Homework 3

1. Show that the following operations preserve convexity:

(a) Let $f : \mathbb{R}^N \to \mathbb{R}$ be convex, then $g(x) = f(Ax), A \in \mathbb{R}^{N \times N}$, is convex. (b) Let $f_{\lambda}, \lambda \in \Lambda$ be a group of convex functions. Then $\sup_{\lambda \in \Lambda}$ is convex. (Hint: In Assignment 2, we prove the case for two functions. You can follow a similar procedure either using the definition or using the epigraph.)

2. (a) It is known that the following implication holds:

strong convexity \Rightarrow strict convexity \Rightarrow convexity.

Is the converse of either implication is true? Give a proof if it is true and give a counter example if not.

(b) Let $f: \mathbb{R} \to \mathbb{R}$ and $g: \mathbb{R}^N \to \mathbb{R}$ be convex. Is their composition $f \circ g$ convex? Give a proof if so and give a counter example otherwise.

3. Prove that the following functions are convex: (a) $|x|^{\alpha}, \alpha \geq 1, x \in \mathbb{R}$; (b) $\sum_{i=1}^{N} -\ln(1+x_i), x_i \geq -1$; (c) $x^T P x, x \in \mathbb{R}^N$, where $P \in \mathbb{R}^{N \times N}$ is symmetric and positive semi-definite.