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1. Solve the following PDE using the spectral method:
ut(x, t) = uxx(x, t), (x, t) ∈ [0, 1]× (−∞,∞)

u(0, t) = u(1, t) = 0,

u(x, 0) = 100, for x ∈ (0, 1)

(Hint: Odd extension may help.)

Solution: By observation, we extend the PDE into the following form
ut(x, t) = uxx(x, t), (x, t) ∈ [0, 1]× (−∞,∞)

u(0, t) = u(1, t) = 0,

u(x, 0) = 100, for x ∈ (0, 1)

u(x, 0) = −100, for x ∈ (−1, 0)

Let u(x, t) = a0(t) +
∑∞

n=1(an(t)cos(πnx) + bn(t)sin(πnx)), then

ut(x, t) = a′0(t) +

∞∑
n=1

(a′n(t)cos(πnx) + b′n(t)sin(πnx))

uxx(x, t) =

∞∑
n=1

((−π2n2)an(t)cos(πnx) + (−π2n2)bn(t)sin(πnx))

Comparing the two equations, we have

a′0(t) = 0

a′n(t) = (−π2n2)an(t)

b′n(t) = (−π2n2)bn(t)

Using integrating factor method to solve the above equations, we have

a0(t) = C0

an(t) = Ca
ne

−π2n2t

bn(t) = Cb
ne

−π2n2t

Considering the case t = 0, we have u(0, 0) = u(0, 1) = 0, u(x, 0) = 100, x ∈ (0, 1), and u(x, 0) =
−100, x ∈ (−1, 0), and

u(x, 0) = C0 +

∞∑
n=1

(Ca
ncos(πnx) + Cb

nsin(πnx))
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then

C0 =
1

2

∫ 1

−1

u(x, 0)dx

= 0

Ca
n = π · 1

π
(

∫ 0

−1

−100cos(πnx)dx+

∫ 1

0

100cos(πnx)dx)

= 0

Cb
n = π · 1

π
(

∫ 0

−1

−100sin(πnx)dx+

∫ 1

0

100sin(πnx)dx)

=

{
400
πn , n is odd

0, n is even

Therefore,

u(x, t) =
400

π

∞∑
n=1

1

2n− 1
e−π2(2n−1)2tsin(π(2n− 1)x)

2. A discrete complex-valued function f can be represented by a vector (f0, f1, . . . , fn−1)
T . Consider

a matrix M where the entry in the j-th row and k-th column is given by Mjk = ei
2jkπ

n .

Please express the function f as a linear combination of the column vectors of M . In other words,
you need to determine the coefficients for this linear combination.

Solution:

Considering the matrix multiplication M∗M , we notice that

(M∗M)ij =

n−1∑
k=0

e−i 2ikπ
n ei

2kjπ
n =

n−1∑
k=0

ei
2πk(j−i)

n =

{
N, j = i

0, j ̸= i

Therefore, M−1 = 1
NM∗. Suppose we have a vector such that f = Mc, then c = 1

NM∗f . More
specifically,

ck =
1

n

n−1∑
j=0

fje
−i 2jkπ

n

3. Let f(x) be a 2π-periodic complex-valued function and
∫ 2π

0
|f(x)|2dx < ∞. Its complex Fourier

coefficient is computed by f̂k = 1
2π

∫ 2π

0
f(x)e−ikxdx and complex Fourier series is

F(f)(x) :=

+∞∑
k=−∞

f̂ke
ikx

and the truncated version is

FN (f)(x) :=

N∑
k=−N

f̂ke
ikx

Recall its real Fourier series is a0 +
∞∑
k=1

ak cos(kx) +
∞∑
k=1

bk sin(kx).Prove that

(a) f̂k = ak−ibk
2 , if k ≥ 1

(b) f̂k = a−k+ib−k

2 , if k ≤ −1

(c) If f(x) is real-valued, ak = 2Re(f̂k) and bk = −2Im(f̂k) for k ≥ 1

Solution:
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(a) For k ≥ 1, f̂k = 1
2 · 1

π

∫ 2π

0
f(x)(cos(kx)− i sin(kx))dx = 1

2 (ak − ibk)

(b) For k ≤ −1,

, f̂k =
1

2
· 1
π

∫ 2π

0

f(x)(cos(kx)− isin(kx))dx

=
1

2
· 1
π

∫ 2π

0

f(x)(cos(−kx) + isin(−kx))dx

=
1

2
(a−k + ib−k)

(c) because if f is real-valued, then ak and bk are real numbers.

