Lecture 7 Recall:
DFT and numerical diff est
Consider:
$$\frac{d^2 u}{dx^2} = f$$
 for $x \in [0, 2\pi]$ with periodic boundary
condition $u(0) = u(2\pi)$
Suppose f is measured only at N discrete points:
 X_0, X_1, \dots, X_{N-1} $R = \frac{2\pi}{N}$
 X_0, X_1, \dots, X_{N-1} $R = \frac{2\pi}{N}$
Let $\vec{f} = \begin{pmatrix} f(x_0) \\ f(X_1) \\ \vdots \\ f(X_{N-1}) \end{pmatrix} def \begin{pmatrix} f_0 \\ f_1 \\ \vdots \\ f(X_{N-1}) \end{pmatrix} \in \mathbb{R}^N$ and $\vec{u} = \begin{pmatrix} u(x_0) \\ u(x_1) \\ \vdots \\ \vdots \\ \vdots \\ f(X_{N-1}) \end{pmatrix} \in \mathbb{R}^N$

Recall: By Taylor's expansion, u(xj+h) ≈ u(xj) + hu'(xj) + $\frac{h^2}{2}u''(xj)$ $u(x_j - R) \approx u(x_j) - Ru'(x_j) + \frac{R^2}{2}u''(x_j)$ $\frac{\mathcal{U}(x_{j}-h) - 2\mathcal{U}(x_{j}) + \mathcal{U}(x_{j}+h)}{x_{j-1}} + \frac{\mathcal{U}(x_{j}+h)}{h^{2}}$ $(1) + (2) : U'(X_j) \approx$: $u''(x_j) \approx \frac{u_{j-1} - 2u_j + u_{j+1}}{-k^2}$ (Central difference approximation) Thus: $\begin{pmatrix} u''(x_0) \\ u''(x_1) \\ \vdots \end{pmatrix} \approx \widetilde{D} \vec{u}$ where $\widetilde{D} = \frac{1}{R^2} \begin{pmatrix} -2 & 1 & -1 & -1 \\ 1 & -2 & 1 \\ \vdots & \ddots & \vdots \end{pmatrix}$ $u^{\prime\prime}(\chi_{N-1})$ 1 -2/ [Use the fact that Uo = UN, U-I=UN-I

$$\frac{d^{2}u}{dx^{2}} = f \text{ can be discretized as } D \overline{u} = \overline{f} (Linean \\ \text{MNNN} D \overline{u} = \overline{f} (Linean \\ \text{System}) \\ \text{Numerical differential eqt} \\ \text{Remak: D is BIG matrix !!} \\ \frac{\text{God!}}{\text{Design numerical spectral method to solve } D\overline{u} = \overline{f}. \\ \frac{\text{God!}}{\text{Design numerical spectral method to solve } D\overline{u} = \overline{f}. \\ \text{Need to: Determine eigenvalues / eigenvectors of D} \\ \text{In continuous case, } e^{i\frac{h}{h}x} \text{ is an eigenfunction of } \frac{d^{2}}{dx^{2}}, \text{ that is periodic.} \\ \text{In discrete case, define: } e^{i\frac{h}{h}x} \frac{def}{n} \begin{pmatrix} e^{i\frac{h}{h}x} \\ \vdots \\ e^{i\frac{h}{h}x} \end{pmatrix} \begin{pmatrix} \text{Capture the values of } e^{i\frac{h}{h}x} \\ e^{i\frac{h}{h}x} \end{pmatrix} \\ \begin{pmatrix} \text{Capture the values of } e^{i\frac{h}{h}x} \\ e^{i\frac{h}{h}x} \end{pmatrix} \\ \begin{pmatrix} \text{Capture the values of } e^{i\frac{h}{h}x} \\ e^{i\frac{h}{h}x} \end{pmatrix} \end{pmatrix}$$

Claim:
$$e^{i\mathbf{k}\mathbf{x}}$$
 is an eigenvector of \tilde{D} $(\mathbf{k}=0,1,2,...,N-1)$
Mr precisely,
 $\tilde{D} e^{i\mathbf{k}\mathbf{x}} = \left(-\frac{4\sin^2\frac{\mathbf{k}\mathbf{h}}{2}}{R^2}\right)e^{i\mathbf{k}\mathbf{x}}$
 $-\frac{4}{\lambda k^2}e^2 = \left(\frac{4\sin^2\frac{\mathbf{k}\mathbf{h}}{2}}{R^2}\right)$
Where $\lambda k^2 = \left(\frac{4\sin^2\frac{\mathbf{k}\mathbf{h}}{2}}{R^2}\right)$
 $Or \lambda k = \left(\frac{2\sin\frac{\mathbf{k}\mathbf{h}}{2}}{R}\right)$

