
Chapter 2
Convex Optimization Theory

Many machine learning tasks can be formulated as an optimization problem given
in the form of

min
x∈X

f (x), (2.0.1)

where f , x, and X denote the objective function, decision variables, and feasible
set, respectively. Unfortunately, solving an optimization problem is challenging. In
general, we cannot guarantee whether one can find an optimal solution, and if so,
how much computational effort one needs. However, it turns out that we can provide
such guarantees for a special but broad class optimization problems, namely convex
optimization, where X is a convex set and f is a convex function. In fact, many ma-
chine learning models we formulated so far, such as least square linear regression,
logistic regression, and support vector machine, are convex optimization problems.

Our goal in this chapter is to provide a brief introduction to the basic convex
optimization theory, including convex sets, convex functions, strong duality, and
KKT conditions. We will also briefly discuss some consequences of these theoretic
results in machine learning, e.g., the representer theorem, Kernel trick, and dual sup-
port vector machine. We include proofs for some important results but the readers
can choose to skip them for the first pass through the text.

2.1 Convex Sets

2.1.1 Definition and Examples

We begin with the definition of the notion of a convex set.

Definition 2.1. A set X ⊆ R
n is said to be convex if it contains all of its segments,

that is
λx+(1−λ )y ∈ X , ∀(x,y,λ ) ∈ X ×X × [0,1].
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22 2 Convex Optimization Theory

Note that the point λx+ (1− λ )y is called a convex combination of x and y.
Figure 2.1 show the examples of a convex set (left) and a nonconvex set (right).

Fig. 2.1 Convex vs. nonconvex sets

It is easy to check that the following sets are convex.

(a) n-dimensional Euclidean space, Rn. Given x,y ∈ R
n, we must have λx+(1−

λ )y ∈ R
n.

(b) Nonnegative orthant, Rn
+ := {x ∈ R

n : xi ≥ 0, i = 1, . . . ,n}. Let x,y ∈ R
n
+ be

given. Then for any λ ∈ [0,1],

(λx+(1−λ )y)i = λxi +(1−λ )yi ≥ 0.

(c) Balls defined by an arbitrary norm, {x ∈ R
n|‖x‖ ≤ 1} (e.g., the l2 norm ‖x‖2 =√

∑n
i=1x2

i or l1 norm ‖x‖1 =∑n
i=1|xi| balls). To show this set is convex, it suffices

to apply the Triangular inequality and the positive homogeneity associated with
a norm. Suppose that ‖x‖ ≤ 1,‖y‖ ≤ 1 and λ ∈ [0,1]. Then

‖λx+(1−λ )y‖ ≤ ‖λx‖+‖(1−λ )y‖= λ‖x‖+(1−λ )‖y‖ ≤ 1.

(d) Affine subspace, {x ∈R
n|Ax = b}. Suppose x,y ∈R

n, Ax = b, and Ay = b. Then

A(λx+(1−λ )y) = λAx+(1−λ )Ay = b.

(e) Polyhedron, {x ∈ R
n|Ax ≤ b}. For any x,y ∈ R

n such that Ax ≤ b and Ay ≤ b,
we have

A(λx+(1−λ )y) = λAx+(1−λ )Ay ≤ b

for any λ ∈ [0,1].
(f) The set of all positive semidefinite matrices Sn

+. Sn
+ consists of all matrices A ∈

R
n×n such that A = AT and xT Ax ≥ 0 for all x ∈ R

n. Now consider A,B ∈ Sn
+

and λ ∈ [0,1]. Then we must have

[λA+(1−λ )B]T = λAT +(1−λ )BT = λA+(1−λ )B.

Moreover, for any x ∈ R
n,

xT (λA+(1−λ )B)x = λxT Ax+(1−λ )xT Bx ≥ 0.
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(g) Intersections of convex sets. Let Xi, i = 1, . . . ,k, be convex sets. Assume that
x,y ∈ ∩k

i=1Xi, i.e., x,y ∈ Xi for all i = 1, . . . ,k. Then for any λ ∈ [0,1], we have
λx+(1−λ )y ∈ Xi by the convexity of Xi, i = 1, . . . ,k, whence λx+(1−λ )y ∈
∩k

i=1Xi.
(h) Weighted sums of convex sets. Let X1, . . . ,Xk ⊆R

n be nonempty convex subsets
and λ1, . . . ,λk be reals. Then the set

λ1X1 + . . .+λkXk

≡ {x = λ1x1 + . . .+λkxk : xi ∈ Xi,1 ≤ i ≤ k}
is convex. The proof also follows directly from the definition of convex sets.

2.1.2 Projection onto Convex Sets

In this subsection we define the notion of projection over a convex set, which is
important to the theory and computation of convex optimization.

Definition 2.2. Let X ⊂ R
n be a closed convex set. For any y ∈ R

n, we define the
closest point to y in X as:

ProjX (y) = argmin
x∈X

‖y− x‖2
2. (2.1.2)

ProjX (y) is called the projection of y onto X .

In the above definition, we require the set X to be closed in order to guarantee
the existence of projection. On the other hand, if X is not closed, then the projection
over X is not well defined. As an example, the projection of the point {2} onto the
interval (0,1) does not exist. The existence of the projection over a closed convex
set is formally stated as follows.

Proposition 2.1. Let X ⊂ R
n be a closed convex set, and y ∈ R

n be given. Then
ProjX (y) must exist.

Proof. Let {xi} ⊆ X be a sequence such that

‖y− xi‖2 → inf
x∈X

‖y− x‖2, i → ∞.

The sequence {xi} clearly is bounded. Passing to a subsequence, we may assume
that xi → x̄ as i → ∞. Since X is closed, we have x̄ ∈ X , and

‖y− x̄‖2 = lim
i→∞

‖y− xi‖2 = inf
x∈X

‖y− x‖2.

The following result further shows that the projection onto a closed convex set X
is unique.
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Proposition 2.2. Let X be a closed convex set, and y ∈ R
n be given. Then ProjX (y)

is unique.

Proof. Let a and b be the two closet points in X to the given point y, so that
‖y−a‖2 = ‖y−b‖2 = d. Since X is convex, the point z = (a+b)/2 ∈ X . Therefore
‖y− z‖2 ≥ d. We now have

‖(y−a)+(y−b)‖2
2︸ ︷︷ ︸

=‖2(y−z)‖2
2≥4d2

+‖(y−a)− (y−b)‖2
2︸ ︷︷ ︸

=‖a−b‖2

= 2‖y−a‖2
2 +2‖y−b‖2

2︸ ︷︷ ︸
4d2

,

whence ‖a−b‖2 = 0. Thus, the closest to y point in X is unique.

In many cases when the set X is relatively simple, we can compute ProjX (y)
explicitly. In fact, in Sect. 1.4, we computed the distance from a given point y ∈ R

n

to a given hyperplane H := {x ∈ R
n|wT x+ b = 0} by using projection. Following

the same reasoning (see Fig. 2.2a), we can write down

ProjH(y) = y− (wT y+b)w
‖w‖2

2
.

Fig. 2.2 Projection over convex sets

As another example, let us consider the projection of y ∈ R
n onto the standard

Euclidean ball defined as B := {x ∈R
n|‖x‖2 ≤ 1} (see Fig. 2.2b). We can easily see

that ProjB(y) =
y

‖y‖2
.

Projection over a convex set will be used extensively as a subroutine for solving
more complicated optimization problems later in this book.
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2.1.3 Separation Theorem

One fundamental result in convex analysis is the Separation Theorem. In this sec-
tion, we will prove this theorem based on the projection onto a closed convex set
and discuss some of its consequences.

We first discuss the separation of a point from a closed convex set.

Theorem 2.1. Let X ⊆ R
n be a nonempty closed convex set, and a point y /∈ X be

given. Then there exists w ∈ R
n, w �= 0 such that

〈w,y〉< 〈w,x〉, ∀x ∈ X .

Proof. Our proof is based on projecting y onto the set X . In particular, let ProjX (y)
be defined in (2.1.2), we show that the vector w = y−ProjX (y) separates y and X .
Note that w �= 0 since y /∈ X . Also let x ∈ X be given and denote z = tx + (1−
t)ProjX (y) for any t ∈ [0,1]. Then we must have z ∈ X and hence

‖y−ProjX (y)‖2
2 ≤ ‖y− z‖2 = ‖y− [tx+(1− t)ProjX (y)]‖2

2

= ‖y−ProjX (y)− t(x−ProjX (y))‖2
2

= ‖w− t(x−ProjX (y))‖2
2.

