Lecture 5

-

Recall;

Definition: (Real Fourier Series)
Consider
$$f(x) \in V = \{ real - valued 2\pi - periodic smooth functions \}$$

Then, the real Fourier Series of $f(x)$ is given by:
 $f(x) = \sum_{k=0}^{\infty} a_k \cos kx + \sum_{k=1}^{\infty} b_k \sin kx$, where $\{a_k\}$ and $\{b_k\}$ are given
 $by^{-} a_0 = \frac{1}{2\pi} \int_{0}^{2\pi} f(x) dx$; $a_k = \frac{1}{\pi} \int_{0}^{2\pi} f(x) \cos kx dx$; $b_k = \frac{1}{\pi} \int_{0}^{2\pi} f(x) \sin kx dx$

2

-

.

Definition: (Complex Fourier Series)
Consider fux)
$$\in W = \{ complex - valued 2\pi - periodic smooth functions \}$$

Then, the complex Fourier Series is given by =
 $f(x) = \sum_{k=0}^{\infty} C_k e^{ikx}$ where $\{C_k\}$ is determined by =
 $k^{z-\sigma}$ $\int_{\pi}^{\pi} f(x) e^{-ikx} dx$ (Here, $e^{ikx} = coskx + isinkx$)
 $C_k = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) e^{-ikx} dx$ (Here, $e^{ikx} = coskx + isinkx$)
The integration is computed separately for the real
part and imaginary part.

again Other

-

-

Question: How well closes it approximate
$$f(x)$$
?
Consider: $V_N = \{F(x) = \sum_{\substack{k=0\\ R \neq 0}}^{N} A_k \cos kx + B_k \sin kx : A_k, B_k \in \mathbb{R}\}$
For any 2π -periodic function, define:
 $\|f - F\|^2 := E(A_0, A_1, ..., A_N, B_1, B_2, ..., B_N)$
 $:= \int_0^{2\pi} (f(x) - (\sum_{\substack{k=0\\ R \neq 0}}^{N} A_k \cos kx + B_k \sin kx))^2 dx$
Remark: $\|f - F\|$ is called the least square error between
 f and F .

-

$$\frac{1}{2\pi} \frac{1}{2\pi} E(A_0, A_1, ..., A_N, b_1, b_2, ..., b_N) = \min E(A_0, ..., A_N, B_1, ..., B_N)}{VA_{K,Bk} \in IR}$$
where:

$$a_0 = \frac{1}{2\pi} \int_{0}^{2\pi} f(x) dx ; \quad a_k = \frac{1}{\pi} \int_{0}^{2\pi} f(x) \cos kx dx ; \quad b_k = \frac{1}{\pi} \int_{0}^{2\pi} f(x) \sin kx dx$$

$$\frac{Proof}{Assume} A_0, ..., A_N, B_1, ..., B_N \text{ are the minimizer of } E.$$

$$\frac{\partial E}{\partial A_1} = 0; \quad \frac{\partial E}{\partial B_1} = 0.$$

$$\frac{\partial E}{\partial A_k} = \frac{\partial}{\partial A_k} \int_{0}^{2\pi} \left(f(x) - \left(\sum_{j=0}^{N} A_j \cos jx + B_j \sin jx \right) \right)^2 dx$$

$$= -2 \int_{0}^{2\pi} \left(f(x) - \sum_{j=0}^{N} A_j \cos jx + B_j \sin jx \right) \cos kx dx$$

Similarly,
$$Ao = \frac{1}{2\pi} \int_{0}^{2\pi} fext dx$$
 etc ...
Is this the critical point of the minimizer? HW.

