Math 3360: Mathematical Imaging
Chapter 2: Image Decomposition

One useful technique in image processing is to decompose an image into linear combination of
elementary images. FEach elementary image has some specific properties. By carefully choosing
appropriate elementary images to decompose an image, a lot of imaging tasks can be done. For
example, if elementary images have different frequencies, we can easily smooth out or denoise an
image by removing the high-frequency components. Also, by truncating the less important compo-
nents in the image decomposition, we can compress an image to reduce the image size.

In this chapter, we will discuss some common image decomposition methods using some popular
linear image transformations. The applications of these decomposition methods for image compres-
ston will be demonstrated.

1 Basic idea of image decomposition

In image processing, it is often desirable to decompose an image f € Z into a linear combination
of elementary images. It turns out a separable linear image transformation can naturally give rise
to an image decomposition.

Suppose an image transformation O is defined as O(f) = AfB. Let g be the transformed image.
Then, g = AfB and f = A~'gB~'.
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We can easily check that:
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which is a linear combination of images u;7;

Definition 1.1. Each ﬁiﬁf is called an elementary image for all 7,j. Also ﬁiﬁjT is called the
outer product of u; and vj;.

Intuitively, image decomposition aims to decompose an image into a linear combination of a basis,
which are called the elementary images. Each elementary image captures some important infor-
mation. Of course, the decomposition depends on the elementary images, which depend on the
choices of A and B. The following crucial question must be addressed.

Question: How do we choose A and B?
Answer: We choose h, and h, such that:

1. Transformed image requires less storage (g;; contains many zeros);
2. By truncating some terms g;; @0+

; (such as high-frequency terms), we can obtain better (such
as smooth) image;



3. A7! and B! can be easily computed. For example, A and B are unitary. Recall that a
matrix U is unitary if UUH = I where U = conjugate transpose. That is,

UH (O)T, if U complex
| uT, if U real '

Hence, the inverse of an unitary matrix can be easily obtained.

2 Singular Value Decomposition (SVD)

We will first describe a popular method in linear algebra, called the singular value decomposition,
for image decomposition. It can be effectively applied for image compression.

Definition 2.1. For any g € M,, «n, the singular value decomposition (SVD) of g is a matrix
factorization given by
g=UxvVT

with U € M, xm and V € M, «,, both orthogonal, and ¥ € R™*™ is a diagonal matrix (3;; = 0 if
i # j) with diagonal elements o1 > 09 > -+ > 0, > 0 with 7 < min(m,n). The diagonal elements

are called the singular values of g.
[Recall that A is orthogonal if ATA = AAT = 1]

Theorem 2.2. The rank of g is given by the number of nonzero singular values.

Proof. Since both U and V are full rank, rank(g) = rank(X) which is the number of nonzero
singular values. O

Theorem 2.3. We have the following relationships between the SVD of g and its fundamental
subspaces.

range(g) = span(uy,ug, -+ ,u;),
null(g) = span(Ve41,Vega, -, VN).
Proof. Exercise.

Theorem 2.4. Every m X n image g has a singular value decomposition.

Proof. We will consider the case when m < n. The proof for m > n is similar. To prove the
theorem, let us first recall the following theorem in linear algebra.

Theorem. Let B € M, «, be a real symmetric matriz. Then, there exist n orthonormal eigenvec-

tors Uy, Vs, -+ ,Un with corresponding eigenvalues A1, A, -+ , Ay, such that
~T
)\1 — U7 —
| | Ao -
B=|v, - 49,
| | H
An — U, —

Now, note that gg7 € M,,xm and g'g € M, , are symmetric. Thus, there exist n pairwise
orthonormal eigenvectors ¥y, ¥a, - - - , Uy of g7 g.

Let #1,¥s,-- , U, be eigenvectors of g”g with non-zero eigenvalues A, A2, -, A.. Observe that
997 gv; = g\;i¥U; = A\igv;. Therefore, gv; is an eigenvector of gg” with eigenvalue ;.

Let 0; = /A; (why A1 > 07), then | g¥;|| = o; because

lgTill* = (97:)" (9%:) = T g7 9T = N i = A



7
Now, define u; = &, then ||@;|| = 1. Also, u; are orthonormal (for ¢ = 1,2,...,7) because
i

- \T - ST T - T N
oTo — 9u)” (9v)) _ vig gty _ Avig )1 ifi=
i Uy = = = = o .-
! o 0j 0i0; 00 0 ifi#j
L NUTTS o; ifi=j
Besides, il gv; = 2L = S
o 0 ifis#y
In matrix form,
—7
ST — o1
—7
g (-
. g 1 Ur | =
7
— U — oy
We extend {u,- -, 4} to an orthonormal basis {@y, - , @, ,Um}-
Similarly, {¢4,- - ,,} can be extended to {T1, -+ , ¥y, -+, Uy}
Then, we get
r — 9 g1
S -
—T g9
-
o ﬁT 9 |n Up 0 Un| = Or
T | O
— g v
L m . 0
UT
AL/2

[Here, we use the fact that gv; = 0 for j > r because ||g7;||* = \; = 0 for j > r.]