<u>Claim</u>: {eitx }^{N-1} is a basis of C^N (consisting of eigenvectors) $Pf: \left(e^{ipx} e^{i(u)x} - - e^{i(u)x} \right) = \left(w^{n-1} - w^{n-1} \right); w = e^{i\frac{2\pi}{N}}$

 $A = N I_{N \times N}$ $\Rightarrow A\omega = \frac{1}{N}A\omega$

$$\frac{\text{Claim}}{\text{N}(\tilde{D})} = \text{N-1} \text{ and } \text{nullspace of } \tilde{D} \text{ is :} \\ N(\tilde{D}) = \text{span} \left\{ \begin{pmatrix} i \\ j \end{pmatrix} \right\}.$$

$$\frac{\text{Proof:}}{\text{Rank}(\tilde{D})} = \# \text{ of non-zero eigenvalues of } \tilde{D}.$$

$$= \# \left\{ -\lambda_{1}^{*}, -\lambda_{2}^{*}, \dots, -\lambda_{n-1}^{*} \right\} \quad o \tilde{X}$$

$$N(\tilde{D}) = \text{ eigenspace of eigenvalue } = 0 \quad (\tilde{D}\tilde{X} = \tilde{D})$$

$$= \text{span}\left\{ \begin{pmatrix} i \\ j \end{pmatrix} \right\}.$$

-

Numerical Spectral method
Since
$$i e^{ikx} j_{k=0}^{N-1}$$
 is a basis. We can write:
 $\vec{u} = \sum_{k=0}^{N-1} \hat{u}_k e^{ikx}$ and $\vec{f} = \sum_{k=0}^{N-1} \hat{f}_k e^{ikx}$
 $\vec{f}_N = \hat{f}_k e^{ikx}$
In other words, for each j, $f_j = f(x_j) = \sum_{k=0}^{N-1} \hat{f}_k (e^{ikx})_j$
 \vdots \hat{f}_k can be determined by DFT.
To solve $\frac{d^2u}{dx^2} = f$, we approximate it by
 $\hat{D}\vec{u} = \vec{f}$.

Du = f becomes: Now, $\widetilde{D}\left(\sum_{k=0}^{N-1}\widehat{u_{k}e^{ikx}}\right) = \sum_{k=0}^{N-1}\widehat{f_{k}e^{ikx}}$ $\sum_{k=0}^{N-1} \hat{U}_k \stackrel{\sim}{D} \stackrel{\sim}{e^{ikx}} = \sum_{k=0}^{N-1} \hat{f}_k \stackrel{\sim}{e^{ikx}}$ $(-\lambda_k^2) \stackrel{\sim}{e^{ikx}} = \sum_{k=0}^{N-1} \hat{f}_k \stackrel{\sim}{e^{ikx}}$ E $\sum_{k=1}^{N-1} \hat{u}_{k}(-\lambda_{k}^{2}) e^{ikx} = \sum_{k=1}^{N-1} \hat{f}_{k} e^{ikx}$ coefficients, we get Comparing - Ak Uk = fk for k=0, 1, 2, ..., N-1 known unknown known (algebraic equation)

$$\left(-\lambda_{k}^{2}\right) \hat{U}_{k} = \hat{f}_{k} \quad \text{for } k=0,1,2,\ldots,N-1$$
For $k=1,2,\ldots,N-1$, we have: $\hat{U}_{k} = \hat{f}_{k}/(-\lambda_{k}^{2})$

Tor $k=0, \quad \lambda_{k}=0$.