Define φ(t) := ‖y− ProjX (y)− t(x− ProjX (y))‖2
2. It then follows from the above

inequality that φ(0)≤ φ(t) for any t ∈ [0,1]. We have

0 ≤ φ ′(0) =−2wT (x−ProjX (y)),

which implies that

∀x ∈ X : wT x ≤ wT ProjX (y) = wT (y−w) = wT y−‖w‖2
2.

We can generalize the above theorem to separate a closed convex set from another
compact convex set.

Corollary 2.1. Let X1,X2 be two nonempty closed convex sets and X1 ∩X2 = /0. If
X2 is bounded, there exists w ∈ R

n such that

sup
x∈X1

wT x < inf
x∈X2

wT x. (2.1.3)

Proof. The set X1 −X2 is convex (the weighted sum of convex sets) and closed
(the difference of a closed with a compact set). Moreover, X1 ∩X2 = /0 implies 0 /∈
X1 −X2. So by Theorem 2.1, there exists w such that

sup
y∈X1−X2

wT y < wT 0 = 0.

Or equivalently,
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0 > sup
x1∈X1,x2∈X2

wT (x1 − x2)

= sup
x1∈X1

wT x1 + sup
x2∈X2

wT (−x2)

= sup
x1∈X1

wT x1 − inf
x2∈X2

wT x2.

Since X2 is bounded, the last infimum becomes a min. Moreover, it is finite and can
be moved to the left-hand side.

When X2 is unbounded, Corollary 2.1 may fail. One possible fix is to replace
the strict inequality in (2.1.3) by an inequality. However, this might cause some
problems. For example, consider the line segment connecting (−1,0) and (0,0), and
the other one connecting (−1,0) and (2,0). Observe that the inner product between
(0,1) and any point from these line segments equals 0. The vector w= (0,1) appears
to “separate” these two line segments, while apparently they are not separable.

To address this issue, we say that a linear form wT x properly separates nonempty
sets S and T if and only if

sup
x∈S

wT x ≤ inf
y∈T

wT y

inf
x∈S

wT x < sup
y∈T

wT y. (2.1.4)

In this case, the hyperplanes associated with w that separate S and T are exactly the
hyperplanes

{x : wT x−b = 0} with sup
x∈S

wT x ≤ b ≤ inf
y∈T

wT y.

The proper separation property holds under quite general assumptions on the
intersection X1 ∩ X2. To state this more general result, we need to introduce the
notion of relative interior ri(X), defined as the interior of X when we view it as
subset of the affine subspace it generates. Without specific mention, we assume that
the set X is full dimensional so that int(X) = ri(X).

Theorem 2.2. If the two nonempty convex sets X1 and X2 satisfy ri(X1)∩ ri(X2) = /0,
they can be properly separated.

The above separation theorem can be derived from Theorem 2.1, but requiring
us to establish a few technical results. We will first prove the result about the sepa-
rability of a set in R

n.

Lemma 2.1. Every nonempty subset S ⊆ R
n is separable: one can find a sequence

{xi} of points from S which is dense in S such that every point x ∈ S is the limit of
an appropriate subsequence of the sequence.

Proof. Let r1,r2, . . . be the countable set of all rational vectors in R
n. For every

positive integer t, let Xt ⊂ S be the countable set given by the following construction:
we examine, one after another, at the points r1,r2, . . . and for every point rs check
whether there is a point z ∈ S which is at most at the distance 1/t away from rs. If
points z with this property exist, we take one of them and add it to Xt and then pass
to rs+1, otherwise directly pass to rs+1.
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It is clear that every point x ∈ S is at the distance at most 2/t from certain point
of Xt . Indeed, since the rational vectors are dense in R

n, there exists s such that rs

is at the distance ≤ 1
t from x. Therefore, when processing rs, we definitely add to

Xt a point z which is at the distance ≤ 1/t from rs and thus is at the distance ≤ 2/t
from x. By construction, the countable union ∪∞

t=1Xt of countable sets Xt ⊂ S is a
countable set in S, and by the fact that every point x ∈ S is at most 2/t from Xt , this
set is dense in S.

With the help of Lemma 2.1, we can refine the basic separation result stated in
Theorem 2.1 by removing the “closedness” assumption, and using the notion of
proper separation.

Proposition 2.3. Let X ⊆ R
n be a nonempty convex set and y ∈ R

n,y /∈ X be given.
Then there exists w ∈ R

n, w �= 0 such that

sup
x∈X

wT x ≤ wT y,

inf
x∈X

wT x < wT y.

Proof. First note that we can perform the following simplification.

• Shifting X and {y} by −y (which clearly does not affect the possibility of sepa-
rating the sets), we can assume that {0} �⊂ X .

• Replacing, if necessary, Rn with Lin(X), we may further assume that R
n =

Lin(X), i.e., the linear subspace generated by X .

In view of Lemma 2.1, let {xi ∈ X} be a sequence which is dense in X . Since X is
convex and does not contain 0, we have

0 �∈ Conv({x1, . . . ,xi}) ∀i.

Noting that Conv({x1, . . . ,xi}) are closed convex sets, we conclude from Theo-
rem 2.1 that

∃wi : 0 = wT
i 0 > max

1≤ j≤i
wT

i x j. (2.1.5)

By scaling, we may assume that ‖wi‖2 = 1. The sequence {wi} of unit vectors pos-
sesses a converging subsequence {wis}∞

s=1 and the limit w of this subsequence is also
a unit vector. By (2.1.5), for every fixed j and all large enough s we have wT

is x j < 0,
whence

wT x j ≤ 0 ∀ j. (2.1.6)

Since {x j} is dense in X , (2.1.6) implies that wT x ≤ 0 for all x ∈ X , and hence that

sup
x∈X

wT x ≤ 0 = wT 0. (2.1.7)

Now, it remains to verify that

inf
x∈X

wT x < wT 0 = 0.
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Assuming the opposite, (2.1.7) would imply that wT x = 0 for all x ∈ X , which is
impossible, since Lin(X) = R

n and w is nonzero.

We can now further show that two nonempty convex sets (not necessarily
bounded or closed) can be properly separated.

Proposition 2.4. If the two nonempty convex sets X1 and X2 satisfy X1∩X2 = /0, they
can be properly separated.

Proof. Let X̂ = X1−X2. The set X̂ clearly is convex and does not contain 0 (since
X1 ∩X2 = /0). By Proposition 2.3, X̂ and {0} can be separated: there exists f such
that

sup
x∈X1

wT s− inf
y∈X2

wT y = sup
x∈X1,y∈X2

[wT x−wT y] ≤ 0 = inf
z∈{0}

wT z,

inf
x∈X1

wT x− sup
y∈X2

wT y = inf
x∈X1,y∈X2

[wT x−wT y] < 0 = sup
z∈{0}

wT z,

whence
sup
x∈X1

wT x ≤ inf
y∈X2

wT y,

inf
x∈X1

wT x < sup
y∈X2

wT y.

We are now ready to prove Theorem 2.2, which is even stronger than Proposi-
tion 2.4 in the sense that we only need ri(X1)∩ ri(X2) = /0. In other words, these two
sets can possibly intersect on their boundaries.
Proof of Theorem 2.2. The sets X ′

1 = ri(X1) and X ′
2 = ri(X2) are convex and

nonempty, and these sets do not intersect. By Proposition 2.4, X ′
1 and X ′

2 can be
separated: for properly chosen w, one has

sup
x∈X ′

1

wT x ≤ inf
y∈X ′

2

wT y,

inf
x∈X ′

1

wT x < sup
y∈X ′

2

wT y.

Since X ′
1 is dense in X1 and X ′

2 is dense in X2, inf’s and sup’s in the above relations
remain the same when replacing X ′

1 with X1 and X ′
2 with X2. Thus, w separates X1

and X2.
In fact, we can show the reverse statement of Theorem 2.2 also holds.