Then, UTU =UUT =1, VTV =VVT =T and g = UAY?VT, where

A
A2

What are inside U and V (g = UAY2VT)?

Note that gg7 = UAN2 VTV AV2UT = UAUT.
I
. U consists of eigenvectors of gg”.

Similarly, ¢7¢g = VAVT.
..V consists of eigenvectors of g7 g.

Remark.

1. Note that gg7@ = \ii (where \ = eigenvalue, and @ = eigenvector), then:

i'gg"a _ (g"@)"(g7d) _

)

N\ = —
T, e



2. g=UAN2VT = 3 AV 25,07
i=1
;0] are called the eigenimages of g under SVD.

For an N x N image, the required storage after SVD is: (2N +1) xr. Hence, il saves storage
when r is small.

Definition 2.5. For any k£ with 0 < k < r, we define

k
gk = D_ 050}
j=1
where g is called a rank-k approximation of g.

This low rank matrix approximation can be applied to image compression. For any M x N image
g € RMXN one is required to allocate MN intensity levels in total. The rank-v approximation
Ay, however, needs only store v singular values and singular vectors #; and ¥;, which leads to
v(1+ M + N) numbers. In the case when M = N for simplicity, there is a reduction of storage if

N2

< .
VSONFI

We can remove the i-th term of which A; is small to further reduce the storage.

Error of the approximation by SVD

Definition 2.6. The Frobenius norm (F-norm) given by

1Al F =

where a;; is the i-th row, j-th column entry of A.
Let a; be the j-th column of A. We have

IAlF =

> llasll3 = V(A= 4) = Vir(447),

where tr(-) is the trace of the matrix in the argument.

Theorem 2.7. The F-norm of a matriz is invariant under multiplication by unitary matrices, i.e.
for any A € R™*™ unitary U € R™*™, we have |UA|r = ||AllF.

Proof. The proof is very simple, which can be explained in one line:

[UAlF = \/tr(UATUA)) = /x(ATUTUA) = | /1x(AT A) = | A]| .
O

Theorem 2.8. Let f = > ojﬂ'jﬁjr be the SVD of an M x N image f. For any k with k < r and
j=1
k

fr =2 0], we have
j=1

If = fellz = > o7

i=k+1
N /25 mT
Proof. Let f= > N,/ 4;7; .
i=1

k
Approximate f by fr with k < r where fi, = > )\;/211’1-17?.
i=1



-

Define the error of the approximation by D= f — fr = > )\3/2 U; v € Mpyxn-
i=k+1

The m-th row, n-th column entry of D is

r
1/2
§ /\1 UimVin

i=k+1
Uil Vi1
where u; = , Uy = Then,
Ui M ViN
T 2 s T T
2 1/2 2 2 1/2,1/2
n = E A Ui Vin | = E Ail,, Vi, + 2 g E Y )\j Ui VinUjm Vjn -
i=k+1 i=k-+1 i=k—+1 j=k+1

i

Thus,

IDIE = > D

:ZZ Z )\ulm m—{—? Z Z )\1/2 1./2u1mvmujmv]n

n i=k+1 i=k+1j=k+1
J#i

+2 Z )\1/2 1/2/;/%”(/v /Z/’UM
j= k+1

I
?S"
+
=

I
M-

T
M-

Therefore, Sum of square error of the approximation = Sum of omitted eigenvalues. [
Remark.

o To approximate an image using SVD, arrange the eigenvalues \; in decreasing order, and

.
remove the last few terms in . o,u; U7} .
i=1

e This is the optimal approrimation using k terms in the Frobenius norm.

Example 2.9. Let

1 2
A=12 2
2 1
We have
T, (9 8
s (DY)

Now, eig(A*A) are 17 and 1, and so o1 = /17, 02 = 1 and

S (1Y),

5055

Moreover,
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Since

we have
11 (V2 1 (3
v 2 2) () -
Similarly, we have
@_L(é (-5 (o
ZAVIEVASE 2\1
The matrix U is, therefore, given by
& A
iova |

for some vector ug orthonormal to both u; and uy. One possibility is

2
wg = —— [ -3
v\
Finally, the SVD of A is given by
3 -1 2
12 1oz vim\ (V1T 0\ /1 1
2 9| = _4 0 =3 0 1 V2 V2
V34 V17 1 =1
2 1 3 1 2 0 0 V2 V2
V3 V2 VT

Application of SVD for image compression

SVD can be applied for image compression, by removing terms associated to small singular values.
We will show some examples of image compression using SVD. Please refer to Lecture 2 Powerpoint
for more illustration.

true (rank: 298)

k=10

k=20

k=50

In the above figure, the left shows the rank-k approximation of a baboon image with k£ = 10,20
and 50 respectively. The original rank of the image is 441. Note that the rank-10 approximation



of the image can give a very good approximation of the original image. The right shows the image
compression of a fingerprint image, using a rank-40 approximation. SVD is one of the popular
methods for image compression.