4. Given a positive even integer N , let Ek(x) = eikx for k ≥ 0 and xj = j 2π
N for 0 ≤ j ≤ N −

1. Since Ek(xj) = Ek+N (xj), we can do discrete Fourier transform with the set of functions{
Ek(x) : k = −N

2 + 1,−N
2 + 2, ..., N

2

}
. For symmetry, we would like to do discrete Fourier transform

with E =
{
Ek(x) : k = −N

2 ,−
N
2 + 1, ..., N

2 − 1, N
2

}
and updated computing rule is

f̂k =
1

ak
· 1

N

N−1∑
j=0

f(xj)e
−ikxj , for k = −N

2 , ...,
N
2

where ak = 2 if k = ±N
2 otherwise 1. And Its inverse Discrete Fourier transform is given by

(IN (f)) (x) =

N
2∑

k=−N
2

f̂ke
ikx

(a) Let f̃k = 1
N

N−1∑
j=0

f(xj)e
−ikxj , for k = 0, ..., N − 1. Prove that

i. f̂k = f̃k+N , for k = −N
2 + 1, ...,−1

ii. f̂±N
2
= 1

2 f̃N
2

iii.
∑N−1

k=0 |f̃k|2 = 1
N

∑N−1
k=0 |fk|2

(b) Prove that

(IN (f)) (x) =

N−1∑
j=0

f(xj)gj(x) (1)

where

gj(x) =
1

N
sin(N

x− xj

2
) cot(

x− xj

2
)

and gj(xk) = 1 if j = k otherwise 0.

(c) By using the nodal basis representation (1), we can compute the derivative of f(x) by f (m)(x) ≈
(IN (f))

(m)
(x). Prove that

Let fN = (f(x0), ..., f(xN−1))
T

and f
(m)
N =

(
f (m)(x0), ..., f

(m)(xN−1)
)T

, then f
(m)
N = DmfN

for some matrix Dm. In particular,

D1(k, j) = g′j(xk) =

{
(−1)k+j

2 cot( (k−j)π
N ), if k ̸= j

0, if k = j

Solution:

(a) i. f̂k = 1
N

N−1∑
j=0

f(xj)e
−ikxj = 1

N

N−1∑
j=0

f(xj)e
−i(k+N)xj = f̃k+N for k = −N

2 + 1, ...,−1

ii. a±N
2
= 2
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iii.
N−1∑
k=0

f̃k
¯̃
fk =

1

N2

N−1∑
j,l=0

f(xj)f̄(xl)

N−1∑
k=0

e−i2πk j−l
N

=
1

N

N−1∑
j,l=0

f(xj)f̄(xl)δjl =
1

N

N−1∑
k=0

|fk|2

(b)

(IN (f)) (x) =

N
2∑

k=−N
2

f̂keikx

=

N
2∑

k=−N
2

 1

Nak

N−1∑
j=0

f(xj)e
−ikxj

 eikx

=

N−1∑
j=0

 1

N

N
2∑

k=−N
2

1

ak
eik(x−xj)

 f(xj)

Therefore,

gj(x) =
1

N

N
2∑

k=−N
2

1

ak
eik(x−xj)

=
1

N

N
2 −1∑
k=0

eik(x−xj) +

−1∑
k=−N

2 +1

eik(x−xj) + cos(N
x− xj

2
)


=

1

N

(
1− ei

N
2 (x−xj)

1− ei(x−xj)
+

e−i(x−xj) − e−iN
2 (x−xj)

1− e−i(x−xj)
+ cos(N

x− xj

2
)

)

=
1

N

(
sin((N − 1)

x−xj

2 )

sin(
x−xj

2 )
+ cos(N

x− xj

2
)

)

=
1

N
sin(N

x− xj

2
) cot(

x− xj

2
)

(c) (IN (f))
(m)

(x) =
N−1∑
n=0

f(xj)g
(m)
j (x), so (IN (f))

(m)
(xk) =

N−1∑
n=0

f(xj)g
(m)
j (xk) for k = 0, ..., N−1

Hence Dm(k, j) = g
(m)
j (xk). In particular, let θ =

x−xj

2 , then

g‘j(x) =
1

2
cos(Nθ) cot(θ)− 1

2N
sin(Nθ) csc2(θ)

if x = xk ̸= xj , then g′j(xk) =
1
N cos(π(k − j)) cot( (k−j)π

N ); if k = j, then

lim
θ→0

1

2
cos(Nθ) cot(θ)− 1

2N
sin(Nθ) csc2(θ) = lim

θ→0

1

2N

N
2 cos(Nθ) sin(2θ)− sin(Nθ)

sin2(θ)

= lim
θ→0

1

2N

−N2

2 sin(Nθ) sin(2θ) +N cos(Nθ) cos(2θ)−N cos(Nθ)

sin(2θ)

= lim
θ→0

1

2

cos(Nθ) cos(2θ)− cos(Nθ)

sin(2θ)

= lim
θ→0

1

2
cos(Nθ)

−2 sin2(θ)

2 sin(θ) cos(θ)
= 0

5. Consider the differential equation:

a
d2u

dx2
+ b

du

dx
= f(x) for x ∈ (0, 2π),
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where a, b > 0. Assume u and f are periodically extended to R. Divide the interval [0, 2π] into n
equal portions and let xj =

2πj
n for j = 0, 1, 2, ..., n− 1.