Theorem 2.3. If the two nonempty convex sets X1 and X2 can be properly separated,
then ri(X1)∩ ri(X2) = /0.

Proof. We will first need to prove the following claim.
Claim. Let X be a convex set, f (x) = wT x be a linear form, and a ∈ ri(X). Then

wT a = max
x∈X

wT x ⇔ f (x) = const ∀x ∈ X .
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Indeed, shifting X , we may assume a = 0. Let, on the contrary to what should be
proved, wT x be nonconstant on X , so that there exists y ∈ X with wT y �= wT a = 0.
The case of wT y > 0 is impossible, since wT a = 0 is the maximum of wT x on X .
Thus, wT y < 0. Since 0 ∈ ri(X), all points z =−εy belong to X , provided that ε > 0
is small enough. At every point of this type, wT z > 0, which contradicts the fact that
maxx∈X wT x = wT a = 0.

Now let us use the above claim to prove our main result. Let a ∈ riX1 ∩ riX2.
Assume, on contrary to what should be proved, that wT x separates X1 and X2, so
that

sup
x∈X1

wT x ≤ inf
y∈X2

wT y.

Since a ∈ X2, we get wT a ≥ supx∈X1
wT x, that is, wT a = maxx∈X1 wT x. By the above

claim, wT x = wT a for all x ∈ X1. Moreover, since a ∈ X1, we get wT a ≤ infy∈X2 wT y,
that is, wT a = miny∈T wT y. By the above claim, wT y = wT a for all y ∈ X2. Thus,

z ∈ X1 ∪X2 ⇒ wT z ≡ wT a,

so that w does not properly separate X1 and X2, which is a contradiction.

As a consequence of Theorem 2.2, we have the following supporting hyperplane
theorem.

Corollary 2.2. Let X ⊆R
n be a convex set, and y be a point from its relative bound-

ary. Then there exists w ∈ R
n and w �= 0 such that

〈w,y〉 ≥ sup
x∈X

〈w,x〉, and 〈w,y〉> inf
x∈X

〈w,x〉.

The hyperplane {x|〈w,x〉= 〈w,y〉} is called a supporting hyperplane of X at y.

Proof. Since y is a point from the relative boundary of X , it is outside the relative
interior of X and therefore {x} and riX can be separated by the Separation Theorem.
The separating hyperplane is exactly the desired supporting hyperplane to X at y.

2.2 Convex Functions

2.2.1 Definition and Examples

Let X ⊆ R
n be a given convex set. A function f : X → R is said to be convex if it

always lies below its chords (Fig. 2.3), that is

f (λx+(1−λ )y)≤ λ f (x)+(1−λ ) f (y), ∀(x,y,λ ) ∈ X ×X × [0,1]. (2.2.8)



30 2 Convex Optimization Theory

(x,f(x))

(y,f(y))

Fig. 2.3 The graph of a convex function

We say a function is strictly convex if (2.2.8) holds with strict inequality for any
x �= y and λ ∈ (0,1). We say that f is concave if − f is convex, and similarly that f
is strictly concave if − f is strictly concave.

Some examples of convex functions are given as follows.

(a) Exponential, f (x) = exp(ax) for any a ∈ R.
(b) Negative logarithm, f (x) =− logx with x > 0.
(c) Affine functions, f (x) = wT x+b.
(d) Quadratic functions, f (x) = 1

2 xT Ax+bT x with A ∈ Sn
+ or A � 0.

(e) Norms, f (x) = ‖x‖.
(f) Nonnegative weighted sums of convex functions. Let f1, f2, . . . , fk be con-

vex functions and w1,w2, . . . ,wk be nonnegative real numbers. Then f (x) =
∑k

i=1wi fi(x) is a convex function.

2.2.2 Differentiable Convex Functions

Suppose that a function f : X →R is differentiable over its domain. Then f is convex
if and only if

f (y)≥ f (x)+ 〈∇ f (x),y− x〉
for any x,y ∈ X , where ∇ f denotes the gradients of f . The function f (x) +
〈∇ f (x),y− x〉 is the first-order Taylor approximation of f at the point x. The above
first-order condition for convexity says that f is convex if and only if the tangent line
underestimates f everywhere in its domain. Similar to the definition of convexity,
f will be strictly convex if this condition holds with strict inequality, concave if the
inequality is reversed, and strictly concave if the reverse inequality is strict.

Suppose that a function f : X → R is twice differentiable. Then f is convex if
and only if its Hessian is positive semidefinite, i.e.,

∇2 f (x)� 0.
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In one dimension, this is equivalent to the condition that the second-order derivative
f ′′(x) is nonnegative. Again analogous to both the definition and the first-order con-
ditions for convexity, f is strictly convex if its Hessian is positive definite, concave
if the Hessian is negative semidefinite, and strictly concave if the Hessian is negative
definite. The function f is said to be strongly convex modulus μ with respect to the
norm ‖ · ‖ if

f (y)≥ f (x)+ 〈g,y− x〉+ μ
2 ‖y− x‖2

for some μ > 0. Clearly, strong convexity implies strict convexity.

2.2.3 Non-differentiable Convex Functions

Note that convex functions are not always differentiable everywhere over its domain.
For example, the absolute value function f (x) = |x| is not differentiable when x = 0.
In this subsection, we will introduce an important notion about convex functions,
i.e., subgradients, to generalize the gradients for differentiable convex functions.

Definition 2.3. g ∈ R
n is a subgradient of f at x ∈ X if for any y ∈ X

f (y)≥ f (x)+ 〈g,y− x〉.

The set of subgradients of f at x is called the subdifferential, denoted by ∂ f (x).

In order to show the existence of the subgradients for a convex function, we need
to use the epigraph of a function f : X → R given by

epi( f ) = {(x, t) ∈ X ×R : f (x)≤ t} .

It can be easily shown that f is convex if and only if epi( f ) is a convex set.
The next result establishes the existence of subgradients for convex functions.

Proposition 2.5. Let X ⊆ R
n be convex and f : X → R. If ∀x ∈ X, ∂ f (x) �= /0, then

f is convex. Moreover, if f is convex, then for any x ∈ ri(X), ∂ f (x) �= /0.

Proof. The first claim is obvious. Let g ∈ ∂ f (λx+(1−λ )y) for some λ ∈ [0,1].
Then by definition we have

f (y)≥ f (λx+(1−λ )y)+λ 〈g,y− x〉,
f (x)≥ f (λx+(1−λ )y)+(1−λ )〈g,x− y〉.

Multiplying the first inequality by 1−λ and the second one by λ , and then summing
them up, we show the convexity of f .

We now show that f has subgradients in the interior of X . We will construct such
a subgradient by using a supporting hyperplane to the epigraph of f . Let x ∈ X .
Then (x, f (x)) ∈ epi( f ). By the convexity of epi( f ) and the separating hyperplane
theorem, there exists (w,v) ∈ R

n ×R ((w,v) �= 0) such that
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〈w,x〉+ v f (x)≥ 〈w,y〉+ vt, ∀(y, t) ∈ epi( f ). (2.2.9)

Clearly, by tending t to infinity, we can see that v ≤ 0. Now let us assume that x is in
the interior of X . Then for ε > 0 small enough, y = x+ εw ∈ X , which implies that
v �= 0, since otherwise, we have 0 ≥ ε‖w‖2

2 and hence w = 0, contradicting with the
fact that (w,v) �= 0. Letting t = f (y) in (2.2.9), we obtain

f (y)≥ f (x)+ 1
v 〈w,y− x〉,

which implies that w/v is a subgradient of f at x.

Let f be a convex and differentiable function. Then by definition,

f (y)≥ 1
λ [ f ((1−λ )x+λy)− (1−λ ) f (x)]

= f (x)+ 1
λ [ f ((1−λ )x+λy)− f (x)] .

Tending λ to 0, we show that ∇ f (x) ∈ ∂ f (x).

Below we provide some basic subgradient calculus for convex functions. Observe
that many of them mimic the calculus for gradient computation.

(a) Scaling: ∂ (a f ) = a∂ f provided a > 0. The condition a > 0 makes function f
remain convex.