Next, we test the image compression using SVD on the ‘Einstein’ image:

The original rank of the ‘Einstein’ image is 202. Using SVD, we compute some rank-k approxima-
tions of the image, which are given below:

k=52

The above figure shows the rank-k approximations of the ‘Einstein’ image with k = 2,12,22 and
52 respectively.

3 Haar and Walsh transforms

Note: Walsh transform will not be covered in this course. It is in the lecture note for the sake of
completeness.

Definition 3.1 (Haar functions). The Haar functions are defined as follows:

Holt) = 1 ifo<t<l1

0= 0 elsewhere
ifo<t<1/2
ifl1/2<t<1,

1
-1
0 elsewhere

V2P if B <t < nt05
V2¥if 1405 < ¢ < il

0 elsewhere

Hi(t) = {

Hypyn(t) =

where p=1,2,---;n=0,1,2,--- ;2P — 1.
(Hapr 1, (t) is compactly supported by a smaller region if p is bigger)



2 2
151 15
1 1 [—
0.5 0.5
0 0
0.5 0.5
1 1 —
151 1.5
2 ' ! ' ! 2 ! ! ! !
-1 0.5 0 0.5 1 15 2 -1 0.5 0 0.5 1 15 2
Hy H;

Definition 3.2 (Walsh functions). The Walsh functions are defined recursively as follows:
Wagsq(t) = (=) B, (20) + (-1)7HW5 (20 — 1)},

where L%J = largest integer smaller or equal to %; g=0o0rl;7=0,1,2,--- and

o = {1 HOSE<
"= 00 elsewhere

Example 3.3. Compute Wi (¢).
Put j =0,9 =1. Then:

Wi(t) = (1)L W (2t) + (=1)°F W (2t — 1)}
= —Wo(2t) + Wo(2t — 1).

Check that for 0 <t < %7 Wo(2t) =1, Wo(2t —1) =0 = Wy(t) = —1.
For L <t <1, Wo(2t) =0, Wo(2t —1) =1 = Wi(t) = 1.

05

051

Definition 3.4 (Discrete Haar Transform).

The Haar Transform of an N x N image is performed as follows. Divide [0,1] into N partitions.
That is,

o2 i
N N N N



Let H(k,i) = H (;j) where k,i=0,1,2,--- , N — 1.
We obtain the Haar Transform matrix:
1

VN
The Haar Transform of f € M, «, is defined as:
g=HfH".

H

H where H = (H(k,i))o<ki<N-1-

Definition 3.5 (Discrete Walsh Transform). The Walsh Transform of an N x N image is defined
similarly as Haar Transform.

Define W (k, i) = Wy, (]i/_) where k,7=10,1,2,--- ,N — 1.

Then, the Walsh Transform matrix is:

W= ﬁH where H = (W (k,7))o<k.i<n—1-
The Walsh Transform of f € M, «, is defined as:
g=WfwT.
Example 3.6. Compute the Haar Transform matrix for a 4 x 4 image.

Solution. Divide [0,1] into 4 portions:

1 1=0 1 i=1 1 =2 1 1=3 1
T T T T T
0 0.25 0.5 0.75 1
Check that:
2 . 2
15 15
1 1 e
0.5 0.5
0 0
0.5 0.5
1 1 —
15 15
2 . . . . 2 . . . .
B 0.5 0 0.5 1 15 2 B 0.5 0 0.5 1 15 2
Ho Hl
25F 4 25F
2 2
157 p— ] 15F —_—
1 1
05 4 05
0 0
05F q 05
1 1
1.5+ — 1 1.5 -
2 2
25+ 1 25
1 0.5 0 0.5 1 1.5 2 -1 0.5 0 0.5 1 15 2
Hos Hs



We get that
1 1

1 1
1 1 -1 -1 ~
H = \/i _\/5 0 0 and H =
0 V2 -2
Easy to check that HTH = I.

=l

Example 3.7. Compute the Haar Transform of

01 1 0
1 0 0 1
f= 1 0 0 1
01 1 0
Solution.
2 0 0 0
oo |00 0 o0
g=HIH" =14 o 1 1
o0 1 -1
Example 3.8. Suppose g in Example is changed to:
2 0 0 O
oo 0 o
9= 1o 0o -1 1
00 1 O
Reconstruct the original image.
Solution.
0O 1 1 0
s 10 0 1
f=H fH= 1 0 05 05
01 O 0
Remark.

e Haar Transform usually produces coefficient matriz with more zeroes (compression);

e Errors in the coefficient matriz cause localized errors in the reconstructed image (Assign
detail of accuracy in compression).

Example 3.9. Compute the Walsh Transform matrix for a 4 x 4 image.

