
Lecture 10: Recall :

FastFourier Transform (FFT) (Colley and Turkey , 1965)
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-Computationalcost for FFT : Assume n = 21.
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~Butterfly diagram (Algorithmic visualization

Consider F4 (4x4 matrix).
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=Iterative method to solve huge linear system

Reall : Numerical spectral method handles periodic functions .

Consider : (A) A = f
,
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Question : How to solve BIG linear system ?

Method1 : Gaussian elimination

Comp .
cost : 0 (H3)

Sol : exact,

Methodi: LU factorization.
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Goal: Develop iterative method
: find a sequence o ,
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Remark : We can stop when error is small enough.

Method : Sphitting method
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Split A as follows : A = N + (A - N) = N - (N-A)
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Remark: · N should be simple :

easy to find inverse.

· N should have an inverse

· N should be "related to" A.

· N should be chosen such
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SplittingChoice 1 : Jacobi method

Take N = D = diagonal part of A
n =(

Split A as A = D - (D - A)
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Remark : All diagonal entries of A must be non-zero,

such that D is non-singular.
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Question :

· Does it always converge ?

↑ is the initialization

important ?
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