Let u = (u(x0), u(x1), ..., u(xn−1))
T and f = (f(x0), f(x1), ..., f(xn−1))

T .

for j = 0, 1, 2, ..., n− 1.

(a) Use u(xj±2) to approximate u′(xj) and use u(xj±4) and u(xj) to approximate u′′(xj) and

explain why the corresponding matrices D1 and D2 approximate d
dx and d2

dx2 respectively.

(b) Prove that
−−→
eikx := (eikx0 , eikx1 , ..., eikxn−1)T is an eigenvector of both D1 and D2 for k =

0, 1, 2, ..., n − 1. What are their corresponding eigenvalues? Please explain your answer with
details.

(c) Show that {
−−→
eikx}n−1

k=0 forms a basis for Cn.

(d) Let u =
∑n−1

k=0 ûk

−−→
eikx and f =

∑n−1
k=0 f̂k

−−→
eikx, where ûk, f̂k ∈ C. If u satisfies aD2u+ bD1u = f ,

show that

(aλ2
k + bλk)ûk = f̂k where λk = i

sin(2kh)

2h
,

for k = 0, 1, 2, ..., n− 1. Please explain your answer with details.

Solution:

(a) By Taylor’s expansion, we get

u(xj+2) = u(xj) + 2hu′(xj) + o(2h)

u(xj−2) = u(xj)− 2hu′(xj) + o(2h)

so we deduce that

u′(xj) =
u(xj+2)− u(xj−2)

4h
+ o(1)

Similarly,

u(xj+4) = u(xj) + 4hu′(xj) +
16h2

2
u′′(xj) + o(h2)

u(xj−4) = u(xj)− 4hu′(xj) +
16h2

2
u′′(xj) + o(h2)

so

u′′(xj) =
u(xj+4)− 2u(xj) + u(xj−4)

16h2
+ o(1)

Let D1 and D2 be two n× n matrices, which are defined in such a way that:

(D1u)j =
u(xj+2)− u(xj−2)

4h
and (D2u)j =

u(xj+4)− 2u(xj) + u(xj−4)

16h2
.

for j = 0, 1, 2, ..., n− 1.

Then we can say that when we choose n is sufficiently large (or h is sufficiently small), D2u
and D1u can approximate u′′ and u′, respectively.

(b) By the structure of D1u, it can be verified that

(D1

−−→
eikx)j =

eikxj+2 − eikxj−2

4h

So it suffices to show that
eikxj+2 − eikxj−2

4heikxj
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is independent of the index j, and this value is exactly the eigenvalue of D1 corresponding
−−→
eikx.

eikxj+2 − eikxj−2

4heikxj
=

eik·(xj+2h) − eik·(xj−2h)

4heikxj

=
ei·2kh − ei·(−2kh)

4h

=
i sin(2kh)

2h
.

So
−−→
eikx is the eigenvector of D1 corresponding the eigenvalue i sin(2kh)

2h for k = 0, 1, ..., n− 1.
Similarly,

eikxj+4 − 2eikxj + eikxj−4

16h2eikxj
=

eik·(xj+4h) − 2eik·xj + eik·(xj−4h)

16h2eikxj

=
ei·4kh − 2 + ei·(−4kh)

16h2

=
cos(4kh)− 1

8h2
.

So
−−→
eikx is the eigenvector of D2 corresponding the eigenvalue ( i sin(2kh)2h )2 = cos(4kh)−1

8h2 for
k = 0, 1, ..., n− 1.

(c) Since
−−→
eikx are the eigenvectors of D1 corresponding the distinct eigenvalues, we get that they

are linearly independent. So the set contains n linearly independent vectors forms a basis.

(d) By (b) we get D1

−−→
eikx = λk

−−→
eikx, D2

−−→
eikx = (λk)

2
−−→
eikx

so

aD2u+ bD1u = aD2(

n−1∑
k=0

ûk

−−→
eikx) + bD1(

n−1∑
k=0

ûk

−−→
eikx)

= a

n−1∑
k=0

(λk)
2ûk

−−→
eikx + b

n−1∑
k=0

λkûk

−−→
eikx

=

n−1∑
k=0

(a(λk)
2 + bλk)ûk

−−→
eikx

= f

=

n−1∑
k=0

f̂k
−−→
eikx

Since {
−−→
eikx}n−1

k=0 is a basis, comparing the coefficients leads to the result that we want to prove.
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