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1 Fourier series and Differential Equations

1.1 Convergence, differentiation and integration

An essential assumption for computing the Fourier series of a function is that

f(x) = a0 +

∞∑
n=1

an cos(
π

L
nx) +

∞∑
n=1

bn sin(
π

L
nx)

But is this equation valid for all functions? Here is a counter-example, Suppose f(x) is a 2π-
periodic function and

f(x) =

{
0 − π < x < 0

1 0 ≤ x ≤ π

Compute the value of its Fourier series at x = 0 and x = π and compare with the counterpart of
f(x).

Theorem 1 Suppose f(t) is a 2L-periodic piecewise smooth function, then

f(t−) + f(t+)

2
= a0 +

∞∑
n=1

an cos(
π

L
nt) +

∞∑
n=1

bn sin(
π

L
nt)

so the Fourier series converge to f(t) at each continuous point.
Moreover, its antiderivative can be obtained by integration term by term,

F (t) = a0t+ C +

∞∑
n=1

anL

nπ
sin(

nπ

L
t)− bnL

nπ
cos(

nπ

L
t)

where F ′(t) = f(t) and C is an arbitrary constant.
Furthermore, if f ′(t) is piecewise smooth, then its derivative can be obtained by differentiating

term by term.

f ′(t) =

∞∑
n=1

−annπ

L
sin(

nπ

L
t) +

∞∑
n=1

bnnπ

L
cos(

nπ

L
t)

In addition, we may connect the Fourier series with what has been taught in linear algebra.
For the conventional vector space we studied in the linear algebra course, we usually write a
vector as a linear combination of an orthonormal basis {ej}, v =

∑n
j=1 ajej , and we have ⟨x, x⟩ =∑n

j=1 a
2
j ⟨ej , ej⟩ =

∑n
j=1 a

2
j

The spirit of Fourier series is exactly the same, f(t) is a vector in the vector space of 2L
-periodic functions, and

{
cos( πLnx), sin(

π
Lnx)

}
is an orthogonal basis, and most of the time,

f(t) = a0 +

∞∑
n=1

an cos(
π

L
nt) +

∞∑
n=1

bn sin(
π

L
nt)

this equation is valid. but two differences are that

1. this sum is infinite

2.
{
cos( πLnt), sin(

π
Lnt)

}
is orthogonal not orthonormal.

However, there is still an identity for a class of “good” functions.

Theorem 2 (Parseval’s Identity) Suppose f(t) is a square-integrable function, i.e.∫ L

−L

(f(t))2dt < +∞
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we have∫ L

−L

(f(t))2dt = ⟨f, f⟩1

= ⟨a0 +
∞∑

n=1

an cos(
π

L
nx) +

∞∑
n=1

bn sin(
π

L
nx), a0 +

∞∑
n=1

an cos(
π

L
nx) +

∞∑
n=1

bn sin(
π

L
nx)⟩1

= 2L · a20 + L ·
∞∑

n=1

(a2n + b2n)

1.2 infinite sum

Many seemingly difficult infinite sum equations can be proved by computing its Fourier series
and substituting suitable points into it, or directly applying Parseval’s Identity. For example,
given a 2π-periodic f(x) defined for −π ≤ x ≤ π by f(x) = |x|. Its Fourier series is

π

2
− 4

π

∞∑
kodd

cos(kx)

k2

x = 0, we have

π2

8
=

∞∑
k=0

1

(2k + 1)2

With Parseval’s Identity, we have another infinite sum formula.

2π3

3
=

∫ π

−π

x2dx

= 2π · (π
2
)2 + π · (

∑
k odd

4

πk2
)2

=
π3

2
+

16

π

∞∑
k=0

1

(2k + 1)4

(1)

Therefore,

π4

96
=

∞∑
k=0

1

(2k + 1)4

Here are some exercises.

1. f(x) is an 1- periodic function defined for − 1
2 ≤ |x| ≤ 1

2 by f(x) = x2. Find its Fourier
series and prove the following three infinite sum formulas.