(b) Addition: ∂ ( f1 + f2) = ∂ ( f1)+∂ ( f2).
(c) Affine composition: if g(x) = f (Ax+b), then ∂g(x) = AT ∂ f (Ax+b).
(d) Finite pointwise maximum: if f (x) = maxi=1,...,m fi(x), then

∂ f (x) = conv
{∪i: fi(x)= f (x)∂ fi(x)

}
,

which is the convex hull of union of subdifferentials of all active i : fi(x) = f (x)
functions at x.

(e) General pointwise maximum: if f (x)=maxs∈S fs(x), then under some regularity
conditions (on S and fs),

∂ f (x) = cl
{

conv
(∪s: fs(x)= f (x)∂ fs(x)

)}
.

(f) Norms: important special case, f (x) = ‖x‖p. Let q be such that 1/p+1/q = 1,
then

∂ f (x) = {y : ‖y‖q ≤ 1andyT x = max{zT x : ‖z‖q ≤ 1}.
Other notions of convex analysis will prove to be useful. In particular the notion

of closed convex functions is convenient to exclude pathological cases: these are
convex functions with closed epigraphs (see Sect. 2.4 for more details).
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2.2.4 Lipschitz Continuity of Convex Functions

Our goal in this section is to show that convex functions are Lipschitz continuous
inside the interior of its domain.

We will first show that a convex function is locally bounded.

Lemma 2.2. Let f be convex and x0 ∈ intdom f . Then f is locally bounded, i.e.,
∃ε > 0 and M(x0,ε)> 0 such that

f (x)≤ M(x0,ε) ∀ x ∈ Bε(x0) := {x ∈ R
n : ‖x− x0‖2 ≤ ε}.

Proof. Since x0 ∈ intdom f , ∃ε > 0 such that the vectors x0 ± εei ∈ intdom f for
i = 1, . . . ,n, where ei denotes the unit vector along coordinate i. Also let Hε(x0) :=
{x ∈ R

n : ‖x− x0‖∞ ≤ ε} denote the hypercube formed by the vectors x0 ± εei. It
can be easily seen that Bε(x0)⊆ Hε(x0) and hence that

max
x∈Bε (x0)

f (x)≤ max
x∈Hε (x0)

f (x)≤ max
i=1,...,n

f (x0 ± εei) =: M(x0,ε).

Next we show that f is locally Lipschitz continuous.

Lemma 2.3. Let f be convex and x0 ∈ intdom f . Then f is locally Lipschitz, i.e.,
∃ε > 0 and M̄(x0,ε)> 0 such that

| f (y)− f (x0)| ≤ M̄(x0,ε)‖x− y‖, ∀y ∈ Bε(x0) := {x ∈ R
n : ‖x− x0‖2 ≤ ε}.

(2.2.10)

Proof. We assume that y �= x0 (otherwise, the result is obvious). Let α = ‖y−
x0‖2/ε . We extend the line segment connecting x0 and y so that it intersects the ball
Bε(x0), and then obtain two intersection points z and u (see Fig. 2.4). It can be easily
seen that

y = (1−α)x0 +αz, (2.2.11)

x0 = [y+αu]/(1+α). (2.2.12)

It then follows from the convexity of f and (2.2.11) that

f (y)− f (x0)≤ α[ f (z)− f (x0)] =
f (z)− f (x0)

ε ‖y− x0‖2

≤ M(x0,ε)− f (x0)
ε ‖y− x0‖2,

where the last inequality follows from Lemma 2.2. Similarly, by the convexity f ,
(2.2.11), and Lemma 2.2, we have

f (x0)− f (y)≤ ‖y− x0‖2
M(x0,ε)− f (x0)

ε .

Combining the previous two inequalities, we show (2.2.10) holds with M̄(x0,ε) =
[M(x0,ε)− f (x0)]/ε .
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Fig. 2.4 Local Lipschitz continuity of a convex function

The following simple result shows the relation between the Lipschitz continuity
of f and the boundedness of subgradients.

Lemma 2.4. The following statements hold for a convex function f .

(a) If x0 ∈ intdom f and f is locally Lipschitz (i.e., (2.2.10) holds), then ‖g(x0)‖ ≤
M̄(x0,ε) for any g(x0) ∈ ∂ f (x0).

(b) If ∃g(x0) ∈ ∂ f (x0) and ‖g(x0)‖2 ≤ M̄(x0,ε), then f (x0)− f (y)≤ M̄(x0,ε)‖x0−
y‖2.

Proof. We first show part (a). Let y = x0 + εg(x0)/‖g(x0)‖2. By the convexity of
f and (2.2.10), we have

ε‖g(x0)‖2 = 〈g(x0),y− x0〉 ≤ f (y)− f (x0)≤ M̄(x0,ε)‖y− x0‖= εM̄(x0,ε),

which implies part (a). Part (b) simply follows the convexity of f , i.e.,

f (x0)− f (y)≤ 〈g(x0),x0 − y〉 ≤ M̄(x0,ε)‖x0 − y‖2.

Below we state the global Lipschitz continuity of a convex function in its interior
of domain.

Theorem 2.4. Let f be a convex function and let K be a closed and bounded set
contained in the relative interior of the domain dom f of f . Then f is Lipschitz
continuous on K, i.e., there exists constant M such that

| f (x)− f (y)| ≤ MK‖x− y‖2 ∀x,y ∈ K. (2.2.13)

Proof. The result directly follows from the local Lipschitz continuity of a convex
function (see Lemmas 2.3 and 2.4) and the boundedness of K.

Remark 2.1. All three assumptions on K—i.e., (a) closedness, (b) boundedness, and
(c) K ⊂ ridom f —are essential, as it is seen from the following three examples:
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• f (x) = 1/x, dom f = (0,+∞), K = (0,1]. We have (b), (c) but not (a); f is neither
bounded, nor Lipschitz continuous on K.

• f (x) = x2, dom f = R, K = R. We have (a), (c) and not (b); f is neither bounded
nor Lipschitz continuous on K.

• f (x) = −√
x, dom f = [0,+∞), K = [0,1]. We have (a), (b) and not (c);

f is not Lipschitz continuous on K although is bounded. Indeed, we have
limt→+0

f (0)− f (t)
t = limt→+0 t−1/2 =+∞, while for a Lipschitz continuous f the

ratios t−1( f (0)− f (t)) should be bounded.

2.2.5 Optimality Conditions for Convex Optimization

The following results state the basic optimality conditions for convex optimization.

Proposition 2.6. Let f be convex. If x is a local minimum of f , then x is a global
minimum of f . Furthermore this happens if and only if 0 ∈ ∂ f (x).

Proof. It can be easily seen that 0 ∈ ∂ f (x) if and only if x is a global minimum
of f . Now assume that x is a local minimum of f . Then for λ > 0 small enough one
has for any y,

f (x)≤ f ((1−λ )x+λy)≤ (1−λ ) f (x)+λ f (y),

which implies that f (x)≤ f (y) and thus that x is a global minimum of f .

The above result can be easily generalized to the constrained case. Given a con-
vex set X ⊆ R

n and a convex function f : X → R, we intend to

min
x∈X

f (x).

We first define the indicator function of the convex set X , i.e.,

IX (x) :=

{
0, x ∈ X ,

∞, Otherwise.

By definition of subgradients, we can see that the subdifferential of IX is given by
the normal cone of X , i.e.,

∂ IX (x) = {w ∈ R
n|〈w,y− x〉 ≤ 0,∀y ∈ X}. (2.2.14)

Proposition 2.7. Let f : X → R be a convex function and X be a convex set. Then
x∗ is an optimal solution of minx∈X f (x) if and only if there exists g∗ ∈ ∂ f (x∗) such
that

〈g∗,y− x∗〉 ≥ 0,∀y ∈ X .
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Proof. Clearly the problem is equivalent to minx∈Rn f (x)+IX (x), where the IX de-
notes the indicator function of X . The results then immediately follow from (2.2.14)
and Proposition 2.6.

In particular, if X =R
n, then we must have 0 ∈ ∂ f (x), which reduces to the case

in Proposition 2.6.

2.2.6 Representer Theorem and Kernel

In this subsection, we introduce a very important application of the optimality con-
dition for convex optimization in machine learning.

