−(1−WH)H̄|F |2V̄ +W |N |2
∣∣2 = 0.

Thus,

2(−(1− W̄ H̄)H|F |2 + W̄ |N |2) = 0

15

⇔ W =
H̄

|H|2 + |N |2/|F |2
.

Method 4: Constrained least square filtering

Drawback of Wiener filter:

1. |N(u, v)|2 and |F (u, v)|2 must be known.

2. Constant estimation of the ratio is not always suitable.

We consider a least square minimization model. The degradation process g = h ∗ f + n can be
written in matrix form:

g⃗ = Df⃗ + n⃗

where g⃗ = S(g), f⃗ = S(f), n⃗ = S(n), where S is the stacking operator.

Therefore, g⃗, f⃗ , n⃗ ∈ RMN , D ∈ MMN×MN .

Given g⃗, we want to find an estimate of f (or f⃗) such that it minimizes:

E(f) =

M−1∑
x=0

N−1∑
y=0

|∇2f(x, y)|2

subject to the constraint that: ||⃗g −Df⃗ ||2 = ϵ

In the discrete case, we can estimate ∇2f(x, y) by

∇2f(x, y) ≈ f(x+ 1, y) + f(x, y + 1) + f(x− 1, y) + f(x, y − 1)− 4f(x, y).

More generally, in the discrete case,
∇2f = p ∗ f,

where p =


0 · · · 0

1
... 1 −4 1

...
1

0 · · · 0

 .

Remark.

1. The constraint means we want ||n⃗||2 = ||⃗g − Df⃗ ||2 has a fixed level of noise. (Control the
noise level + allow noise)

2. The energy E(f) enhances the smoothness of f .

Suppose E(f) can be written as: (Lf⃗)T (Lf⃗) (L is the transformation matrix representing the
convolution with p). Then, the constrained least square problem has the optimal solution in the
spatial domain satisfies:

[DTD + γLTL]f⃗ = DT g⃗

for some suitable parameter γ (which is related to the Lagrange multiplier).

In the frequency domain,

F̂ (u, v) := DFT (f)(u, v) =
1

N2

H(u, v)

|H(u, v)|2 + γ|P (u, v)|2
G(u, v)

16

where H(u, v) = DFT (h)(u, v), G(u, v) = DFT (f)(u, v); P (u, v) = DFT (p)(u, v) with

p(x, y) =



0 · · · 0
...

...
...

0 · · · 1 · · · 0
0 · · · 1 −4 1 · · · 0
0 · · · 1 · · · 0
...

...
...

0 · · · 0


Sketch of proof:

From calculus, we know the minimizer must satisfy:

D =
∂

∂f⃗
[f⃗TLTLf⃗ + λ(g⃗ −Df⃗)T (g⃗ −Df⃗)] = 0

where λ is the Lagrange multiplier. Here,

∂K

∂f⃗
=

(
∂K

∂f1

∂K

∂f2
· · · ∂K

∂fN2

)T

Easy to check:

∂f⃗T a⃗

∂f⃗
= a⃗;

∂b⃗T f⃗

∂f⃗
= b⃗

Also, if A is an N2 ×N2 square matrix, then:

∂f⃗TAf⃗

∂f⃗
= (A+AT)f⃗

∴ D = 0 ⇒ (2LTL)f⃗ + λ(−DT g⃗ −DT g⃗ + 2DTDf⃗) = 0

⇒ (DTD + γLTL)f⃗ = DT g⃗

where γ =
1

λ
and λ is the Lagrange multiplier.

Parameter γ can be determined by direct substitution into the equation:

[⃗g −Df⃗]T [⃗g −Df⃗] = ϵ

In the frequency domain, note that both D and L are block-circulant. Recall that a matrix A is
block-circulant if:

A =


A0 AN−1 AN−2 · · · A1

A1 A0 AN−1 · · · A2

A2 A1 A0 · · · A3

...
...

...
...

AN−1 AN−2 AN−3 · · · A0


where A0, A1, · · · , AN−1 are submatrices and they are themselves circulant matrices.

A matrix B is circulant if:

B =


b0 bM−1 bM−2 · · · b1
b1 b0 bM−1 · · · b2
b2 b1 b0 · · · b3
...

...
...

...
bM−1 bM−2 bM−3 · · · b0


17

Remark. Fact about circulant matrix:

Let B =


b(0) b(M − 1) · · · b(1)
b(1) b(0) · · · b(2)
...