(a) π2

12 =
∑∞

n=1
(−1)n+1

n2

(b) π2

6 =
∑∞

n=1
1
n2

(c) π4

90 =
∑∞

n=1
1
n4

2. f(x) is a 2π- periodic function defined for −π ≤ |x| ≤ π by

f(x) =

{
0, if − π < x < 0

sin(x), if 0 ≤ x ≤ π

Find the Fourier series and prove the following infinite sum formula.

(a) 1
2 =

∑∞
n=1

1
4n2−1

(b) (π2−8)
16 =

∑∞
n=1

1
(4n2−1)2
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1.3 Application to Solving Differential Equations

1.3.1 inhomogeneous ODE

In the tutorial 1, we mentioned two methods for solving inhomogeneous second-ordernd order
system in the form:

ax′′ + bx′ + cx = f(t)

which are by guessing or by variation of parameters. But these two methods have their own
drawbacks. If f(t) is not a common function, like triangonometric function or polynomials, it’s
not easy to give a guess. As for the formula derived by variation of parameters, sometimes it
is tedious to calculate the integral. Here we introduce another method for a special case of
inhomogeneous ODE that f(t) is a periodic function. In such a case, we may obtain the special
solution by Fourier expansion.

Suppose f(t) is a 2L-periodic function, its Fourier series is like

f(t) = c0 +
∑
n

cn cos(
nπ

L
t) +

∑
n

dn sin(
nπ

L
t)

it’s natural to guess that a special solution xsp is also a 2L-periodic function and we suppose its
Fourier series is also in the form:

xsp(t) = a0 +
∑
n

an cos(
nπ

L
t) +

∑
n

bn sin(
nπ

L
t)

By differentiating termwisely, we would get linear systems by comparing coefficients of eigenfunc-
tions on both sides. 

c · c0 = a0

(c− a · (nπL )2) · an + b · nπ
L · bn = cn, for n ≥ 1

(c− a · (nπL )2) · bn − b · nπ
L · an = dn, for n ≥ 1

Don’t forget the part of solutions v1(t), v2(t) to homogeneous ODE ax′′ + bx′ + cx = 0, and the
general solution to the inhomogeneous ODE is x(t) = α1v1(t) + α2v2(t) + a0 +

∑
n an cos(

nπ
L t) +∑

n bn sin(
nπ
L t).

However, in some very special cases, the forms of v1 and v2 concide with the triagonometric
functions in the xsp. In this case, above system would involve terms related to α1 and α2, which
results that there would be not only one set of an, bn satisfying the system. For example,

2x′′ + 18π2x =
∑
n odd

4

πn
sin(nπt)

the general solution to this ode, following steps taught before, is x(t) = α1 cos(3πt)+α2 sin(3πt)+
xsp(t) but further, like before, we expand xsp to be

∑
n bn sin(nπt), the term α2 sin(3πt) would

appear in the system obtained by comparing the coefficients of sine functions.
The strategy is to modify the form of special solution a bit. We pull out the sin(3πt) term in

the xsp and multiply by t. Next, for symmetry, we add a cosine term, so the new form of xsp is

xsp(t) = a3t cos(3πt) + b3t sin(3πt) +
∑

n odd,n ̸=3

bn sin(nπt)

Then,

2x′′
sp + 18π2xsp = (−12a3π − 18π2a3t+ 18π2a3t) cos(3πt) + (12b3π − 18π2b3t+ 18π2b3t) sin(3πt)

+
∑

n odd,n ̸=3

(−2n2π2bn + 18π2bn) sin(nπt)

=
∑
n odd

4

πn
sin(nπt)

(2)
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which again has a unique solution set {an, bn}.
Here are some exercises, note that in these exercises, f is a 2π periodic function and its formula

given below is defined for −π ≤ |x| ≤ π.

