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1 Complex Fourier series

Definition 1.1. For a 1-periodic function f : R Ñ C, we define its Fourier series as

the function f̂ : Z Ñ C given by

f̂pkq “

ż 1

0

fpxqe´2πikxdx

The value f̂pkq is sometimes called the k-th Fourier coefficient.

Proposition 1.2. For a 1-periodic function f we have

1. if hpxq :“ fpx ` rq, for some r P R, then ĥpkq “ f̂pkq ¨ e2πikr

2. if hpxq :“ fpxq ¨ e2πimx for some m P Z, then ĥpkq “ f̂pk ´ mq

And like before, the value of the complex Fourier series is equal to that of the function

itself under some conditions.

Theorem 1.3. For any 1 periodic piecewise smooth f , we have

`8
ÿ

k“´8

f̂pkqe2πikx “
1

2

`

fpx`q ` fpx´q
˘

Another Theorem is Poisson summation formula. Proof would be given in the tutorial.
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Theorem 1.4. For a nice enough f P L1pRq,

`8
ÿ

k“´8

fpkq “

`8
ÿ

k“´8

f̂pkq

Hint: apply Theorem 1.2 to φptq “
`8
ř

k“´8

fpt ` kq

Next, we extend our definition of the Fourier series to functions whose period is not

necessarily 1.

Definition 1.5. For a function f : R Ñ C with some period λ ą 0, we define its

Fourier series as F̂ : 1
λZ Ñ C by

f̂pkq “
1

λ

ż λ

0

fpxqe´2πikxdx

This definition is derived by transforming a L periodic function to a 1-periodic function

by scaling gpxq :“ fpλxq. And correspondingly, we have

Theorem 1.6.

fpxq “
ÿ

kP 1
λZ

f̂pkqe2πikx

Theorem 1.7. For any λ ą 0 and any nice enough function f ,

ÿ

kPλZ
fpxq “

1

λ

ÿ

yP 1
λZ

f̂pyq

Hint: apply Theorem 1.6 to φpxq “
`8
ř

j“´8

fpx ` λjq

Here are some questions.

Question 1.1. Let fpxq “ e´πx2

, we have for any λ ą 0,

`8
ÿ

k“´8

e´πpλkq
2

“
1

λ

8
ÿ

k“´8

e´πp k
λ q

2
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2 Fourier transform in general case

2.1 n-dimensional case

In this subsection, we extend the definition of the Fourier series to the n-dimensional case.

We consider the Fourier series of functions on Rn that are Zn-periodic, namely functions

f : Rn Ñ C such that fpx ` yq “ fpxq for any x P Rn, y P Zn.

Definition 2.1. For a Zn-periodic function f , its Fourier series f̂ : Zn Ñ C is given

by

f̂pyq “ f̂py1, ..., ynq “

ż

r0,1qn
fpxqe´2πixx,yydx “

ż

r0,1qn
fpx1, ..., xnqe´2πi

ř

xiyidx1...dxn

Similar theorems hold for Zn-periodic functions.

Theorem 2.2. For a nice enough f we have that for all x

fpxq “
ÿ

yPZn

f̂pyqe2πixx,yy

Theorem 2.3.
ř

xPZn fpxq “
ř

yPZn f̂pxq

2.2 Fourier transform for general functions

Above are Fourier transform for periodic functions, for completeness and your interest, here

we introduce the extension of Fourier transform to the general case that f P L1pRq and

moreover f P L1pRnq.

Definition 2.4. For a function f P L1pRq, its Fourier transform is f̂ : R Ñ C defined

by

f̂pyq “

ż 8

´8

fpxqe´2πixydx

and convolution of f, g P L1pRq is f ˚ g : R Ñ C given by

f ˚ gpxq “

ż 8

´8

fpx ´ yqgpyqdy

And several important properties of the Fourier transform are listed below.
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Proposition 2.5. For f, g P L1pRq, x, y, z P R,

1. if f̄ is the complex conjugate of f , then ˆ̄fpyq “ f̂p´yq

2. if hpxq :“ fpx ` zq, then ĥpyq “ f̂pyq ¨ e2πizy

3. if hpxq :“ e2πizxfpxq, then ĥpyq “ f̂py ´ zq

4. @λ ą 0, define hpxq :“ fpλxq, then ĥpyq “ 1
λ f̂p

y
λ q

5. zf ˚ g “ f̂ ¨ ĝ and yf ¨ g “ f̂ ¨ ĝ

6. if hpxq “ f 1pxq P L1pRq, then ĥpyq “ 2πiyf̂pyq

Just like the periodic case, f and f̂ have some connections.