We consider a special solution such that:
$$\hat{U}_{0} = \frac{U_{0} + U_{1} + \ldots + U_{N-1}}{N} = 0 \qquad \text{if }$$

i. Set $\hat{U}_{0} = 0$

Note that $\hat{f}_{0} = -\lambda_{0}^{2} \hat{U}_{0} = 0 \Rightarrow \frac{f_{0} + f_{1} + \ldots + f_{N-1}}{N} = 0$

 $\int_{0}^{2\pi} f(x) dx = \int_{0}^{2\pi} U'(x) dx = U'(x) \Big|_{0}^{2\pi} = 0 \quad (\text{periodic})$

 $\int_{0}^{5} f_{0} = -\lambda_{0}^{2} \hat{U}_{0} = 0 \Rightarrow \frac{f_{0} + f_{1} + \ldots + f_{N-1}}{N} = 0$

Once ûk are all defined for k=0,1,2,..., N-1. i can be obtained: $\vec{u} = \begin{pmatrix} u(x_0) \\ u(x_1) \\ \vdots \\ u(x_{N-1}) \end{pmatrix} = \sum_{k=0}^{N-1} \hat{u}_k e^{ikx} (inverse DFT)$ (inverse DFT) (

Claim: If
$$\vec{u}_1$$
 and \vec{u}_2 are both solutions of $\vec{D}\vec{u} = \vec{f}_1$
then: $\vec{u}_1 = \vec{u}_2 + c \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ for some const. c.
Proof: $\vec{D}\vec{u}_1 = \vec{f}$
 $-\vec{D}\vec{u}_2 = \vec{f}$
 $\vec{D}(\vec{u}_1 - \vec{u}_2) = \vec{o} \implies \vec{u}_1 - \vec{u}_2 \in N(\vec{D})$
 $\vec{c} = \vec{u}_1 = \vec{u}_2 + c \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ for some const. c

any other sol \overline{u}^* ($\widetilde{D}\overline{u}^* = \overline{f}$) Remark: determined by the particular Condition (boundary condition)

Example: Consider:
$$a \frac{d^2u}{dx^2} + b \frac{du}{dx} = f$$
 for $x \in [0, 2\pi]$.
This time, we approximate $\frac{d^2u}{dx^2}$ by =
(*) $\frac{d^2u}{dx^2}(x_j) \approx \frac{u_{j-2} - 2u_j + u_{j+2}}{4h^2}$ for $j = 0, 1, 2, ..., N^{-1}$
Again, we assume $u_{-1} = u_{N-1}$, $u_1 = u_{N+1}$, $u_{-2} = u_{N-2}$,..., etc
Motivation: ① $u(x_j + 2h) \approx u(x_j) + 2h u'(x_j) + 2h^2 u''(x_j)$
② $u(x_j - 2h) \approx u(x_j) - 2h u'(x_j) + 2h^2 u''(x_j)$
① $+ \bigcirc : u(x_j + 2) + u(x_{j-2}) - 2u(x_j) = 4h^2 u''(x_j)$
This time, we approximate $\frac{du}{dx}$ as:
(**) $\frac{du}{dx}(x_j) \approx \frac{u_{j+1} - u_{j-1}}{2h}$

Denote (**) in matrix form as:

$$\begin{pmatrix} \mathcal{U}'(x_0) \\ \mathcal{U}'(x_1) \\ \vdots \\ \mathcal{U}'(x_{H1}) \end{pmatrix} = \widetilde{D} \cdot \widetilde{\mathcal{U}} \quad \text{where} \quad \widetilde{D} = \frac{1}{2 \cdot R} \begin{pmatrix} 0 & 1 & -1 \\ -1 & 0 & -1 \\ 0 & -1 & 0 \end{pmatrix}$$
Denote (*) in matrix form as:

$$\begin{pmatrix} \mathcal{U}''(x_0) \\ \mathcal{U}''(x_0) \\ \vdots \\ \mathcal{U}''(x_{H1}) \end{pmatrix} = \widetilde{D} \cdot \widetilde{\mathcal{U}} \quad \text{where} \quad \widetilde{D} = \frac{1}{4h^2} \begin{pmatrix} -2 & 0 & 1 & -1 & 0 \\ 0 & -2 & 0 & 1 & 0 \\ 1 & 0 & -2 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & -2 \end{pmatrix}$$
Remark: $\widetilde{D} = \widetilde{D}^2$.

12

-

an eigenvector of D and D. eikx is Claim: + e ik xj+z 2eikxj = eikxj-2 (Deikx); Proof: = e^{ikxj} (e + C, -2ikh $\left(\frac{-\sin^2(kh)}{h^2}\right)$) e^{ikx}j . De^{ikx} = $\lambda_k^2 e^{ikx}$ Also, $(\widetilde{D} \ e^{i kx})_{i} =$ eikxj+1 e (eikh e-ikh) ik Xj-1 $\left(\frac{i \sinh}{h}\right) e^{i k x_j}$ Deikx = Reeikx =