1. x′′ + 4x = cos(t) + sin(t), x(0) = 1, x′(0) = 1

2. x′′ + 2x′ + x = cos(t), x(0) = 1, x(π) = 1

3. general solution to x′′ + x = t

4. general solution to x′′ + 4x = t

1.3.2 Separation of Variables and Heat Equation

A one-dimensional heat equation for u(x, t) is like

ut = kuxx

where k is a positive constant. Usually, x is restricted in an interval [0, L] and t > 0. For the heat
equation, we must have boundary conditions, such as

u(0, t) = 0, u(L, t) = 0

or
ux(0, t) = 0, ux(L, t) = 0

We also need an initial condition — the temperature distribution at t = 0

u(x, 0) = f(x)

In the class, a method separation of variable is introduced to solve this kind of differential equation.
its idea is to represent u(x, t) as a linear combination of eigenfunctions and these eigenfunctions
can be written as products of functions of only one variable, that is

u(x, t) = constant+
∑
n

anXn(x)Tn(t)

in which, forms of Xi and Ti are determined by the differential equation ut = kuxx itself as well
as the interval [0, L]. The boundary condition helps you filter out which an = 0. Last, the initial
condition determines the exact value of nonzero an. Here is an example,

ut = 2uxx, t > 0, 0 ≤ x ≤ 1

u(0, t) = u(1, t) = 0

u(x, 0) = x(1− x), 0 < x < 1

(1)

We plug u0(x, t) = X(x)T (t) into the heat equation, we have

X(x)T ′(t) = 2X ′′(x)T (t)

we rewrite as
T ′(t)

2T (t)
=

X ′′(x)

X(x)

Since the left hand side doesn’t depend on x and the right hand side doesn’t depend on t, each
side must be a constant, say −λ (λ ≥ 0 and we have

T ′(t)

2T (t)
= −λ =

X ′′(x)

X(x)

with solutions T (t) = e−2λt and X(x) = sin(
√
λx) or cos(

√
λx).
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How to choose λ? Remember that we have the boundary conditions u(0, t) = u(1, t) = 0. So
we are solving the eigenvalue problem

X ′′ + λX = 0, X(0) = X(1) = 0

We previously has proved that its eigenfunctions are sin(nπx) with eigenvalues λn = n2π2. There-
fore, here λ should be n2π2. and correspondingly, we obtain a family of eigenfunctions for the

differential equation (1), that is
{
e−2n2π2t · sin(nπx);n ∈ N

}
and we may assume the solution

u(x, t) = b0 +
∑

n bne
−2n2π2t · sin(nπx).

Last, given that u(x, 0) = x(1− x) =
∑

n odd

80
n3π3 sin(nπx), we have

u(x, t) =
∑
n odd

80

n3π3
sin(nπx)e−2n2π2t

Here are some exercises,

1. solve the differential equation
ut = 2uxx, t > 0, 0 ≤ x ≤ 1

ux(0, t) = ux(1, t) = 0

u(x, 0) = x(1− x), 0 < x < 1

2. solve the differential equation
ut = 3uxx, t > 0, 0 ≤ x ≤ π

u(0, t) = u(π, t) = 0

u(x, 0) = 5 sin(x) + 2 sin(5x), 0 < x < π

3. (challenging) solve 
ut = uxx, t > 0, 0 ≤ x ≤ π

u(0, t) = ux(π, t) = 0

u(x, 0) = 5 sin( 52x), 0 < x < π

Hint: the essential step is to select suitable λn according to the boundary conditions. Here,
λn should be 2n+1

2 π

4. (challenging) In above, why don’t we consider the case that λ = 0? Namely, ut = uxx = 0.
For this case, it has a solution u0(x, t) = ax+b. That’s because both the boundary conditions
are zero valued. When we have nontrival constant boundary values, such u0 would play an
important role. Solve 

ut = a2uxx, t > 0, 0 ≤ x ≤ π

u(0, t) = T1, u(π, t) = T2

u(x, 0) = f(x) 0 < x < π

coefficients of the series solution can be written as an integral of f(x). Hint: you may try
to decompose the problem to two subproblems as we did in the next section.

