
1 Normal cone

Let C ⊂ Rn be a convex set with x ∈ C. The normal cone to C at x is

N(x;C) := {v ∈ Rn| 〈v, x− x〉 ≤ 0, ∀x ∈ C}

Proposition: Let x ∈ C, where C is a convex subset of n. Then we have:

1. N(x;C) is a closed convex cone containing the origin.

2. If x is a interior point, then N(x;C) = {0}.

Consider a linear mapping A : Rn → Rp. The adjoint mapping A∗ : Rp →
Rn is defined by

〈Ax, y〉 = 〈x,A∗y〉, ∀x ∈ Rn, y ∈ Rp

Proposition: Let B : Rn → Rp be defined by B(x) = Ax + b, where A is linear.
Given c ∈ R, consider

C := {x ∈ Rn| Bx = c}

For and x ∈ C, we have

N(x;C) = {v ∈ Rn| v = A∗y, y ∈ Rp} = im(A∗)

Proof. Let v ∈ N(x;C). Let u ∈ ker(A), then A(x − u) + b = Ax + b = c.
Hence 〈v, u〉 ≥ 0 for all u ∈ ker(A). But −u ∈ ker(A), so 〈v, u〉 = 0 for all
u ∈ ker(A).
Suppose there is no y ∈ Rp with v = A∗y. So v /∈ A∗(Rp) := W. Since W is
nonempty, closed and convex, there exists a nonzero u such that

sup{〈u,w〉| w ∈W} < 〈u, v〉.

Since 0 ∈W , so 〈u, v〉 > 0.
Also 〈u,A∗(ty)〉 < 〈u, v〉, ∀t ∈ R, ∀y ∈ Rp. Therefore 〈u,A∗y〉 = 0 (other-
wise, we can choose t so that the above inequality doesn’t hold).
Therefore, 〈Au, y〉 = 0 for all y. So Au = 0. Hence u ∈ kerA and 〈v, u〉 > 0.
This is a contradiction.
Therefore, N(x;C) ⊂ im(A∗).
Conversely, suppose v = A∗y. For any x ∈ C, we have

〈v, x− x〉 = 〈A∗y, x− x〉 = 〈y,Ax−Ax〉 = 0

Hence v ∈ N(x;C).
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