... · · ·
...

b(M − 1) b(M − 2) · · · b(0)

 be a circulant matrix. Then the eigenvalues of B

is given by:

λ(k) = b(0) + b(1)e
2πj
M (M−1)k + b(2)e

2πj
M (M−2)k + · · ·+ b(M − 1)e

2πj
M k

where k = 0, 1, 2, · · ·M − 1.

Its associated eigenvector is given by:

w⃗(k) =


1

e
2πj
M k

e
2πj
M 2k

...

e
2πj
M (M−1)k

 .

Recall that both D and L are block-circulant. In fact, D,L,DT , LT can be written as:

D = WΛDW−1, DT = WΛ∗
DW−1, L = WΛLW

−1, LT = WΛ∗
LW

−1

where W is invertible and ΛD,ΛL are diagonal matrices. In fact,

ΛD(k, i) =

N2D̂

(
modN (k),

⌊
k

N

⌋)
if i = k

0 if i ̸= k

where H = DFT (h). Similarly,

ΛL(k, i) =

N2L̂

(
modN (k),

⌊
k

N

⌋)
if i = k

0 if i ̸= k

where L̂ = DFT (p).

By substitution, (DTD + γLTL)f⃗ = HT g⃗

⇒ ��W (Λ∗
DΛD + γΛ∗

LΛL)W
−1f⃗ = ��W Λ∗

DW−1g⃗

We can show that

Λ∗
DΛD =



N4|H(0, 0)|2
N4|H(1, 0)|2

. . .

N4|H(N − 1, 0)|2
. . .

N4|H(N − 1, N − 1)|2


and

Λ∗
LΛL =



N4|P (0, 0)|2
N4|P (1, 0)|2

. . .

N4|P (N − 1, 0)|2
. . .

N4|P (N − 1, N − 1)|2



18

Also, W−1f⃗ = NS(F),W−1g⃗ = NS(G) where F = DFT (f), G = DFT (g).

Combining all, we see that for all (u, v):

N4[|Ĥ(u, v)|2 + γ|L̂(u, v)|2]NF (u, v) = N2Ĥ(u, v)NG(u, v)

⇒ N2 |Ĥ(u, v)|2 + γ|L̂(u, v)|2

Ĥ(u, v)
F (u, v) = G(u, v)

Example 2.1. Consider a 3 × 3 image f . Let f⃗ = S(f). Recall that the Laplacian of f can be
calculated by:

∆ = p ∗ f where p =


0 · · · 0

1
... 1 −4 1

...
1

0 · · · 0


Suppose S(∆f) = Lf⃗ for some matrix L ∈ M9×9. Find L and show that L is block-circulant.

Solution. We can extend the image periodically as:

f33 f31 f32 f33 f31
f13 f11 f12 f13 f11
f23 f21 f22 f23 f21
f33 f31 f32 f33 f31
f13 f11 f12 f13 f11

Then, L can be written as:

L =



−4 1 1 1 0 0 1 0 0
1 −4 1 0 1 0 0 1 0
1 1 −4 0 0 1 0 0 1
1 0 0 −4 1 1 1 0 0
0 1 0 1 −4 1 0 1 0
0 0 1 1 1 −4 0 0 1
1 0 0 1 0 0 −4 1 1
0 1 0 0 1 0 1 −4 1
0 0 1 0 0 1 1 1 −4


︸ ︷︷ ︸

block-circulant



f11
f21
f31
f12
f22
f32
f13
f23
f33



Example 2.2. Consider a 2 × 2 image f . Let g = h ∗ f where h ∈ M2×2. Let H ∈ M4×4 such

that Hf⃗ = g⃗ where f⃗ = S(f), g⃗ = S(g). What is H?

Solution. gmn =
∑1

i=0

∑1
j=0 h(m− i, n− j)fij

∴


g00
g10
g01
g11

 =


h0,0 h−1,0 h0,−1 h−1,−1

h1,0 h0,0 h1,−1 h0,−1

h0,1 h−1,1 h0,0 h−1,0

h1,1 h0,1 h1,0 h0,0


︸ ︷︷ ︸

H


f00
f10
f01
f11



Let

Hu =

(
h(0, u) h(−1, u)
h(1, u) h(0, u)

)
=

(
h(0, u) h(1, u)
h(1, u) h(0, u)

)
by periodic condition

then, it is easy to check

H =

(
H0 H−1

H1 H0

)
=

(
H0 H1

H1 H0

)
by periodic condition

19

Remark. In general, suppose f is an N ×N image, g = h ∗ f and Hf⃗ = g⃗. Then,

H =


H0 H−1 H−2 · · · H−N+1

H1 H0 H−1 · · · H−N+2

H2 H1 H0 · · · H−N+3

...
...