Solution. Again, divide [0,1] into 4 portions:

Check that:

10



2 2
151 15
1 —_— 1 —
051 0.5
0 0
0.5 05
1 L1
1.5 15
2, 05 0 05 1 15 2 2 25 0 05 1 15 2
Wo Wh
2 T 2
15 15
1 — 1 p— —
0.5 0.5
0 ]
05 05
1 p— —_— R —_— —
1.5 1.5
-2-1 -DIS 0 0‘5 '; 1'5 2 -2-1 -D‘ 5 0 0‘5 1 1'5 2
W2 W3
So,
1 1 1 1
wo |78 D e w = tw
-1 1 1 -1 4
1 -1 1 -1

Example 3.10. Compute the Walsh Transform of

01 10
1 00 1
F= 1 0 0 1
01 10
20 0 O
S 00 0 O
: _ T _
Solution. g = W fW* = 00 -2 0
00 0 O
(Many zeroes = compression)

Remark.

e The idea of Haar / Walsh Transform is to transform an image to a “transformed image”
with many more zeroes.

e The coefficient in the “transformed” image tells us information of frequency of image intensity
changes.

Another way to define Walsh function

Definition 3.11 (Rademacher functions).

11



A Rademacher function of order n (n # 0) is defined as:
R, (t) = sign[sin(2"7t)] for 0 <t <1

(where sign(z) =1 if x > 0, sign(r) = —1 if x < 0 and sign(z) = 0if x =0). For n =0, Ro(t) =1
for0 <t <1. ~
Let N = b, 412™ + b,,2™ 1 + -+ 4+ 5;2°. Then, the R-Walsh function Wy is given by:

m4+1
Wy =[] Ri(t)
i=1
b; #0
(where the values at the jumps are defined such that the function is continuous from the right).

Example 3.12. Compute R-Walsh functions W5 and W, using Rademacher functions.

Consider sin(8t): Therefore, R3(t) =

1.5 1.5
1 1 — T — —

05 1 0.5
0 0

051 ] 05
1 1 UL

15 : - 1.5 . . ,
05 o 05 1 15 -0.5 0 0.5 1 1.5

Asd4=_1 224+ 0 2'+ 0 -2° we have
b b b
3 2 1

3
Wy =[] Ri(t) = Rs(t)
b0

(Wajaq(t) = (1)U W (28) + (—1)7H9W; (2t — 1)}).
For W3(t): As3=_1 -2l 4+ 1 .29 we have
—~ —~~

2
Ws(t) = [ Ri(t) = Ri(t)Ra(t).

i=1
b; #0
R1 (t):

15 15
s 1
05f 05F
0 0
05 05"
AT 1
15 15

0.5 0 05 1 15 0.5 0 0.5 1 1.5

12



R2 (t) .

15 15
nt 1

05 05

0 0

05 051

At 1

15 : 15
0.5 o 05 1 15 0.5 0 0.5

Therefore, Ws(t):

05

051

Relationship between Walsh functions and R-Walsh functions

Wo(t) = Wo(t), Wi(t) = =Wa(t), Wa(t) = —Ws(t), W(t) = Wa(1),
Wiy(t) = We(t), Ws(t) = =Wr(t), We(t) = —Ws(t), Wz(t) = Wa(t).

How to determine R-Walsh W;(t) associated to Walsh W(t)

Idea: Write j as
J=bm12" + by2™ 4 4 520,

The binary representation of j is:
brt1bm -+ - b1

Then, ¢ is given by:
Cm+1Cm " - - C1

where

Cmt1 =bmy1r (mod 2), c¢p = (bgy1 +br) (mod 2).

The sign is determined from W;(0).

Example 3.13. Consider Wr(t).

Check that Wr(t) > 0.

Now, 7 = 22 + 2! + 29 50 the binary representation of 7 is 111.
Therefore, j = 100 (binary) = 4.

ThUS, W7(t) = W4(t).

13



What do the elementary images under the Haar and Walsh Transform look like?

(Please refer to the Lecture 3 and 4 Powerpoint for clearer figures)
Using Haar transform, the 8 x 8 image f can be written as:

f=H"gH =Y g;I}
1<i,j<N

where Ig is the elementary image given by taking the outer product of the i-th row and the j-th

row of H.
The elementary images under the Haar transform (of an 8 x 8 image) look like the following:

0 1 2 3 4 5 6 T

Here, the i-th row j-th column image represents the elementary image Ig .

[White = positive; Black = negative; Grey = 0]

Note that some elementary images are locally supported (i.e. non-zero at some locally small region).
Therefore, they capture both spatial and frequency information.

Similarly, under the Walsh transform, the 8 x 8 image f can be written as:

Lo

=9

o

=2}

=]

f=WTgW = Z gij-[i?/

1<i,j<N

where I};V is the elementary image given by taking the outer product of the i-th row and j-th row
of W.
The elementary images under the Walsh transform (of an 8 x 8 image) look like the following:

14
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Here, the i-th row j-th column image represents the elementary image IZV .
[White = positive; Black = negative; Grey = 0]

Properties of each elementary image under the Haar Transform

Each elementary image captures different levels of details with different levels of resolution in the
horizontal and vertical directions. Please refer to the Lecture 3 and 4 Powerpoint for a clearer
figure.

L-L||L-H1 LiH2 LiH3
S

Q;\/ xfz" H1-H2 H1-H3
QLT
A L H2-H2 H2-H3
=l =
ALz
S | | TH3-H2 H3-H3
SHHE:

15



In the above figure, the thick lines divide them into sets of elementary images of the same reso-
lution. Letter L and H are used to indicate low and high resolution, respectively. The numbers
next to letter H indicates which level of high resolution. The pairs of letters used indicate which
resolution we have along the vertical and horizontal axes. For example, pair L-H2 indicates that
the corresponding panels have low resolution along the vertical axis, but second order high resolu-
tion along the horizontal axis.