Theorem 2.6. Suppose f, f 1 P L1pRq and f is continuous, then

fpxq “

ż `8

´8

f̂pyqe2πixydy

Naturally, we can extend the definition to the n-dimensional case. Denote L1pRnq as the

set of functions f : Rn Ñ C such that
ş

Rn |fpx1, ..., xnq|dx1...dxn ă `8.

Definition 2.7. For f P L1pRnq, define f̂ : Rn Ñ C by

f̂pyq “

ż

Rn

fpxqe´2πixx,yydx

and we have similar properties and an inversion formula related to the multidimensional

Fourier transform as Proposition 2.5, which are omitted here.

3 Discrete Fourier transform

Let f P L2r0, 2πs be 2π periodic and continuous.

3.1 trapezoidal rule

In before, we define the k-th Fourier coefficient as an integral. But in reality, usually, we

only have observations of f at certain equally spaced points
␣

xj “ j 2π
N : j “ 0, ..., N

(

instead

of knowing the analytic formula of f . Using the trapezoidal rule, we have an approximation

of f̂pkq, denoted by f̂k

f̂k “
h

2π

˜

f0
2

`
fN
2

`

N´1
ÿ

j“1

fje
´ikxj

¸

«
1

2π

ż 2π

0

fpxqe´ikxdx
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Here fj “ fpxjq and h “ 2π
N “ xj`1 ´ xj . Since f is assumed to be periodic, fN “ f0, so

we define discrete Fourier transform by

Definition 3.1. tfju
N´1
j“0 Ñ

!

f̂k

)K´1

k“0
, f̂k “ 1

N

N´1
ř

j“0

fje
´ik¨xj

Usually, we choose K to be no less than N . (why?)

Question 3.1. Prove that only when K ě N , we can recover tfju
N´1
j“0 from

!

f̂k

)K´1

k“0

In the following, we always assume K “ N . Note that if f is real then we may have

F̂N´1pxq “

N´1
ÿ

k“0

f̂ke
ikx “ A0 `

N´1
ÿ

k“1

Ak cospkxq `

N´1
ÿ

k“1

Bk sinpkxq (1)

also as a trigonometric polynomial approximating fpxq. And in the lecture, we know

F̂mpxjq “ fpxjq, j “ 0, ..., N ´ 1. However, note that this DFT approximation 1 is

not the same as the partial sum of real Fourier series!!. On the other hand, from

the lecture we know the order N ´ 1 partial sum of real Fourier series is the best approx-

imation to fpxq in the L2 sense among the family of trigonometric polynomials of degree

N ´ 1. Is there any similar meaning for this F̂N´1? The answer is yes.

3.2 discrete least squares

Let x0, ..., xN be equally spaced points in r0, 2πs, discrete inner product for f, g P L2r0, 2πs

is defined by

xf, gyd :“
N´1
ÿ

j“0

fpxjq Ęgpxjq

and a discrete L2´norm is }f}22,d “ xf, fyd. Remarkably,
␣

eikx
(

is orthogonal in the discrete

inner product x, yd.

Question 3.2. Prove that for integers j, k we have

xeijx, eikxyd “

$

&

%

0 if j ‰ k

N if j “ k

And denote byA the set of functions that can be written as
N´1
ř

k“0

ake
ikx for some constants

ak. Then we have

Proposition 3.2. F̂N´1 = min
gPA

}f ´ g}2,d
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3.3 Convolution

In before, we have learned the convolution of two periodic functions or more generally two

functions defined on R. And we know the Fourier transform of a convolution is the product

of the transforms. Similar properties hold in the discrete case. Before talking about it, we

need to define discrete circular convolution .

Definition 3.3. The discrete circular convolution of data vectors pf0, ..., fN´1q and

pg0, ..., gN´1q, presumably sampled from the periodic data as in the DFT, is defined

by

pf ˚ gqj “

N´1
ÿ

l“0

flgj´l, j “ 0, ..., N ´ 1

where the indices are ’mod N ’ (so they wrap around, e.g. N become 0, N + 1

becomes 1 and so on).

Proposition 3.4. Let DFTpfq “ pf̂0, ..., f̂N´1q, we have

DFTpf ˚ gq “ pf̂0 ¨ ĝ0, ..., f̂N´1 ¨ ĝN´1q
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