Recall that many supervised machine learning models can be written in the fol-
lowing form:

f ∗ := min
x∈Rn

{
f (x) := ∑N

i=1L(xT ui,vi)+λ r(x)
}
, (2.2.15)

for some λ ≥ 0. For the sake of simplicity we assume that r(x) = ‖x‖2
2/2. It turns out

that under these assumptions, we can always write the solutions to problem (2.2.15)
as a linear combination of the input variables ui’s as shown in the following state-
ment.

Theorem 2.5. The optimal solution of (2.2.15) with r(x) = ‖x‖2
2/2 can be written

as
x∗ = ∑N

i=1αiu
(i)

for some real-valued weights αi.

Proof. Let L′(z,v) denote a subgradient of L w.r.t. z. Then by the chain rule of
subgradient computation, the subgradients of f can be written in the form of

f ′(x) = ∑N
i=1L′(xT u(i))u(i) +λx.

Noting that 0 ∈ ∂ f (x∗) and letting wi = L′(xT u(i)), there must exist wi’s such that

x =− 1
λ ∑N

i=1wiu
(i).

The result then follows by setting αi =−1/(λwi).

This result has some important consequence in machine learning. For any inner
product of xT u in machine learning models, we can replace it with

xT u = uT x = ∑N
i=1αi(u

(i))T u(i),

and then view these αi, i = 1, . . . ,N, as unknown variables (or parameters).
More generally, we may consider a nonlinear transformation of our original input

variables u. Recall in our regression example in Chap. 1, we have an input variable
u, i.e., the rating of a friend (say Judy), and we can consider regression using the
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features u, u2, and u3 to obtain a cubic function. We can use φ(u) to define such a
nonlinear mapping from the original input to a new feature space.

Rather than learning the parameters associated with the original input variables
u, we may instead learn using these expanded features φ(u). To do so, we simply
need to go over our previous models, and replace u everywhere in it with φ(u).

Since the model can be written entirely in terms of the inner products 〈u,z〉, we
can replace all those inner products with 〈φ(u),φ(z)〉. Given a feature mapping φ ,
let us define the so-called kernel

K(u,z) = φ(u)T φ(z).

Then, we replace everywhere we previously had 〈u,z〉 with K(u,z). In particular, we
can write the new objective function as

Φ(α) = f (x) = ∑N
i=1L(xT u(i),v(i))+ λ

2 ‖x‖2
2

= ∑N
i=1L

(
φ(u(i))T ∑N

j=1α jφ(u( j)),vi

)
+ λ

2 ‖∑N
j=1α jφ(u( j))‖2

2

= ∑N
i=1L

(
φ(u(i))T ∑N

j=1α jφ(u( j)),vi

)

+ λ
2 ∑N

i=1∑N
j=1αiα jφ(u(i))T φ(u( j))

= ∑N
i=1L

(
∑N

j=1α jK(u(i),u( j)),vi

)

+ λ
2 ∑N

i=1∑N
j=1αiα jK(u(i),u( j)).

In this way, we can write the objective function in terms of the Kernel matrix

K = {K(u(i),v( j))}N
i, j=1.

Even more interestingly, in many cases, we do not need to compute the nonlinear
mapping φ(u) explicitly for every u, since the Kernel might be easier to compute
than φ . One commonly used Kernel is the Gaussian or Radial Basis Function (RBF)
kernel given by

K(u,z) = exp
(
− 1

2τ2 ‖u− z‖2
2

)

applicable to data in any dimension and the other one is the min-kernel given by
K(x,z) = min(x,z) applicable to data in R.

2.3 Lagrange Duality

In this section, we consider differentiable convex optimization problems of the form

f ∗ ≡ minx∈X f (x)
s.t. gi(x)≤ 0, i = 1, . . . ,m,

h j(x) = 0, j = 1, . . . , p,
(2.3.16)
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where X ⊆ R
n is a closed convex set, f : X → R and gi : X → R are differentiable

convex functions, and h j : Rn → R are affine functions. Our goal is to introduce
Lagrange duality and a few optimality conditions for these convex optimization
problems with function constraints.

2.3.1 Lagrange Function and Duality

We define the Lagrangian function L for (2.3.16) as

L(x,λ ,y) = f (x)+∑m
i=1λigi(x)+∑p

j=1y jh j(x),

for some λi ∈ R+, i = 1, . . . ,m, and y j ∈ R, j = 1, . . . , p. These λi’s and y j’s are
called dual variables or Lagrange multipliers.

Intuitively, the Lagrangian function L can be viewed as a relaxed version of the
objective function in the original problem (2.3.16) by allowing violation of the con-
straints (gi(x)≤ 0 and h j(x)≤ 0).

Let us consider the minimization of L(x,λ ,y) w.r.t. x. Suppose that λ ≥ 0 and
y ∈ R

p are given. Let us define

φ(λ ,y) := min
x∈X

L(x,λ ,y).

Clearly, for any feasible point x to (2.3.16) (i.e., x ∈ X , gi(x) ≤ 0, and h j(x) = 0),
we have

L(x,λ ,y) = f (x)+∑m
i=1λigi(x)+∑p

j=1y jh j(x)

= f (x)+∑m
i=1λigi(x)≤ f (x).

In particular, letting x = x∗ be the optimal solution of (2.3.16), we must have

φ(λ ,y)≤ f ∗.

In other words, φ(λ ,y) gives us a lower bound on the optimal value f ∗. In order to
obtain the strongest lower bound, we intend to maximize φ(λ ,y) w.r.t. λ ≥ 0 and
y ∈ R

p, and thus define the Lagrange dual as

φ ∗ ≡ max
λ≥0,y

{
φ(λ ,y) := min

x∈X
L(x,λ ,y)

}
. (2.3.17)

By construction, we must have
φ ∗ ≤ f ∗.

This relation is the so-called weak duality. What is more interesting is that under cer-
tain conditions, we have φ ∗ = f ∗ as stated in Theorem 2.6. The proof of this result,
however, is more involved. Hence, we provide this proof separately in Sect. 2.3.2.
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Theorem 2.6. Suppose that (2.3.16) is below bounded and that there exists x̄ ∈ intX
s.t. g(x̄)< 0 and h(x̄) = 0. Then the Lagrange dual is solvable and we must have

φ ∗ = f ∗.

The above theorem says that as long as the primal problem (2.3.16) has a strictly
feasible solution (called Slater condition), the optimal value for the Lagrange dual
must be equal to the optimal value of the primal. This result is called strong duality.
In practice, nearly all convex problems satisfy this type of constraint qualification,
and hence the primal and dual problems have the same optimal value.

2.3.2 Proof of Strong Duality

In this subsection, we provide a proof for the strong duality for convex optimization.
The proof follows from the separation theorem and the consequent convex theorem
on alternatives. For the sake of simplicity, we focus on the case when there exist
only nonlinear inequality constraints. The readers can easily adapt the proof to the
case when affine constraints do exist, or even further refine the results if there only
exist affine constraints.

Before proving Theorem 2.6, we will first establish the Convex Theorem on Al-
ternative (CTA). Consider a system of constraints on x

f (x) < c,
g j(x) ≤ 0, j = 1, . . . ,m,

x ∈ X ,
(I)

along with system of constraints on λ :

inf
x∈X

[ f (x)+∑m
j=1λ jg j(x)] ≥ c,

λ j ≥ 0, j = 1, . . . ,m.
(II)

We first discuss the trivial part of the CTA.

Proposition 2.8. If (II) is solvable, then (I) is insolvable.

What is more interesting is that the reverse statement is also true under the slater
condition.

Proposition 2.9. If (I) is insolvable and the subsystem

g j(x) < 0, j = 1, . . . ,m,
x ∈ X

is solvable, then (II) is solvable.
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Proof. Assume that (I) has no solutions. Consider two sets S and T in R
m+1:

S :=
{

u ∈ R
m+1 : u0 < c,u1 ≤ 0, . . . ,um ≤ 0

}
,

T :=

⎧
⎪⎪⎨
⎪⎪⎩

u ∈ R
m+1 : ∃x ∈ X :

f (x) ≤ u0

g1(x) ≤ u1

..........
gm(x) ≤ um

⎫
⎪⎪⎬
⎪⎪⎭
.

