love diagond Definition: Consider the system $A\bar{x} = \bar{b}$. Let $A = L + D + U^{c}$ If the eigenvalues of : $\Delta D^{-1}L + \frac{1}{\Delta} D^{-1}U (\alpha \neq 0)$ are independent of X. Then, the matrix A is said to be consistently ordered. Example of consistently ordered matrices 1. Tridiagonal matrix: $\int \frac{\lambda_1}{x} \frac{x}{\lambda_2} = 0$ 0- * 25 2. Block tridiagnal matrix. where = diagond 23 matrix

Theorem: [D. Young] Assume:
1.
$$0 < w < 2$$

2. $M_J = N_J^2 P_J$ has only real eigenvalues
3. $\beta \stackrel{\text{def}}{=} p(M_J) < 1$
4. A is consistently ordered.
Then: $p(M_{SOR}) < 1$
Also, the optimal parameter W_{OPH} for fastest convergence
 $W_{OPH} = \frac{2}{1 + \int 1 - \beta^2}$ and
 $p(M_{SOR}, W_{OPH}) = W_{OPH} - 1$

Note that A is tridiagonal. Hence, it is consistently ordered.
(Condition 4 of Young's Theorem is satisfied)
Now,
$$M_{J} = -D^{-1}L - D^{-1}U = \begin{pmatrix} 0 & \frac{1}{2} & 0 \\ 0 & \frac{1}{2} & 0 \end{pmatrix} = -\frac{1}{2} T_{1}$$

 \therefore Eigenvalues of M_{J} are given by:
 $\lambda_{j} = \cos(j \frac{\pi}{m_{1}})$ where $j = 1, 2, ..., n$
 \therefore All eigenvalues of M_{J} are real.
(Condition 2 of Young's Theorem is satisfied)
Also, $p(M_{J}) = \cos(\frac{\pi}{n+1}) < 1$
(Condition 3 of Young's Theorem is satisfied)

: the optimal
$$w$$
 is:
 $W_{opt} = \frac{2}{\left[1 + \int I - p(M_{d})^{2}\right]} = \frac{2}{\left[1 + \sin\left(\frac{\pi}{n+1}\right)\right]}$

z

.

-

Proof: Consider
$$M=N^{-1}P = N^{-1}(N-A) = I - N^{-1}A$$
.
Suffice to show that all eigenvalues of M satisfy $|\lambda| < 1$
(λ can be complex). Let λ be an eigenvalue associated to
the eigenvector \vec{x} . Then:
 $M\vec{x} = \lambda \vec{X} \Rightarrow (I - N^{-1}A)\vec{X} = \lambda \vec{X} \Rightarrow (N-A)\vec{x} = \lambda N \vec{X}$
 $\Rightarrow (1-\lambda)N\vec{x} = A\vec{X}$
Note that $\lambda \neq 1$. Otherwise O is an eigenvalue of A .
Contradiction to the fact that A is positive definite.
 $Multiply \vec{x}^*$ on both sides:
 $(1-\lambda)\vec{x}^*N\vec{x} = \vec{x}^*A\vec{x} \Rightarrow \vec{x}^*N\vec{x} = (1-\lambda)\vec{x}^*A\vec{x} - (1)$

a.

Take conjugate transpose on both sides:

$$(1-\overline{\lambda}) \overrightarrow{x}^* \overrightarrow{N} \overrightarrow{x} = \overrightarrow{x}^* \overrightarrow{A}^* \overrightarrow{x} = \overrightarrow{x}^* \overrightarrow{A} \overrightarrow{x}$$

$$\Rightarrow \overrightarrow{x}^* \overrightarrow{N} \overrightarrow{x} = \frac{1}{(1-\overline{\lambda})} \overrightarrow{x}^* \overrightarrow{A} \overrightarrow{x} - (2)$$

$$(1) + (2) - \overrightarrow{x}^* \overrightarrow{A} \overrightarrow{x} \text{ on both sides:}$$

$$\overrightarrow{x}^* (N + N^* - \overrightarrow{A}) \overrightarrow{x} = \left(\frac{1}{1-\overline{\lambda}} + \frac{1}{(-\overline{\lambda}} - 1\right) \overrightarrow{x}^* \overrightarrow{A} \overrightarrow{x}$$

$$= \frac{1 - 1\overline{\lambda}|^2}{(1-\overline{\lambda}|^2} \overrightarrow{x}^* \overrightarrow{A} \overrightarrow{x}$$
By assumption, \overrightarrow{A} and $N + N^* - \overrightarrow{A}$ are both positive definite.
We have: $\overrightarrow{x}^* \overrightarrow{A} \overrightarrow{x} > 0$ and $\overrightarrow{x}^* (N + N^* - \overrightarrow{A}) \overrightarrow{x} > 0$
Hence, $1 - 1\overline{\lambda}|^2 = 0$ and $1\overline{\lambda}| < 1$.
 $\overrightarrow{A} \text{ pcm} < 1$ and the iterative Scheme converges.

