Homework 2

1. (a) Give the interior and relative interior of the following sets in \mathbb{R}^3 :

$$A = \left\{ (x, y, 0) : x^2 + y^2 \le 1 \right\}, \quad B = \left\{ (x, y, z) : x^2 + y^2 + z^2 < 1 \right\}.$$

(b) Is it true that $T \subset S \Rightarrow int(T) \subset int(S)$? Does this result hold for relative interior? Give your reasons.

2. Assume $f_1, f_2 : \mathbb{R}^N \to \mathbb{R}$ are convex functions. Decide whether the following functions are convex. Give a proof (using definition of convexity) if it is convex and give a counter example if not.

(a) $f_1 + f_2$; (b) $f_1 \cdot f_2$; (c) $f_1 - f_2$; (d) max $\{f_1, f_2\}$.

3. The epigraph of a function $f : \mathbb{R}^N \to \mathbb{R}$ is defined as

$$epi(f) = \{(x,t) \in \mathbb{R}^{N+1} : f(x) \le t\}.$$

Prove that f is a convex function if and only if epi(f) is a convex set. And then use this result to solve (d) in Question **2**. (Hint: show that $epi(f_1) \cap epi(f_2) =$ $epi(\max{f_1, f_2}).)$