First observe that S and T are nonempty convex sets. Moreover, S and T do not
intersect (otherwise (I) would have a solution). By Theorem 2.2, S and T can be
separated: ∃(a0, . . . ,am) �= 0 such that

inf
u∈T

aT u ≥ sup
u∈S

aT u

or equivalently,

inf
x∈X

inf
u0 ≥ f (x)
u1 ≥ g1(x)

...
um ≥ gm(x)

[a0u0 +a1u1 + . . .+amum]

≥ sup
u0 < c
u1 ≤ 0

...
um ≤ 0

[a0u0 +a1u1 + . . .+amum].

In order to bound the RHS, we must have a ≥ 0, whence

inf
x∈X

[a0 f (x)+a1g1(x)+ . . .+amgm(x)]≥ a0c. (2.3.18)

Finally, we observe that a0 > 0. Indeed, otherwise 0 �= (a1, . . . ,am)≥ 0 and

inf
x∈X

[a1g1(x)+ . . .+amgm(x)]≥ 0,

while ∃x̄ ∈ X : g j(x̄) < 0 for all j. Now, dividing both sides of (2.3.18) by a0, we
have

inf
x∈X

[
f (x)+∑m

j=1

(
a j
a0

)
g j(x)

]≥ c.

By setting λ j = a j/a0 we obtain the result.

We are now ready to prove the strong duality.
Proof of Theorem 2.6. The system

f (x)< f ∗, g j(x)≤ 0, j = 1, . . . ,m, x ∈ X

has no solutions, while the system
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g j(x)< 0, j = 1, . . . ,m, x ∈ X

has a solution. By CTA,

∃λ ∗ ≥ 0 : f (x)+∑ jλ ∗
j g j(x)≥ f ∗ ∀x ∈ X ,

whence
φ(λ ∗)≥ f ∗.

Combined with Weak Duality, the above inequality says that

f ∗ = φ(λ ∗) = φ ∗.

2.3.3 Saddle Points

Now let us examine some interesting consequences of strong duality. In particular,
we can derive a few optimality conditions for convex optimization in order to check
whether an x∗ ∈ X is optimal to (2.3.16) or not.

The first one is given in the form of a pair of saddle points.

Theorem 2.7. Let x∗ ∈ X be given.

(a) If x∗ can be extended, by a λ ∗ ≥ 0 and y∗ ∈R
p, to a saddle point of the Lagrange

function on X ×{λ ≥ 0}:

L(x,λ ∗,y∗)≥ L(x∗,λ ∗,y∗)≥ L(x∗,λ ,y) ∀(x ∈ X ,λ ≥ 0,y ∈ R
p),

then x∗ is optimal for (2.3.16).
(b) If x∗ is optimal for (2.3.16) which is convex and satisfies the Slater condition,

then x∗ can be extended, by a λ ∗ ≥ 0 and y∗ ∈ R
p, to a saddle point of the

Lagrange function on X ×{λ ≥ 0}×R
p.

Proof. We first prove part (a). Clearly,

sup
λ≥0,y

L(x∗,λ ,y) =
{
+∞, x∗ is infeasible
f (x∗), otherwise

Thus, λ ∗ ≥ 0, L(x∗,λ ∗,y∗)≥ L(x∗,λ ,y) ∀λ ≥ 0∀y is equivalent to

g j(x
∗)≤ 0∀ j, λ ∗

i gi(x
∗) = 0∀i, h j(x

∗) = 0∀ j.

Consequently, L(x∗,λ ∗,y∗) = f (x∗), hence

L(x,λ ∗,y∗)≥ L(x∗,λ ∗,y∗) ∀x ∈ X
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reduces to
L(x,λ ∗,y∗)≥ f (x∗) ∀x.

Since for λ ≥ 0 and y, one has f (x)≥ L(x,λ ,y) for all feasible x, the above inequal-
ity then implies that

x is feasible ⇒ f (x)≥ f (x∗).

We now show part (b). By Lagrange Duality, ∃λ ∗ ≥ 0, y∗:

f (x∗) = φ(λ ∗,y∗)≡ inf
x∈X

[
f (x)+∑iλ ∗

i gi(x)+∑ jy
∗
jh j(x)

]
. (2.3.19)

Since x∗ is feasible, we have

inf
x∈X

[
f (x)+∑iλ ∗

i gi(x)+∑ jy
∗
jh j(x)

]≤ f (x∗)+∑iλ ∗
i gi(x

∗)≤ f (x∗).

By (2.3.19), the last ” ≤ ” here should be ” = ”. This identity, in view of the fact that
λ ∗ ≥ 0, is possible if and only if λ ∗

j g j(x∗) = 0∀ j.T here f ore,wehave

f (x∗) = L(x∗,λ ∗,y∗)≥ L(x∗,λ ,y) ∀λ ≥ 0,∀y ∈ R
p,

where the last inequality follows from the definition of L (or weak duality). Now
(2.3.19) reads L(x,λ ∗,y∗)≥ f (x∗) = L(x∗,λ ∗,y∗).

2.3.4 Karush–Kuhn–Tucker Conditions

We are now ready to derive the Karush–Kuhn–Tucker (KKT) optimality conditions
for convex programming.

Theorem 2.8. Let (2.3.16) be a convex program, let x∗ be its feasible solution, and
let the functions f , g1,. . . ,gm be differentiable at x∗. Then

(a) Exist Lagrange multipliers λ ∗ ≥ 0 and y∗ such that the following KKT conditions

∇ f (x∗)+∑m
i=1λ ∗

i ∇gi(x∗)+∑p
i=1y∗j∇h j(x∗) ∈ N∗

X (x
∗) [stationarity]

λ ∗
i gi(x∗) = 0, 1 ≤ i ≤ m [complementary slackness]

gi(x∗)≤ 0,1 ≤ i ≤ m;h j(x∗) = 0, 1 ≤ j ≤ p [primal feasibility]

are sufficient for x∗ to be optimal.
(b) If (2.3.16) satisfies restricted Slater condition: ∃x̄ ∈ rintX : gi(x̄) ≤ 0,h j(x̄) = 0

for all constraints and g j(x̄) < 0 for all nonlinear constraints, then the KKT
conditions are necessary and sufficient for x∗ to be optimal.

Proof. We first prove part (a). Indeed, complementary slackness plus λ ∗ ≥ 0
ensure that

L(x∗,λ ∗,y∗)≥ L(x∗,λ ,y) ∀λ ≥ 0,∀y ∈ R
p.
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Further, L(x,λ ∗,y∗) is convex in x ∈ X and differentiable at x∗ ∈ X , so that the
stationarity condition implies that

L(x,λ ∗,y∗)≥ L(x∗,λ ∗,y∗) ∀x ∈ X .

Thus, x∗ can be extended to a saddle point of the Lagrange function and therefore is
optimal for (2.3.16).

We now show that part (b) holds. By Saddle Point Optimality condition, from
optimality of x∗ it follows that ∃λ ∗ ≥ 0 and y∗ ∈R

p such that (x∗,λ ∗,y∗) is a saddle
point of L(x,λ ,y) on X ×{λ ≥ 0}×R

p. This is equivalent to h j(x∗) = 0,

λ ∗
i gi(x

∗) = 0 ∀i,

and
min
x∈X

L(x,λ ∗,y∗) = L(x∗,λ ∗,y∗).

Since the function L(x,λ ∗,y∗) is convex in x ∈ X and differentiable at x∗ ∈ X , the
last identity implies the stationarity condition.

Let us look at one example.

Example 2.1. Assuming ai > 0, p ≥ 1, show that the solution of the problem

min
x

{
∑i

ai
xi

: x > 0,∑ix
p
i ≤ 1

}

is given by

x∗i =
a1/(p+1)

i(
∑ ja

p/(p+1)
j

)1/p .

Proof. Assuming x∗ > 0 is a solution such that ∑i(x
∗
i )

p = 1, the KKT stationarity
condition reads

∇x

{
∑i

ai
xi
+λ (∑ix

p
i −1)

}
= 0 ⇔ ai

x2
i
= pλxp−1

i

whence xi = [ai/(pλ )]1/(p+1). Since ∑ix
p
i should be 1, we get

x∗i =
a1/(p+1)

i(
∑ ja

p/(p+1)
j

)1/p .

This x∗ is optimal because the problem is convex and the KKT conditions are satis-
fied at this point.