Application of the Haar and Walsh transforms for image compression

The Haar and Walsh transforms can be used for image compression, by truncating high-frequency
terms. Below we will illustrate the idea on a simple image:

The approximations of the image using the Haar transform are shown below. More precisely, the
following figure shows reconstructed images when the basis images used are those created from the
first one, two, three, ..., eight Haar functions, from top left to bottom right, respectively.

s EF
| o

The approximations of the image using the Walsh transform are shown below. Similarly, the
following figure shows reconstructed images when the basis images used are those created from the
first one, two, three, ..., eight Walsh functions, from top left to bottom right, respectively.

16
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Definition 4.1. The 1D discrete Fourier transform (DFT) of a function f(k), defined at
discrete points k =0,1,--- , N — 1, is defined as

N-1

CF .,
5

4 Discrete Fourier Transform

Fe % (o o )

=cosf + jsind
k=0

The 2D discrete Fourier transform (DFT) of an M x N image g = (g(k,1))x,, where k =
0,1,--- , M—1and [ =0,1,--- ,N — 1, is defined as:

gl D ), *)

What is the inverse of DFT?

Multiply both sides of (E[) by 2 (57 +5) (with p chosen from 0,1, -+, M — 1 and ¢ chosen from
0,1,---,N —1) and sum m over 0 to M — 1, and n over 0 to N — 1:

M—-1N-1

> > g(mn)m )

m=0 n=0

g(k, 1)e2m (G 25

k=0 [=0 m=0 n=0
| MoaN-d M-1 oo N1 )
- k.l 2mj R 2m sk
LSS ) Y e Y =)
k=0 1=0 m=0 n=0
We can show that for s € Z\ {0} and ¢ € Z,

0 otherwise

s—1 .
tm s iftesz
Z 2T — sly(t) = {

1 M—-1N-1
YN gk, 1) - M1pz(p — k) - N1nz(q —1)
k=0 (=0
M—-1N-1
= gk, 1)o(p — k)d(q —1) = g(p, q).
k=0 =0

(since k,pe [0,M —1] = p—k e[l — M, M — 1], whose only intersection with MZ is {0};
and l,q € N[0,N —1] = ¢—1€[1— N,N — 1], whose only intersection with NZ is {0})

17



Inverse discrete Fourier transform:

M—-1N-1

9 9) =Y > 4(m,n)e*™ G +5)

m=0 n=0

How is DFT in matrix form?

Recall:
| A
g= |t w2 --- d, | f| Y2 = UfVT if and only if
| | g

M N
9= fijilit]

i=1 j=1

We need to express DFT in terms of matrix multiplication.
For an N x N image g, the DFT of g is given by:

| NoiN-1
g(m,n) = N2 g(k,1)e 2™
k=0 1=0

km+4Iln
N .

1 N e
Let Uyy = Ne_Q’UT where 0 < z,a < N —1, and U = (Upa)o<z,a<N-1 € Mnxn(C). Then, U
is symmetric and

g=UgqU.
Question: Can you write the DFT of an M x N image in matrix form?

Example 4.2. Find the DFT of the following 4 x 4 image

0 010
100 1 0
9710 0 1 0
0 010
Solution. The matrix U is given by:
1 1 1
R e A
U=1lr 11 4
1 45 -1 —3
i1 1 1
0 0 0 0
0 0 0 O

Property of U:
Note that given N € N\ {0} and x1,22 € ZN [0, N — 1],

1 N-1 1 N-1 ( N
efzwjmjl\rw 6277.7- .7:12\/(1 _ Z 627Tj 2 1\?1 o
N2 N2
a=0 a=0
1
= WNKS(IQ 7£E1).

Therefore, rows of U are mutually orthogonal but not orthonormal.
1

We can conclude that UU* = NI (so U is NOT unitary).

If we define U = v/NU, then U is unitary.

18



Remark.

e Sometimes, people lz'ke to define DFT as

(1D) f(m) = f Z fk)e>m

(2D) f(m,n) = Z Z f(k,De=2m
k 0 I=

mk+

so that unitary matriz U may be used.

o If U is used, we must be careful about the formula we derive (as they usually differ by a
scaling factor) (e.g. the inverse DFT).

