TUTORIAL 3

October 3, 2024

1 Complex Fourier series

Definition 1.1. For a 1-periodic function f: R — C, we define its Fourier series as
the function f : Z — C given by

fh) = | f@)emda

The value f (k) is sometimes called the k-th Fourier coefficient.

Proposition 1.2. For a 1-periodic function f we have
1. if h(x) := f(z + r), for some r € R, then iL(k‘) = f(k;) . g2mikr

2. if h(z) := f(z) - €2™™* for some m € Z, then h(k) = f(k —m)

And like before, the value of the complex Fourier series is equal to that of the function

itself under some conditions.

Theorem 1.3. For any 1 periodic piecewise smooth f, we have
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Another Theorem is Poisson summation formula. Proof would be given in the tutorial.



Theorem 1.4. For a nice enough f € L'(R),
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Hint: apply Theorem 1.2 to p(t) = >, f(t+ k)

Next, we extend our definition of the Fourier series to functions whose period is not
necessarily 1.

Definition 1.5. For a function f: R — C with some period A > 0, we define its
Fourier series as F': +Z — C by

A
f) = 5 | @

This definition is derived by transforming a L periodic function to a 1-periodic function
by scaling g(z) := f(Az). And correspondingly, we have

Theorem 1.6.
fl@)= Y, fk)e’™*
ket

Theorem 1.7. For any A > 0 and any nice enough function f,
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Hint: apply Theorem 1.6 to p(x) = Y, f(z + \j)
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Here are some questions.

Question 1.1. Let f(z) = e=™  we have for any A > 0,
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2 Fourier transform in general case

2.1 n-dimensional case

In this subsection, we extend the definition of the Fourier series to the n-dimensional case.
We consider the Fourier series of functions on R™ that are Z™-periodic, namely functions
f:R™ — C such that f(z +y) = f(z) for any z € R",y € Z".

Definition 2.1. For a Z™-periodic function f, its Fourier series f : Z" — C is given
by

fly) = f(yl, vy Yn) = J f(m)e_2”i<w’y>dx = J [z, ...,xn)e_z’riz””y"dxl...dmn
[0,1)™ [0,1)™

Similar theorems hold for Z"-periodic functions.

Theorem 2.2. For a nice enough f we have that for all

i) = Y, fermien

yeL™

Theorem 2.3. X, 7. f(z) = 2, czn f(x)

2.2  Fourier transform for general functions

Above are Fourier transform for periodic functions, for completeness and your interest, here
we introduce the extension of Fourier transform to the general case that f € L!(R) and
moreover f € L*(R™).

Definition 2.4. For a function f € L*(R), its Fourier transform is f : R — C defined
by

fo = [ e

and convolution of f,ge L*(R) is f * g: R — C given by

Fea)= [ se—vowiy

And several important properties of the Fourier transform are listed below.



Proposition 2.5. For f,ge L'(R),z,y,z € R,

1. if f is the complex conjugate of f, then f(y) = f(~y)
2. if h(z) := f(z + 2), then h(y) = f(y) - e2i=¥
3. if h(x) := €¥™* f(z), then h(y) = f(y — 2)

4. YA > 0, define h(z) := f(Az), then h(y) = L f(
5. frg=f-gandf-g=Ff-9g

6. if h(z) = f'(z) € LY(R), then h(y) = 2miyf(y)

Y

Just like the periodic case, f and f have some connections.

Theorem 2.6. Suppose f, f' € L'(R) and f is continuous, then
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fz) = fy)emvdy

Naturally, we can extend the definition to the n-dimensional case. Denote L!(R") as the
set of functions f: R™ — C such that SRn |f(z1, ..., xn)|dxy...dz) < +00.

Definition 2.7. For f € L'(R"), define f: R™ — C by

fw) = | fae v
Rn

and we have similar properties and an inversion formula related to the multidimensional

Fourier transform as Proposition 2.5, which are omitted here.

3 Discrete Fourier transform

Let f e L?[0,27] be 27 periodic and continuous.

3.1 trapezoidal rule

In before, we define the k-th Fourier coefficient as an integral. But in reality, usually, we
only have observations of f at certain equally spaced points {xj = j%" :j=0,..,N } instead
of knowing the analytic formula of f. Using the trapezoidal rule, we have an approximation
of f(k), denoted by f

ro_ h fO fN = —ikx;
f’“_27r<2+2+j21fj6 )

1 2m )
~ —f f(z)e ke dy



Here f; = f(x;) and h = %’“ = ;41 — x;. Since f is assumed to be periodic, fx = fo, so
we define discrete Fourier transform by
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Usually, we choose K to be no less than N. (why?)

L K—1
Question 3.1. Prove that only when K > N, we can recover {fj} from {fk}
k=0

In the following, we always assume K = N. Note that if f is real then we may have

N—-1

N— N—
Fy_ 1( Z kT — Ay + Z Ay, cos(kx) Z & sin(kx) (1)
k=0 k=1 k=1

also as a trigonometric polynomial approximating f(z). And in the lecture, we know
Fm(xj) = f(z;),j = 0,..,N — 1. However, note that this DFT approximation [1] is
not the same as the partial sum of real Fourier series!!. On the other hand, from
the lecture we know the order IV — 1 partial sum of real Fourier series is the best approx-
imation to f(z) in the L? sense among the family of trigonometric polynomials of degree

N — 1. Is there any similar meaning for this Fy_1?7 The answer is yes.

3.2 discrete least squares

Let o, ...,zn be equally spaced points in [0, 27], discrete inner product for f,g e L*[0,27]
is defined by

N—-1 _
{f,g)a = Z fxi)g(x;)

and a discrete L?—norm is | f[3 ; = (f, f)a. Remarkably, {¢"**} is orthogonal in the discrete
inner product ¢, )4.
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Question 3.2. Prove that for integers j, k we have

(7%, ey, — 0if j #k
Nifj=k
N-1
And denote by A the set of functions that can be written as >, axe®*® for some constants
k=0

ar. Then we have

Proposition 3.2. FN_l =
geA




3.3 Convolution

In before, we have learned the convolution of two periodic functions or more generally two
functions defined on R. And we know the Fourier transform of a convolution is the product
of the transforms. Similar properties hold in the discrete case. Before talking about it, we

need to define discrete circular convolution.

Definition 3.3. The discrete circular convolution of data vectors (fo, ..., fy—1) and
(90, ---» gn—1), presumably sampled from the periodic data as in the DFT, is defined
by

N-1
(f*g)] = Z flgj—h .7= 07'“7N_ 1
=0

where the indices are 'mod N’ (so they wrap around, e.g. N become 0, N + 1

becomes 1 and so on).

Proposition 3.4. Let DFT(f) = (fo, ..., fy—1), we have

DET(f % g) = (fo - §0s s fN—1- GN-1)
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