By examining the KKT conditions, we can obtain explicit solutions for many
simple convex optimization problems, which can be used as subproblems in iterative
algorithms for solving more complicated convex or even nonconvex optimization
problems.
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2.3.5 Dual Support Vector Machine

In this subsection, we discuss one interesting application of the optimality condi-
tions for convex programming in support vector machines.

Recall that the support vector machine can be formulated as

minw,b
1
2‖w‖2

s.t. v(i)(wT u(i) +b)≥ 1, i = 1, . . . ,m.

We can write the constraints equivalently as

gi(w,b) =−v(i)(wT u(i) +b)+1 ≤ 0.

Thus Lagrangian function L for our problem is given by

L(w,b,λ ) = 1
2‖w‖2 −∑N

i=1λi[v
(i)(wT u(i) +b)−1].

For fixed λi’s, the problem is unconstrained. Let us minimize L(w,b,λ ) w.r.t. w and
b. Setting the derivatives of L w.r.t. w and b to zero, i.e.,

∇wL(w,b,λ ) = w−∑N
i=1λiv

(i)u(i) = 0,

we have
w = ∑m

i=1λiv
(i)u(i). (2.3.20)

Moreover, we have
∇bL(w,b,λ ) = ∑m

i=1λiv
(i) = 0. (2.3.21)

Plugging the above definition of w into L(w,b,λ ), we obtain

L(w,b,λ ) = ∑N
i=1λi − 1

2 ∑N
i, j=1v(i)v( j)λiλ j(u

(i))T u( j)−b∑m
i=1λiv

(i).

Since by (2.3.21), the last term must be zero, we have

L(w,b,λ ) = ∑N
i=1λi − 1

2 ∑N
i, j=1v(i)v( j)λiλ j(u

(i))T u( j).

Therefore, we can write the dual SVM problem as

maxλ ∑N
i=1λi − 1

2 ∑N
i, j=1v(i)v( j)λiλ j(u(i))T u( j)

s.t. λi ≥ 0, i = 1, . . . ,m
∑N

i=1λiv(i) = 0.

Once we find the optimal λ ∗, we can use (2.3.20) to compute optimal w∗. Moreover,
with optimal w∗, we can easily solve the primal problem to find the intercept term b
as

b∗ =−max
i:v(i)=−1

w∗T v(i)+min
i:v(i)=1

w∗T v(i)

2 .
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It is also interesting to observe that the dual problem only depends on the inner
product and we can generalize it easily by using the Kernel trick (Sect. 2.2.6).

2.4 Legendre–Fenchel Conjugate Duality

2.4.1 Closure of Convex Functions

We can extend the domain of a convex function f : X → R to the whole space R
n

by setting f (x) = +∞ for any x /∈ X . In view of the definition of a convex function
in (2.2.8), and our discussion about the epigraphs in Sect. 2.2, a function f : Rn →
R∪{+∞} is convex if and only if its epigraph

epi( f ) = {(x, t) ∈ R
n+1 : f (x)≤ t}

is a nonempty convex set.
As we know, closed convex sets possess many nice topological properties. For

example, a closed convex set is comprised of the limits of all converging sequences
of elements. Moreover, by the Separation Theorem, a closed and nonempty convex
set X is the intersection of all closed half-spaces containing X . Among these half-
spaces, the most interesting ones are the supporting hyperplanes touching X on the
relative boundary.

In functional Language, the “closedness” of epigraph corresponds to a special
type of continuity, i.e., the lower semicontinuity. Let f : Rn →R∪{+∞} be a given
function (not necessarily convex). We say that f is lower semicontinuous (l.s.c.) at
a point x̄, if for every sequence of points {xi} converging to x̄ one has

f (x̄)≤ lim inf
i→∞

f (xi).

Of course, liminf of a sequence with all terms equal to +∞ is +∞. f is called lower
semicontinuous, if it is lower semicontinuous at every point.

A trivial example of a lower semicontinuous function is a continuous one. Note,
however, that a semicontinuous function is not necessarily continuous. What it is
obliged is to make only “jumps down.” For example, the function

f (x) =

{
0, x �= 0

a, x = 0

is lower semicontinuous if a ≤ 0 (“jump down at x = 0 or no jump at all”), and is
not lower semicontinuous if a > 0 (“jump up”).

The following statement links lower semicontinuity with the geometry of the
epigraph.
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Proposition 2.10. A function f defined on R
n and taking values from R∪{+∞} is

lower semicontinuous if and only if its epigraph is closed (e.g., due to its emptiness).

Proof. We first prove the “only if” part (from lower semicontinuity to closed epi-
graph). Let (x, t) be the limit of the sequence {xi, ti}⊂ epi f . Then we have f (xi)≤ ti.
Thus the following relation holds: t = limi→∞ ti ≥ limi→∞ f (xi)≥ f (x).

We now show the “if” part (from closed epigraph to lower semicontinuity). Sup-
pose for contradiction that f (x) > γ > limi→∞ f (xi) for some constant γ , where xi

converges to x. Then there exists a subsequence {xik} such that f (xik) ≤ γ for all
ik. Since the epigraph is closed, then x must belong to this set, which implies that
f (x)≤ γ , which is a contradiction.

As an immediate consequence of Proposition 2.10, the upper bound

f (x) = sup
α∈A

fα(x)

of arbitrary family of lower semicontinuous functions is lower semicontinuous. In-
deed, the epigraph of the upper bound is the intersection of the epigraphs of the
functions forming the bound, and the intersection of closed sets always is closed.

Now let us look at proper lower semicontinuous (l.s.c.) convex functions. Ac-
cording to our general convention, a convex function f is proper if f (x) < +∞ for
at least one x and f (x)>−∞ for every x. This implies that proper convex functions
have convex nonempty epigraphs. Also as we just have seen, “lower semicontin-
uous” means “with closed epigraph.” Hence proper l.s.c. convex functions always
have closed convex nonempty epigraphs.

Similar to the fact that a closed convex set is intersection of closed half-spaces,
we can provide an outer description of a proper l.s.c. convex function. More specif-
ically, we can show that a proper l.s.c. convex function f is the upper bound of
all its affine minorants given in the form of t ≥ dT x− a. Moreover, at every point
x̄ ∈ ridom f from the relative interior of the domain f , f is even not the upper bound,
but simply the maximum of its minorants: there exists an affine function fx̄(x) which
underestimates f (x) everywhere in R

n and is equal to f at x = x̄. This is exactly the
first-order approximation f (x̄)+〈g(x̄),x− x̄〉 given by the definition of subgradients.

Now, what if the convex function is not lower semicontinuous (see Fig. 2.5)?
A similar question also arises about convex sets—what to do with a convex set
which is not closed? To deal with these convex sets, we can pass from the set to
its closure and thus get a “normal” object which is very “close” to the original one.
Specifically, while the “main part” of the original set—its relative interior—remains
unchanged, we add a relatively small “correction,” i.e., the relative boundary, to the
set. The same approach works for convex functions: if a proper convex function f
is not l.s.c. (i.e., its epigraph, being convex and nonempty, is not closed), we can
“correct” the function—replace it with a new function with the epigraph being the
closure of epi( f ). To justify this approach, we should make sure that the closure of
the epigraph of a convex function is also an epigraph of such a function.

Thus, we conclude that the closure of the epigraph of a convex function f is
the epigraph of certain function, referred to as the closure cl f of f . Of course, this
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Fig. 2.5 Example for an upper semicontinuous function. The domain of this function is [0,+∞),
and it “jumps up” at 0. However, the function is still convex

latter function is convex (its epigraph is convex—it is the closure of a convex set),
and since its epigraph is closed, cl f is proper. The following statement gives direct
description of cl f in terms of f :

(i) For every x one has cl f (x) = lim
r→+0

inf
x′:‖x′−x‖2≤r

f (x′). In particular,

f (x)≥ cl f (x)

for all x, and
f (x) = cl f (x)

whenever x ∈ ridom f , or equivalently whenever x �∈ cldom f . Thus, the “cor-
rection” f �→ cl f may vary f only at the points from the relative boundary of
dom f ,

dom f ⊂ domcl f ⊂ cldom f ,

hence
ridom f = ridomcl f .