Elementary images under DFT decomposition

Given an image g, we can compute its DFT g. Then:
g=UgU.
Hence,

(NU Z Z gklwkwl

where @y, is the k-th column of (NU)*. Then w;w,
sition.
For a visualization of DFT elementary images, please refer to Lecture 4 Powerpoint.

are the elementary images of DFT decompo-

The real part of elementary images under the DFT (of an 8 x 8 image) look like the following:

0 1 2 3 4 5 6 T

=] w = w (& —

-1

gl
¥ 00 A XY N
=EMBERER
S o I W e S

The imaginary part of elementary images under the DFT look like the following:

19
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Further properties of DFT

1. DFT of convolution

Let g and w be two N x M images. Assume that g and w are periodically extended. The convolution

of them is

N—-1M-1

1 N—-1M-1
— pn am
— v(n, m)e 2R +57)
NM
n=0 m=0
N—-1M-1N-1M-1
1 / / / n,—2m (B4
= — gn—n';m—m w(n',me N M
NM —— ——
n/=0m’'=0 n=0 m=0 NG m!’
1 N—-1M-1 N—-1-n' M—1-m’ . .
—opj(enl am! oapn!l L gm!
=N w(n',m’)e 2mj (P +*57) E § g, m"e 2mj (PR + 45 )
NM <
n’=0m’=0 n'=n' m!'’—=—m'

W(p,q)

Note that g and w are periodically extended. Hence, we have:
g(n - Na m) = g(nam) and g(nvm - M) = g(nam)

Then:

SN gt e

m!—=— n!!—=—n'
M—1—m' , N—1—-n'

g g g(n’,m")e ™"~
m! —=—m n''=0
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Consider

Z g(n”, m//)e—27rj%

n’=—n'

N-1
n''=N+n" Z " _opikn .
= g(n" — N,m")e N (. p = integer).
nm:N_n/‘—,,f,,—’ T
g(n'",m'")
(Similarly, we can do the same thing for the index m”.)
Therefore,
M—-1 N—1
pnlt 4 am!
=2 > “m D) — MNG(p,q).
m// 0 ,n// 0

\0(p, q) = MNg(p, ¢)w(p,q) \

Remark. Conversely, if x(n,m) = g(n,m) - w(n,m),
—1M-1
then (k1) = E Z J(p, @)w(k — p,l — q) (convolution of G and w).

2. Average value of image v.s. DFT

Average value of image ¢:

] NoiN-d | NoIN-1
7= %3 gk, 1) = 55 g(k, 1) 2™ = §(0,0).
k=0 1=0 k=0 1=0 1
3. DFT of a rotated image
Let g be an N x N image.
Consider:
1 N-lN-1 k1n+ln
g(m,n) = — g(k,1)e 2™ .
k=0 1=0

Let k = rcosf, | = rsinf (Polar coordinates of (k,1)).
Similarly, let m = w cos ¢, n = wsin ¢ (Polar coordinates of (m,n)).
Note that km + In = rw(cos  cos ¢ + sin 0 sin ¢) = rw cos(6 — ¢).

Denote P(g) = {(r,0) : (rcosf,rsinf) is a pixel of the image g}, which is called the polar
coordinate set of g.

Then:
1N-1

N—
1 727Tjrwcos<9 &)
o) = 2 20O

Here, we identify g(r cos 8, rsin @) with g(r,0) and §(w cos ¢, wsin ¢) with §(w, ¢).

Consider the rotated image g(r,0) = g(r,6 — 0y). Here, 6 is assumed to be defined between 6y to
m/2 + 6y. Hence, one rotates image g counterclockwise by 6y to get g.

DFT of g can be computed by:

~ 1 . rw cos(0—
Gw,0) =15 D glrf e IR
(r0)eP(3) Y
1 rwcm<9+90 %)
=5z > 9nde -
(r.0)eP(g)

Therefore,

9w, ¢) = g(w, ¢ — bo)
Again, ¢ is assumed to be defined between 6y to 7/2 + 6.
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Remark. DFT of an image rotated by 0y = DFT of the original image rotated by 6.

0
0

S O ORI
O O ORI
o O O

0 0 1
Example 4.3. Let g = 00 8 , then g =
0

o O
— =

0 0 0 O
o .. o0 00
Rotate g by 90° clockwise: g = 111 1
0 0 0O
Note that the indices of § are taken as follows (after the rotation): —3 <! < 0and 0 < k < 3. Then
000 %
5 00 0 -1
DFTof g=g = 00 0 1* | (with indices taken as follows: —3 <1 <0 and 0 <k <3)
1
000 —1

km+ln

(Note that the DFT of § is defined as: Z Z g(k,1)e=2m
—01=-3

)

4. DFT of a shifted image

Let g(k',l') be an N x N image.
Assume the indices of the image are taken as —kg < k' < N —1—kg and —lop <I' < N —1— .
Let g be the shifted image whose indices are taken as 0 < k,I < N — 1, then:

gk, 1) = g(k — ko, —lo)
N—-1N-1

g(m,n) = N2 >N gk = kol lo)e —2mj B
k=0 1=0

N—1—ko N—1—Io

_ k7n+l n o _-kgmtlgn
§ E g 21y e 2myj ~ )

k'=—ko U=—lo

3(m.n)

Therefore,

2mj kmn;;zon

.é(mv n) = g(m7 n)e_

kgm+lgn 7n+l0 n

DFT of the shifted image = DFT of the original image x e~ 277

mo +”0

Remark. We can show that g(m — mg,n — ng) = DFT (zmage x 277 ) (with carefully

chosen indices).