Discretization of differential operators

$$\frac{d^{2}f}{dx^{2}}(x) = g(x) \quad 0 < x < 1 \quad \text{with} \quad f(o) = 1 \quad \text{;} \quad f(1) = 2 \quad .$$

$$x_{1}x_{2} \qquad - x_{1}^{(x)(n)} \qquad x_{n-1}$$
Discretize (0, 1):
$$\frac{x_{1}x_{2}}{0 + \frac{n}{n}} = \frac{x_{1}}{2} \qquad x_{1}^{(n)} \qquad x_{n-1}$$

$$\frac{x_{1}x_{2}}{1 + \frac{n}{n}} = \frac{x_{1}^{(x)}}{1 + \frac{x_{1}^{(x)}}{1 + \frac{n}{n}}} = \frac{x_{1}^{(x)}}{1 + \frac{x_{$$

2

a.

Where $\vec{u} = \begin{pmatrix} u(x_1) \\ u(x_2) \\ \vdots \\ u(x_N) \end{pmatrix} = values of u at N points <math>\{x_1, x_2, ..., x_N\}$ In discrete case, a differential equation can be discretized as : $\vec{g} = \begin{pmatrix} g(x_1) \\ g(x_2) \\ \vdots \\ g(x_N) \end{pmatrix} = \text{values of } g \text{ at } N \text{ points } \{x_1, x_2, ..., x_N\}$ D = NXN matrice approximating the differential operator. Question: Can we "transform" i and g to turn the (BIG) linear system to SIMPLE algebraic equation? YES! Discrete Fourier Transform !! Answer:

Question: Extension to discrete case (Computational Math.)
Answer: Discrete Fourier Transform
Goal: ① Define discrete Fourier Transform (DFT)
② Use DFT to solve discretized differential eqt.
Definition: (Discrete Fourier Transform) Given fo, f1, ..., fnieC,
then the discrete Fourier Transform (DFT) is defined as:

$$\vec{c} = \begin{pmatrix} c_1 \\ \vdots \\ c_{n-1} \end{pmatrix} \in C^n$$
 where $C_k = \frac{1}{n} \sum_{j=0}^{n-1} f_j e^{-i(\frac{2jk\pi}{n})}$
The inverse discrete Fourier Transform recovers the original signal:
 $f_j = \sum_{k=0}^{n-1} C_k e^{i(\frac{2jk\pi}{n})}$ for $j = 0, 1, 2, ..., n-1$

$$\frac{\text{Motivation 1}}{\text{Approximate 5(x) by:}} \text{ Let 5(x) defined on [0, 2\pi] 27}_{\text{Approximate 5(x) by:}} \text{ If } (x_{1}) = \sum_{k=0}^{n-1} C_{k} e^{ikx}, x \in [0, 2\pi] \text{ such that:} if (2\pi) i$$

-

 $\omega = e^{i \frac{2\pi}{n}} = e^{i x_1}$ $\omega^{2} = e^{i\frac{4\pi}{n}} = e^{ix_{2}} \omega^{3} = e^{ix_{3}}, ...$ Let written as: (**X**) be Can (n-1)2/1 1 ωⁿ⁻¹ ω²⁽ⁿ⁻¹⁾ (n-1)j (n-1)A $(A \cup A \cup)_{j,k} = 1 \cdot 1 + \bigcup^{j} \overline{\cup}_{k} + \bigcup^{2j} \overline{\cup}_{k}^{2}$ +.. + $+ C \frac{2\pi i (n-1)(j-k)}{n}$ $= 1 + e^{2\pi i \left(\frac{1}{2}\right)^2}$ j=R 2 Tri(j-k) H Ξ if) - P2TILj-R/n

AwAw = nI = AwAwWe have: $\begin{pmatrix} C_0 \\ C_1 \\ \vdots \\ C_{n-1} \end{pmatrix} = A\omega \begin{pmatrix} f_0 \\ \vdots \\ f_{n-1} \end{pmatrix} = \frac{A\omega}{n} \begin{pmatrix} f_0 \\ f_1 \\ \vdots \\ f_{n-1} \end{pmatrix}$ $c \cdot C_{R} = \frac{1}{n} \left(f_{0} + e^{-\frac{2\pi i}{n}R} f_{1} + \dots + e^{-\frac{2\pi i}{n}R} f_{n-1} \right)$ for &=0,1,2,...,n-1