(ii) The family of affine minorants of cl f is exactly the family of affine minorants
of f , so that

cl f (x) = sup{φ(x) : φ is an affine minorant of f},

due to the fact that cl f is l.s.c. and is therefore the upper bound of its affine mi-
norants, and the sup in the right-hand side can be replaced with max whenever
x ∈ ridomcl f = ridom f .
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2.4.2 Conjugate Functions

Let f be a convex function. We know that f “basically” is the upper bound of all
its affine minorants. This is exactly the case when f is proper, otherwise the cor-
responding equality takes place everywhere except, perhaps, some points from the
relative boundary of dom f . Now, when an affine function dT x−a is an affine mino-
rant of f ? It is the case if and only if

f (x)≥ dT x−a

for all x or, which is the same, if and only if

a ≥ dT x− f (x)

for all x. We see that if the slope d of an affine function dT x− a is fixed, then in
order for the function to be a minorant of f we should have

a ≥ sup
x∈Rn

[dT x− f (x)].

The supremum in the right-hand side of the latter relation is certain function of d
and this function, denoted by f ∗, is called the Legendre–Fenchel conjugate of f :

f ∗(d) = sup
x∈Rn

[dT x− f (x)].

Geometrically, the Legendre–Fenchel transformation answers the following ques-
tion: given a slope d of an affine function, i.e., given the hyperplane t = dT x in
R

n+1, what is the minimal “shift down” of the hyperplane which places it below the
graph of f ?

From the definition of the conjugate it follows that this is a proper l.s.c. con-
vex function. Indeed, we lose nothing when replacing supx∈Rn [dT x − f (x)] by
supx∈dom f [d

T x− f (x)], so that the conjugate function is the upper bound of a family
of affine functions. This bound is finite at least at one point, namely, at every d com-
ing from affine minorant of f , and we know that such a minorant exists. Therefore,
f ∗ must be a proper l.s.c. convex function, as claimed.

The most elementary (and the most fundamental) fact about the conjugate func-
tion is its symmetry.

Proposition 2.11. Let f be a convex function. Then ( f ∗)∗ = cl f . In particular, if f
is l.s.c., then ( f ∗)∗ = f .

Proof. The conjugate function of f ∗ at the point x is, by definition,

sup
d∈Rn

[xT d − f ∗(d)] = sup
d∈Rn,a≥ f ∗(d)

[dT x−a].

The second sup here is exactly the supremum of all affine minorants of f due to the
origin of the Legendre–Fenchel transformation: a ≥ f ∗(d) if and only if the affine
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form dT x−a is a minorant of f . The result follows since we already know that the
upper bound of all affine minorants of f is the closure of f .

The Legendre–Fenchel transformation is a very powerful tool—this is a “global”
transformation, so that local properties of f ∗ correspond to global properties of f .

• d = 0 belongs to the domain of f ∗ if and only if f is below bounded, and if it is
the case, then f ∗(0) =− inf f ;

• if f is proper and l.s.c., then the subgradients of f ∗ at d = 0 are exactly the
minimizers of f on R

n;
• dom f ∗ is the entire R

n if and only if f (x) grows, as ‖x‖2 → ∞, faster than ‖x‖2:
there exists a function r(t)→ ∞, as t → ∞ such that

f (x)≥ r(‖x‖2) ∀x.

Thus, whenever we can compute explicitly the Legendre–Fenchel transformation of
f , we get a lot of “global” information on f .

Unfortunately, the more detailed investigation of the properties of Legendre–
Fenchel transformation is beyond our scope. Below we simply list some facts and
examples.

• From the definition of Legendre transformation,

f (x)+ f ∗(d)≥ xT d ∀x,d.

Specifying here f and f ∗, we get certain inequality, e.g., the following one:
[Young’s Inequality] if p and q are positive reals such that 1

p +
1
q = 1, then

|x|p
p + |d|q

q ≥ xd ∀x,d ∈ R

• The Legendre–Fenchel transformation of the function

f (x)≡−a

is the function which is equal to a at the origin and is +∞ outside the origin;
similarly, the Legendre–Fenchel transformation of an affine function d̄T x− a is
equal to a at d = d̄ and is +∞ when d �= d̄;

• The Legendre–Fenchel transformation of the strictly convex quadratic form

f (x) = 1
2 xT Ax

(A � 0) is the quadratic form

f ∗(d) = 1
2 dT A−1d

• The Legendre–Fenchel transformation of the Euclidean norm

f (x) = ‖x‖2

is the function which is equal to 0 in the closed unit ball centered at the origin
and is +∞ outside the ball.
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2.5 Exercises and Notes

Exercises.

1. Determine whether the following sets are convex or not.

(a) {x ∈ R
2 : x1 + i2x2 ≤ 1, i = 1, . . . ,10}.

(b) {x ∈ R
2 : x2

1 +2ix1x2 + i2x2
2 ≤ 1, i = 1, . . . ,10}.

(c) {x ∈ R
2 : x2

1 + ix1x2 + i2x2
2 ≤ 1, i = 1, . . . ,10}.

(d) {x ∈ R
2 : x2

1 +5x1x2 +4x2
2 ≤ 1}.

(e) {x ∈ R
2 : exp{x1} ≤ x2}.

(f) {x ∈ R
2 : exp{x1} ≥ x2}.

(g) {x ∈ R
n : ∑n

i=1x2
i = 1}.

2. Assume that X = {x1, . . . ,xk} and Y = {y1, . . . ,ym} are finite sets in R
n, with

k+m ≥ n+2, and all the points x1, . . . ,xk,y1, . . . ,ym are distinct. Assume that for
any subset S ⊂ X ∪Y comprised of n+2 points the convex hulls of the sets X ∩S
and Y ∩S do not intersect. Then the convex hulls of X and Y also do not intersect.
(Hint: Assume on contrary that the convex hulls of X and Y intersect, so that

∑k
i=1λixi = ∑m

j=1μ jy j

for certain nonnegative λi, ∑iλi = 1, and certain nonnegative μ j , ∑ jμ j = 1, and look at the

expression of this type with the minimum possible total number of nonzero coefficients λi, μ j .)

3. Prove that the following functions are convex on the indicated domains:

(a) x2

y on {(x,y) ∈ R
2 | y > 0},

(b) ln(exp{x}+ exp{y}) on the 2D plane.

4. A function f defined on a convex set Q is called log-convex on Q, if it takes real
positive values on Q and the function ln f is convex on Q. Prove that

(a) a log-convex on Q function is convex on Q,
(b) the sum (more generally, linear combination with positive coefficients) of two

log-convex functions on Q also is log-convex on the set.

5. Show the following statements related to the computation of subgradients.

(a) The subgradient of f (x) =
√

x does not exist at x = 0.
(b) The subdifferential of f (x) = |x| is given by [−1,1].
(c) Let u and v be given. What is the subdifferential of f (w,b) =max{0,v(wT u+

b)}+ρ‖w‖2
2 at w and b.

(d) The subdifferential of f (x) = ‖x‖ is given by ∂ f (0) = {x ∈R
n|‖x‖ ≤ 1} and

∂ f (x) = {x/‖x‖} for x �= 0.

6. Find the minimizer of a linear function

f (x) = cT x
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on the set
Vp = {x ∈ R

n | ∑n
i=1|xi|p ≤ 1},

where p, 1 < p < ∞, is a parameter. What happens with the solution when the
parameter becomes 0.5?

7. Let a1, . . . ,an > 0, α,β > 0. Solve the optimization problem

min
x

{
∑n

i=1
ai
xα

i
: x > 0,∑ix

β
i ≤ 1

}
.

8. Consider the optimization problem

max
x,y

{ f (x,y) = ax+by+ ln(lny− x)+ ln(y) : (x,y) ∈ X = {y > exp{x}}} ,

where a,b ∈ R are parameters. Is the problem convex? What is the domain in
space of parameters where the problem is solvable? What is the optimal value?
Is it convex in the parameters?

9. Let a1, . . . ,an be positive reals, and let 0 < s < r be two reals. Find maximum
and minimum of the function

∑n
i=1ai|xi|r

on the surface
∑n

i=1|xi|s = 1.

Notes. Further readings on convex analysis and convex optimization theory can be
found on the monographs [50, 118], classic textbooks [12, 16, 79, 97, 104, 107, 120],
and online course materials [92].
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