4.1 Fast Fourier Transform (FFT)

Goal: To compute DFT efficiently.
Fast Fourier Transform (FFT)

DFT is separable = 2D DFT = Two 1D DFT.
We will discuss how to compute 1D DFT fast.

. 1 N-1 -
The 1D DFT is: f(u) = — E flz)whs, NEe_QWJ.

Assume N = 2" = 2M, then:
2M—1

U M Z f(@)ws-

Separate it into odd and even parts:

M—-1
R u(2y) u(2y+1)
flu)y == Fy) w2 4 — N7 f2y 4+ 1) Wil
2| M Z =M Z \LM,_,
‘*’XIy wif Wiy
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Then:

M-1
A 1] 1
f(U)Q{M Zf(Qy)WM i Zf2y+1wa2M}
y=0
For u < M,
~ 1 ~ N u
flu) = 3 { oven (W) + fodd(u)w2m} where
M-1
R 1 ”
feven(u) = i Z f(2y)wy? (DFT of even part of f)
y=0
A | M-l
and foaa(u) = i f(2y+ wy?  (DFT of odd part of f).
y=0
For uw > M, we consider:
M— 1 M—1
f(U+M Z w]\/[+My+ Z f(2y+1) uy+MngA—i;IM
y=0 M ¥=0 \_\u,y_/\\,_/

War —Wynr

and f(u+ M) = {feven(u) - fodd(u)wéLM}'

DN | =

The FFT algorithm can now be described as follows.
Fast Fourier Transform (FFT) Algorithm

Let f € RY where N = 2" = 2M.
Step 1: Split f into:

feven = [f(O), f(2)7 SRR f(2M - 2)]T
and foaa = [F(1), £(3),.., F2M — 1)]T.

Step 2: Compute feven = Fi feven and foaa = Fis foda, where Fiy = (w%)ogu,mSMfl isan M xM
matrix.

(Recall that the computation of feven is equivalent to the left multiplication of feyen by an M x M
matrix. Similarly for fodd).

Step 3: Compute f using the following formula:
Foru=0,1,2,...,.M — 1,

1 . .
f(u) = i[feven(u) + fodd(u)ngL
R 1 . .
and f(u + M) = Q[feven(u) - fodd(u)WgMy
Remark. For Step 2, we can apply the splitting idea to compute feven and fodd.

Computational cost of FFT

Let C,, be the computational cost of F,,x. Then, C; = 1.

Obviously,
Cny =2Cy +3M

(2 matrix multiplication, M multiplication, addition, and subtraction)

Hence,

Con = 2C9n-1 + 3M implies:
27" Coyn =2~ V(L1 4 3/2.
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The above recursive equation gives 27"Caon = C7 4+ n(3/2). Thus, Con = 2" + n2"(3/2). We
conclude that the computational cost Cy is bounded by K N log, N. We denote it by O(N log, N).

Application of DFT for image compression

DFT is often used for image compression. It is often done by truncating terms associated to small
Fourier coefficients. Below we will show some examples of image compression using DFT.

The following shows the image compression of the lena image, by keeping the largest 20% of the
Fourier coefficients.

The following shows the image compression of an image of a flower, by keeping the largest 5% of
the Fourier coefficients.

DFT is a very popular method for image compression. In fact, DFT is a very important tool
for many other image processing tasks, such as image denoising, image deblurring and image
sharpening. These will be discussed in the next chapter.

5 Discrete Cosine Transform

Note: Discrete Cosine Transform will not be covered in this course. It is in the lecture note for
the sake of completeness.

5.1 Even symmetric discrete cosine transform

Goal: Write an image as a linear combination of cosine functions only. Hence, the elementary
images are real-valued.

Consider an N x N image f. Extend f to a 2M x 2N image f, whose indices are taken from
[-M,M —1] and [-N,N —1].
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Define f(k,l) for —M <k <M —1and —N <[ < N — 1 such that

f(=k—1,-1—-1) = f(k,1)} Reflection about (f%, *%)
f(=k=1,1) = f(k,1)

1 1
Fk1—1) = f(k,1) } Reflection about the axes k = ) and [ = -5

Next, we make the extension as a reflection about (0,0), the axis k = 0 and the axis [ = 0. This

can be done by shifting the image by (27 2)

1 2 3
Here is a simple example illustrating the idea. Let f = [ 4 5 6 |. The extended image becomes:
7 8 9

%—3—> 9 8 7 , T8 9
?—2—> 6 5 4 : 4 5 6
Pois 32112
?+0—> 3 2 1 : 1 2 3
s+l 6 54 |, 45 6
5+2— 9 8 7 ' 7T 89
{ R Y N A N
1 1 1 1 1
2 2 2 2 2 2
e S s
3 2 1 0 1 2
Now, we compute the DFT of (shifted) f:
M-1 N-1

F(m,n) = Fk, 1)e=2md 3 (k1) g=2mi g (4 3)

N

f kl —ﬂ'jM(k-i- )— ﬂj%(l-‘r%)