...
...

HN−1 HN−2 HN−3 · · · H0


where

Hu =


h(0, u) h(N − 1, u) h(N − 2, u) · · · h(1, u)
h(1, u) h(0, u) h(N − 1, u) · · · h(2, u)
h(2, u) h(1, u) h(0, u) · · · h(3, u)

...
...

...
...

h(N − 1, u) h(N − 2, u) h(N − 3, u) · · · h(0, u)


Easy to see that H is block circulant and Hu is circulant.

Diagonalization of H

Let H be the block-circulant matrix as defined above. Define a matrix with elements:

WN (k, n) :=
1√
N

exp

(
2πj

N
kn

)
0 ≤ n ≤ N − 1

Consider the Kronecker product ⊗ of WN with itself:

W := WN ⊗WN

The Kronecker product of two matrices are given by:

A⊗B =


a11B a12B · · · a1NB
a21B a22B · · · a2NB
...

...
...

aN1B aN2B · · · aNNB


Easy to check: W−1 = W−1

N ⊗W−1
N where:

W−1
N (k, n) :=

1√
N

exp

(
−2πj

N
kn

)
0 ≤ n ≤ N − 1

Let

Λ(k, i) =

N2Ĥ

(
modN (k),

⌊
k

N

⌋)
if i = k

0 if i ̸= k

where Ĥ = DFT of the point spread function h,

⌊
k

N

⌋
= largest integer smaller than or equal to

k

N
and modN (k) = k(mod N) (e.g. 10(mod 3) = 1)

Then, we can show that H = WΛW−1 and H−1 = WΛ−1W−1.

Also, HT = WΛ∗W−1. (Λ∗ is the complex conjugate of Λ)

By direct calculation, it is easy to check that W−1g⃗ = NS(G) where G = DFT (g).

Example 2.3. Assume that:

G =

 g00 g01 g02
g10 g11 g12
g20 g21 g22

 and W−1
3 =

1√
3


1 1 1

1 exp

(
−2πj

3

)
exp

(
−2πj

3
2

)
1 exp

(
−2πj

3
2

)
exp

(
−2πj

3

)