1.3.3 wave equation

A one-dimensional wave equation is of the form:

utt = a2uxx
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Still we should be given two boundary conditions, like u(0, t) = u(L, t) = 0. But this time, we
need two initial conditions to ensure uniqueness of the solution. ( that’s because there are two
derivatives along the t direction). These conditions are always imposed in the way:

u(x, 0) = f(x), ut(x, 0) = g(x)

And again, we can use the method separation of variable to solve it. Like before, we have
T ′′(t)
a2T (t) = −λ = X′′(x)

X(x) for some λ ≥ 0. The general solutions for T (t) and X(x) are A cos(a
√
λt)+

B sin(a
√
λt) and C cos(

√
λx) + D sin(

√
λx), respectively. The boundary condition help you de-

termine the value of λ and what trigonometric functions should be left. And the initial condition
plays the similar role. To make the life easier, we usually decompose the system

utt = a2uxx, t > 0, 0 ≤ x ≤ L

u(0, t) = u(L, t) = 0

u(x, 0) = f(x), 0 < x < L

ut(x, 0) = g(x), 0 < x < L

(2)

into two questions.
ytt = a2yxx, t > 0, 0 ≤ x ≤ L
y(0, t) = y(L, t) = 0
y(x, 0) = 0, 0 < x < L
yt(x, 0) = g(x), 0 < x < L


ztt = a2zxx, t > 0, 0 ≤ x ≤ L
z(0, t) = z(L, t) = 0
z(x, 0) = f(x), 0 < x < L
zt(x, 0) = 0, 0 < x < L

Then u(x, t) = y(x, t) + z(x, t). Such a decomposition helps a lot, because each subsystem has a
zero valued initial condition which helps select what kind of eigenfunction for T (t) is needed, and
another nontrival initial condition is to help compute the coefficients of filtered eigenfunctions.

For example, for the first system of y(x, t), by the differential equation and the bound-

ary condition, we have eigenvalues λn = n2π2

L2 , eigenfunctions for X(x) being sin(nπL x), and
eigenfunctions for T (t) being

{
sin(anπL t), cos(anπL t)

}
. The boundary condition y(x, 0) = 0 im-

plies that T (t) =
∑
n
bn sin(

anπ
L t) thus y(x, t) =

∑
n
bn sin(

anπ
L t) sin(nπL x). Lastly, by differen-

tiating termwisely, yt(x, 0) =
∑
n
a · bn nπ

L sin(nπL x) and values of bn’s are obtained by writing

g(x) =
∑
n
gn sin(

nπ
L x) and bn = L

nπagn .

Same operation can be done on the system for z(x, t), and the only difference is that this time,

the filtered eigenfunctions for T (t) are
{
cos(anπL t);n ∈ N

}
and z(x, t) =

∞∑
n=1

an cos(
anπ
L t) sin(nπL x).

Theorem 3 For the equation (2), suppose f(x) =
∞∑

n=1
cn sin(

nπ
L x) and g(x) =

∞∑
n=1

bn sin(
nπ
L x),

then the solution

u(x, t) =

∞∑
n=1

bn
L

nπa
bn sin(

nπa

L
t) sin(

nπ

L
x) +

∞∑
n=1

cn cos(
nπa

L
t) sin(

nπ

L
x)

Here are some exercises.

1. solve 
utt = 2uxx, t > 0, 0 ≤ x ≤ π

u(0, t) = u(π, t) = 0

u(x, 0) = x, 0 < x < π

ut(x, 0) = 0 0 < x < π

2. solve 
utt = uxx, t > 0, 0 ≤ x ≤ π

u(0, t) = u(π, t) = 0

u(x, 0) = sin(x), 0 < x < π

ut(x, 0) = sin(x) 0 < x < π
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3. When a = 0, the eigenfunctions for T (t) are t and constant functions. Solve
utt = 0, t > 0, 0 ≤ x ≤ π

u(0, t) = u(π, t) = 0

u(x, 0) = sin(2x), 0 < x < π

ut(x, 0) = sin(x) 0 < x < π

4. (challenging) Could you follow the same idea to obtain a series solution to the following
problem? 

utt = a2uxx − kut, t > 0, 0 ≤ x ≤ 1

u(0, t) = u(1, t) = 0

u(x, 0) = f(x), 0 < x < 1

ut(x, 0) = 0 0 < x < 1

where 0 < k < 2πa. Any coefficient in the series should be expressed in an integral of f(x).
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