MZ ‘Il M

4MN Z

-M
4MN Z

—-M
—_——
Ay Ao As Ay

1 1

N-1 M-1 - M—-1N-1
DD IDILIIDN
1=0 k=0 I= k=0 [=0

l=—N
1=

M
me

-N
f(k,l)efﬂj%(k+ ) 7TjN(l+ )
For Ay, change of variable: k=—-k—1,l=—1—1, and then apply trigonometric identity, and we
obtain
i mr [~ 1 nr [~ 1
A1: Z Zf(k, ){COS |:M (k+2>:| COSs |:N <l+2>:|
~ 1 - 1
+ jsin mr I::Jr1 cos nn l~+1
e 2 N 2
mim i n 1 i nm l~+ 1
— = in |[— = .
M 2 N 2
Similarly, we can perform the same computation to As, A3, A4. All together, we can obtain

| MoIN-d 1
A1+A2+A3+A4—M—Z kal COS|:M <k+2)]cos{N <l+2>]

k=0 =0

Definition 5.1 (Even symmetric discrete cosine transform).
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Let f be a M x N image, whose indices are taken as 0 < k < M —1and 0 <[ < N —1. The even
symmetric discrete cosine transform (EDCT) of f is given by:

Feton) = s 3= 3= stk oo [57 (i3 os [ (1+3)]

k=0 I=

=

with0<m<M-1,0<n<N-—1.
Remark.

o The inverse of EDCT can be explicitly computed. More specifically, the inverse EDCT is

defined as:
M-1N-1
F) = 30 3 CmC(eslmn)cos TR EL) o TUALLEL ey

e Formula @ can be expressed as matrix multiplication:

M—-1N-1

f= Z Z fec(man)fmﬁ?

Tm(0) T;,(0)
B T(1 ) T (1
where: T = W T = W with T (k) = C(m) cos % and
Tpn(M —1) T/(N — 1)
' (k) = T2k +1)
T! (k) = C(n) cos SN

o T, T/ = elementary images of EDCT.

Image decomposition under EDCT

(Please refer to the Lecture 7 Powerpoint for clearer figures)

The elementary images under the EDCT (of an 8 x 8 image) look like the following:
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Application of EDCT for image compression

EDCT can be applied for image compression by truncating terms associated to small coefficients.
In fact, the famous JPEG compression applies EDCT.

Below, we will show some results of image compression using EDCT.

In the above figure, (a) shows the original Saturn image. (b) shows the compressed image by
keeping the largest 75% of EDCT coefficients. (c) shows the compressed image by keeping the
largest 50% of EDCT coefficients. (d) shows the compressed image by keeping the largest 25% of
EDCT coefficients.

In the above figure, (a) shows the original ‘kid’” image. (b) shows the compressed image by keeping
the largest 75% of EDCT coefficients. (c) shows the compressed image by keeping the largest
50% of EDCT coefficients. (d) shows the compressed image by keeping the largest 25% of EDCT
coefficients.

In the above figure, (a) shows the original ‘baboon’ image. (b) shows the compressed image by
keeping the largest 75% of EDCT coefficients. (c) shows the compressed image by keeping the
largest 50% of EDCT coefficients. (d) shows the compressed image by keeping the largest 25% of
EDCT coefficients.

5.2 0Odd symmetric discrete cosine transform

Other than even symmetric discrete cosine transform, the odd symmetric discrete cosine
transform can also be defined. We will skip the details but just state the definition.

Definition 5.2 (Odd symmetric discrete cosine transform).

Let f be a M x N image, whose indices are taken as 0 < k < M —1and 0 <! < N —1. The odd
symmetric discrete cosine transform (ODCT) of f is given by:

N 2mrmk 2mnl

2 1
foc(m,n) = M- D)EN = 1) Z ZC(k)C’(l)f(k,l)cos 52 — 1IN 1

k=0 [=0

where C(0) =1and C(k) =C(l)=2for k,1 #0,0<m<M—-1,0<n<N -1

The inverse ODCT is given by:

== 5 2mmk 27nl
f(k,1) = Z Z C(m)C(n) foc(m,n) cos 52 — 1IN — 1

m=0 n=0

where C'(0) =1, C(m) = C(n) =2 if m,n # 0.

Image decomposition under ODCT

(Please refer to the Lecture 7 Powerpoint for clearer images)

Using ODCT, the image f can be written as:

oDCT
f = E gmnImn .
0<mn<N-1

The elementary images under the ODCT (of an 8 x 8 image) look like the following;:
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Here, the m-th row n-th column image represents the elementary image I9D¢T.

6 Conclusion

In this chapter, we have studied different image transformation and decomposition techniques.
By image decomposition, we can express an image as a linear combination of elementary images.
Each elementary image has different properties. By truncating unnecessary terms, images can
be effectively compressed to save storage. Image compression is one of the most important and
earliest image processing tasks. We have shown the compression results using SVD, Haar, Walsh,
DFT and DCT. In fact, there are other image transformation tools for image compression (such as
even/odd antisymmetric discrete sine transform). Please refer to Lecture 7 Powerpoint for details.
Amongst different techniques, EDCT usually gives the best compression results. This is the reason
why EDCT is applied for the famous JPEG compression.
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