Example: Let
$$A = \begin{pmatrix} d_1 & B_1 \\ P_1 & P_2 & P_2 \\ P_1 & P_2 & P_2 \end{pmatrix}$$
 be symmetric tridiagonal
matrix. Suppose A is positive - definite. Prove that the Gauss-Seddel
method converges.
Solution: For Gauss-Seidel method,
 $N = \begin{pmatrix} d_1 & d_2 \\ P_1 & d_2 \\ 0 & B_{n-1} & d_n \end{pmatrix}$ and $N^* + N - A = \begin{pmatrix} d_1 & d_2 & 0 \\ 0 & d_{n-1} \\ 0 & d_n \end{pmatrix}$
Then, $N_{e1}^* + N - A$ is symmetric.
Also, $(0, \dots, 1, 0, \dots, 0) A \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} = jth = d_1 = d_1 = 0$. (N+N*-A is
positive definite
 $ith = d_1 = d_1 = 0$.

Eigenvalue Problem
Recall: Convergence of iterative scheme:
NX^{kt1} = PX^k + f depends on the spectral
radius
$$p(N^TP)$$
.
Need: numerical method to compute eigenvalues.
Computation of Spectral radius
Goal: Find eigenvalues with largest magnitude \leftarrow Spectral radius
Two methods = 1. Power method
2. QR method

1. Power method
Let
$$A \in Mnxn(C)$$
 with n eigenvalues $\lambda_1, \lambda_2, ..., \lambda_n$ with
eigenvectors $\vec{x}_1, \vec{x}_2, ..., \vec{x}_n$.
Let $X = \left(\begin{array}{c} X_1 & X_2 & ... & X_n \end{array}\right) \in Mnxn(C)$. Then, we know:
 $A = \left(\begin{array}{c} \lambda_1 & \lambda_2 & ... & \lambda_n \end{array}\right)$.
Assuming : $1\lambda_{11} > 1\lambda_{21} \ge 1\lambda_{31} \ge ... \ge 1\lambda_n$.
We'll use Power method to compute $1\lambda_{11}$.

Observation: Start with an initial vector
$$\vec{x}^{(n)}$$
.
Consider the iterative scheme: $\vec{x}^{(k+1)} = \frac{A \vec{x}^{(k)}}{\|A \vec{x}^{(k)}\|_{\infty}}$ for $k=0,1,...$
Suppose A is diagonalizable. That's, we can assume
 $\vec{x}_{1}, \vec{x}_{2}, ..., \vec{x}_{n}$ form a basis for C^{n} .
Take $\vec{x}^{(n)} = a_{1}\vec{x}_{1} + a_{2}\vec{x}_{2} + ... + a_{n}\vec{x}_{n}$ (assuming $a_{1} \neq 0$)
Note that $A^{k}\vec{x}^{(n)} = a_{1}\lambda_{1}^{k}\left[\vec{x}_{1} + \sum_{j=2}^{n} \frac{a_{j}}{a_{1}}\left(\frac{\lambda_{j}}{A_{1}}\right)^{k}\vec{x}_{j}\right]$.
Hence, $\vec{x}^{(k)} = \frac{A\vec{x}^{(k-1)}}{\|A\vec{x}^{(k-1)}\|_{\infty}} = \frac{A\left(A\vec{x}^{(k-2)}/\|A\vec{x}^{(k-2)}\|_{\infty}\right)}{\|A(A\vec{x}^{(k-2)})\|_{\infty}}$

$$\vec{X}^{(k)} = \frac{a_{1} \lambda_{1}^{k} \left[\vec{X}_{1} + \sum_{j=2}^{n} \frac{a_{j}}{a_{1}} \left(\frac{\lambda_{j}}{\lambda_{1}}\right)^{k} \vec{X}_{j}\right]}{|| a_{1} \lambda_{1}^{k} \left[\vec{X}_{1} + \sum_{j=2}^{n} \frac{a_{i}}{a_{1}} \left(\frac{\lambda_{j}}{\lambda_{1}}\right)^{k} \vec{X}_{j}\right]||_{\infty}} \approx \frac{a_{i}}{|a_{i}|} \frac{\vec{X}_{i}}{||\vec{X}_{i}||_{\infty}} \frac{\lambda_{i}^{k}}{||\vec{X}_{i}||_{\infty}}$$
Note: \vec{v} is an eigenvector associated to λ_{1}

$$(\therefore |\frac{\lambda_{1}}{\lambda_{1}}| < 1 \text{ for })$$

$$\ln fact,$$

$$|| A \vec{X}^{(k)}||_{\infty} \rightarrow || A \left(\frac{a_{1}}{||\vec{X}_{1}||_{\infty}}\right)||_{\infty} = || \frac{a_{1}}{||\vec{x}_{1}||_{\infty}} \lambda_{1} \frac{\vec{X}_{1}}{||\vec{X}_{1}||_{\infty}}||_{\infty} = |\lambda_{1}|$$

$$\frac{\lambda_{1}^{k}}{|\lambda_{1}|^{k}} \text{ can be removed}$$

$$under || \cdot ||_{\infty}$$