Lecture 4 Analytic Spectral method to solve Recall: Lu(x) = g(x). (e.g. $L = \frac{d}{dx^2}$) Find basis functions { \$\Phi_n(x)}_{n=1}^{\infty} such that: $L \phi_n(x) = \sum_{j=1}^{N} \lambda_{j,n} \phi_j(x)$ $g(x) \approx \frac{N}{2} b_j \phi_j(x)$ Let $u(x) = \sum_{j=1}^{N} a_j \phi_j(x)$. Then: $L_{U(X)} = g(x) \Rightarrow \sum_{j=1}^{N} a_j \sum_{k=1}^{N} \lambda_{kj} \Phi_k(x) = \sum_{j=1}^{N} b_j \phi_j(x)$ Comparing coefficients => Diff. eqt becomes algebraic eqts.

Example: Consider
$$u_t - du_{xx} = h(x,t)$$
 such that:
 $u(o,t) = u(2\pi,t)=0$ and $u(x,o) = f(x)$.
Assuming that $h(x,t) = \sum_{h=1}^{N} h^2 t \sin hx$ and $f(x) = \sum_{h=1}^{N} k \sin hx$
Solution: This time, we consider $L = \frac{d^2}{dx^2}$.
Then: we choose $\{\frac{\phi_n(x)}{n=1}\}_{n=1}^{\infty} = \{\cos nx, \sin nx\}_{n=1}^{\infty}$.
We assume:
 $u(x,t) = \sum_{n=1}^{\infty} a_n(t)\cos nx + b_n(t)\sin nx$
Note that $u(o,t) = u(2\pi,t) = o$, we can remove terms with
 $\cos nx$
 \therefore we assume $u(x,t) = \sum_{n=1}^{\infty} b_n(t)\sin nx$.

.

$$\frac{\partial u}{\partial t} - \alpha \frac{\partial^2 u}{\partial x^2} = h(x,t)$$

$$\Rightarrow \sum_{k=1}^{\infty} b_k(t) \sin kx + \alpha b_k(t) h^2 \sin kx = \sum_{k=1}^{N} h^2 t \sin kx$$
Comparing coefficients:

$$b_k(t) + \alpha k^2 b_k(t) = h^2 t \quad \text{for } h^{21,2...,N}$$
Also, $u(x, o) = \sum_{k=1}^{\infty} b_k(o) \sin kx = f(x) = \sum_{k=1}^{N} k \sin kx$
Comparing coefficients:

$$b_k(o) = k, \quad \text{for } h^{21,2...,N}$$

is we have:

$$\int b_{k}(t) + dk^{2}b_{k}(t) = k^{2}t$$
for $k=1,2,...,N$

$$\int b_{k}(0) = k$$
Can be solved using integrating factor technique:
Let $M(t) = e^{\int dk^{2}dt}$
Multiply both sides by
 $M(t) = e^{-dk^{2}t}(k + \int_{0}^{t} k^{2}s e^{dk^{2}s}ds)$

$$\int b_{k}(t) = e^{-dk^{2}t}(k + \int_{0}^{t} k^{2}s e^{dk^{2}s}ds)$$
(exercise!)
And $b_{k}(t) = 0$ for $k > N$

2

.

-

Recall: Many times we need to approximate f(x) by:

$$f(x) = \sum_{k=0}^{N} a_k \cos kx + b_k \sin kx \quad \text{where}$$

$$a_0 = \frac{1}{2\pi} \int_{0}^{2\pi} f(x) dx; \quad a_k = \frac{1}{\pi} \int_{0}^{2\pi} f(x) \cos kx dx; \quad b_k = \frac{1}{\pi} \int_{0}^{2\pi} f(x) \sin kx dx$$

-

Definition: (Real Fourier Series)
Consider fux)
$$\in V = \{ real - valued 2\pi - periodic smooth functions \}$$

Then, the real Fourier Series of fixed is given by:
 $f(x) = \sum_{k=0}^{\infty} a_k \cos kx + \sum_{k=1}^{\infty} b_k \sin kx$, where $\{a_k\}$ and $\{b_k\}$ are given
 $b_{k=0}^{\infty} a_0 = \frac{1}{2\pi} \int_{0}^{2\pi} f(x) dx$; $a_k = \frac{1}{\pi} \int_{0}^{2\pi} f(x) \cos kx dx$; $b_k = \frac{1}{\pi} \int_{0}^{2\pi} f(x) \sin kx dx$

Definition: (Complex Fourier Series)
Consider fux)
$$\in W = \{ complex - valued 2\pi - periodic smooth functions \}$$

Then, the complex Fourier Series is given by =
 $f(x) = \sum_{k=0}^{\infty} C_k e^{ikx}$ where $\{C_k\}$ is determined by =
 $k^{z-\sigma}$
 $C_k = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) e^{-ikx} dx (Here, e^{ikx} = coskx + isinkx)$
The integration is computed separately for the real
part and imaginary part.

again Other

-

Example: Suppose
$$f(x) = 1$$
 on $[0, \pi]$.
If $f(x)$ is extended to $[-\pi, \pi]$ as an even function : $f(x) = \begin{cases} 1 & x \in [0,\pi] \\ 1 & x \in [1,\pi] \end{cases}$
Then, $a_0 = 1$, $a_k = b_k = 0$ for $(k \neq 0)$. $f(x) = f(-x)$
Then, $a_0 = 1$, $a_k = b_k = 0$ for $(k \neq 0)$. $f(x) = f(-x)$
i. Real Fourier Series of $f(x)$ is 1 (Recovering the original function)
If $f(x)$ is extended to $[-\pi, \pi]$ as an odd function: $f(x) = \begin{cases} 1 & x \in [0,\pi] \\ -1 & x \in [0,\pi] \end{cases}$
Then: $a_0 = 0$, $a_k = 0$, $b_k = \begin{cases} s & 0 \\ 4\pi\pi \end{cases}$ is order
 $(b \neq 0)$ is extended to $[-\pi, \pi]$ as an odd function: $f(x) = \begin{cases} 1 & x \in [0,\pi] \\ -1 & x \in [-\pi, n] \end{cases}$
Then: $a_0 = 0$, $a_k = 0$, $b_k = \begin{cases} s & 0 \\ 4\pi\pi \end{cases}$ is order
 $f(x) = -f(-x)$
 $f(x) = \frac{4}{\pi} \left(\frac{\sin x}{1} + \frac{\sin 3x}{3} + \frac{\sin 5x}{5} + \cdots \right)$ for $x \in [-\pi, \pi]$

Question: How well closes it approximate
$$f(x)$$
?
Consider: $V_N = \{F(x) = \sum_{\substack{k=0\\ R \neq 0}}^{N} A_k \cos kx + B_k \sin kx : A_k, B_k \in \mathbb{R}\}$
For any 2π -periodic function, define:
 $\|f - F\|^2 := E(A_0, A_1, ..., A_N, B_1, B_2, ..., B_N)$
 $:= \int_0^{2\pi} (f(x) - (\sum_{\substack{k=0\\ R \neq 0}}^{N} A_k \cos kx + B_k \sin kx))^2 dx$
Remark: $\|f - F\|$ is called the least square error between
 f and F .

where:

$$a_{0} = \frac{1}{2\pi} \int_{0}^{2\pi} f(x) dx; \quad a_{k} = \frac{1}{\pi} \int_{0}^{2\pi} f(x) \cos kx dx; \quad b_{k} = \frac{1}{\pi} \int_{0}^{2\pi} f(x) \sin kx dx$$

Proof: Next time!

1

12