20

Then:
W−1 = W−1

3 ⊗W−1
3

=
1

3



1 1 1 1 1 1 1 1 1

1 e−
2πj
3 e−

2πj
3 2 1 e−

2πj
3 e−

2πj
3 2 1 e−

2πj
3 e−

2πj
3 2

1 e−
2πj
3 2 e−

2πj
3 1 e−

2πj
3 2 e−

2πj
3 1 e−

2πj
3 2 e−

2πj
3

1 1 1 e−
2πj
3 e−

2πj
3 e−

2πj
3 e−

2πj
3 2 e−

2πj
3 2 e−

2πj
3 2

1 e−
2πj
3 e−

2πj
3 2 e−

2πj
3 e−

2πj
3 2 e−

2πj
3 3 e−

2πj
3 2 e−

2πj
3 3 e−

2πj
3 4

1 e−
2πj
3 2 e−

2πj
3 e−

2πj
3 e−

2πj
3 3 e−

2πj
3 2 e−

2πj
3 2 e−

2πj
3 4 e−

2πj
3 3

1 1 1 e−
2πj
3 2 e−

2πj
3 2 e−

2πj
3 2 e−

2πj
3 e−

2πj
3 e−

2πj
3

1 e−
2πj
3 e−

2πj
3 2 e−

2πj
3 2 e−

2πj
3 3 e−

2πj
3 4 e−

2πj
3 e−

2πj
3 2 e−

2πj
3 3

1 e−
2πj
3 2 e−

2πj
3 e−

2πj
3 2 e−

2πj
3 4 e−

2πj
3 3 e−

2πj
3 e−

2πj
3 3 e−

2πj
3 2


Note that e−

2πj
3 3 = e−2πj = 1, and e−

2πj
3 4 = e−

2πj
3 3e−

2πj
3 = e−

2πj
3 , then

W−1g =
1

3



1 1 1 1 1 1 1 1 1

1 e−
2πj
3 e−

2πj
3 2 1 e−

2πj
3 e−

2πj
3 2 1 e−

2πj
3 e−

2πj
3 2

1 e−
2πj
3 2 e−

2πj
3 1 e−

2πj
3 2 e−

2πj
3 1 e−

2πj
3 2 e−

2πj
3

1 1 1 e−
2πj
3 e−

2πj
3 e−

2πj
3 e−

2πj
3 2 e−

2πj
3 2 e−

2πj
3 2

1 e−
2πj
3 e−

2πj
3 2 e−

2πj
3 e−

2πj
3 2 1 e−

2πj
3 2 1 e−

2πj
3

1 e−
2πj
3 2 e−

2πj
3 e−

2πj
3 1 e−

2πj
3 2 e−

2πj
3 2 e−

2πj
3 1

1 1 1 e−
2πj
3 2 e−

2πj
3 2 e−

2πj
3 2 e−

2πj
3 e−

2πj
3 e−

2πj
3

1 e−
2πj
3 e−

2πj
3 2 e−

2πj
3 2 1 e−

2πj
3 e−

2πj
3 e−

2πj
3 2 1

1 e−
2πj
3 2 e−

2πj
3 e−

2πj
3 2 e−

2πj
3 1 e−

2πj
3 1 e−

2πj
3 2





g00
g10
g20
g01
g11
g21
g02
g12
g22



=
1

3



g00 + g10 + g20 + g01 + g11 + g21 + g02 + g12 + g22
g00 + g10e

− 2πj
3 + g20e

− 2πj
3 2 + g01 + g11e

− 2πj
3 + g21e

− 2πj
3 2 + g02 + g12e

− 2πj
3 + g22e

− 2πj
3 2

...

...

...


Careful examination of the elements of this vector shows that they are the Fourier components of
G, multiplied with 3, compared at various combinations of frequencies (u, v), for u, v = 0, 1, 2, and
arranged as follows:

3×



Ĝ(0, 0)

Ĝ(1, 0)

Ĝ(2, 0)

Ĝ(0, 1)

Ĝ(1, 1)

Ĝ(2, 1)

Ĝ(0, 2)

Ĝ(1, 2)

Ĝ(2, 2)


Note that Ĝ(m,n) =

1

9

∑
gkle

− 2πj
3 (mk+nl) ⇒ Ĝ(1, 0) =

1

9

∑
gkle

− 2πj
3 (k). This shows that W−1g

yields N times the Fourier transform of G, as a column vector.

Below is an illustration of how Constrained least square filtering performs on noisy and blurry
images (compared with the Wiener’s filtering).

21

3 Image sharpening in the frequency domain

The goal of image sharpening is to enhance an image so that it shows more obvious edges.

Method 1: Laplacian mask

Recall: ∆f(x, y) =
∂2f

∂x2
+

∂2f

∂y2
.

By Taylor’s expansion:

∂2f

∂x2
≈ f(x+ h, y)− 2f(x, y) + f(x− h, y)

h2

∂2f

∂y2
≈ f(x, y + h)− 2f(x, y) + f(x, y − h)

h2

∴ ∆f(x, y) ≈ f(x, y + h) + f(x, y − h) + f(x+ h, y) + f(x− h, y)− 4f(x, y)

h2

In the case of images, we let h = 1. Hence, ∆f(x, y) = l ∗ f(x, y) for some matrix l.

In the frequency domain,

DFT (g) = DFT (f)−DFT (∆f)

= DFT (F)(u, v) +DFT (l)DFT (F)(u, v)

= (1−Hlaplace(u, v))F (u, v)

where Hlaplace(u, v) = DFT (l)(u, v)

Below is an illustration of how Laplacian masking performs on two different images:

22

Method 2: Unsharp masking

Idea: Image sharpening = Add back high frequency component.

Definition 3.1. Let f be an input image (may be blurry). Compute smoother image (by Gaussian
filter or mean filter) fsmooth. Define the sharper image g as:

g(x, y) = f(x, y) + k(f(x, y)− fsmooth(x, y))

When k = 1, the method is called unsharp masking.
When k > 1, the method is called highboost filtering.

In the frequency domain, let

DFT (fsmooth)(u, v) = HLP (u, v)DFT (f)(u, v),

where HLP is the low pass filter.

Then: DFT (g)(u, v) = [1 + k(1−HLP (u, v))]DFT (f)(u, v).

Below is an illustration of how unsharp masking performs:

23

24

	Image denoising in the frequency domain
	Image denoising by low-pass filtering

	Image deblurring in the frequency domain
	Basic idea of image deblurring
	Examples of degradation functions
	Image deblurring algorithms in the frequency domain

	Image sharpening in the frequency domain

