Lecture 10: Recall:
Fast Fourier Transform (FFT) (Colley and Tukey, 1965)
Let
$$F_n = \begin{pmatrix} 1 & 1 & \cdots & 1 & n \\ 1 & \omega & n & \cdots & \omega & n \\ \vdots & \vdots & & & \\ 1 & \omega & n & \cdots & \omega & n \end{pmatrix}$$
 where $\omega_n = e^{i\left(\frac{2\pi}{n}\right)}$.
Let $\vec{y} = F_n \vec{x}$, where $\vec{y} = \begin{pmatrix} y_0 \\ y_1 \\ \vdots \\ y_{n-1} \end{pmatrix}$ and $\vec{x} = \begin{pmatrix} x_0 \\ x_1 \\ \vdots \\ x_{n-1} \end{pmatrix}$. Suppose $n = 2m$.
Then, for each $0 \le j \le n-1$,
 $y_j = \sum_{k=0}^{n-1} \omega_n^{jk} \times_k = \sum_{k=0}^{2m-1} \omega_{2m}^{kj} \times_k$.
Divide $k = 0, 1, 2, \dots, 2m-1$ into two parts:
Part 1: $0, 2, 4, 6, \dots, 2(m-1)$ (Even)
Part 2: $1, 3, 5, 7, \dots, 2m-1$ (Odd)

Then:
$$y_{j} = \sum_{\substack{k=0 \\ k \neq 0}}^{m-1} \bigcup_{\substack{n=1 \\ k \neq 0}}^{2kj} X_{2k} + \sum_{\substack{k=0 \\ k \neq 0}}^{m-1} \bigcup_{\substack{n=1 \\ k \neq 0}}^{(2k+1)j} X_{2k+1}$$

Denote $\overline{x}' = \begin{pmatrix} x_{0} \\ x_{2} \\ \vdots \\ x_{2m-2} \end{pmatrix}$, $\overline{x}'' = \begin{pmatrix} x_{1} \\ x_{3} \\ \vdots \\ x_{2m-1} \end{pmatrix}$. Let $\overline{y}' = F_{m} \overline{x}'$ and $\overline{y}'' = F_{m} \overline{x}''$.
For $j = 0, 1, 2, ..., m-1$, we have:
 $y_{j} = (F_{m} \overline{x}')_{j} + \bigcup_{\substack{n=0 \\ m \neq 0}}^{m\times m} (F_{m} \overline{x}'')_{j} = (\overline{y}')_{j} + \bigcup_{\substack{n=0 \\ m \neq 0}}^{m\times m} (\overline{y}'')_{j}$
For $j = 0, 1, 2, ..., m-1$, we have $j \to 0$ ($F_{m} \overline{x}'')_{j} = (\overline{y}')_{j} + \bigcup_{\substack{n=0 \\ m \neq 0}}^{m\times m} (\overline{y}'')_{j}$
 $y_{j+m} = (F_{m} \overline{x}')_{j} - \bigcup_{\substack{n=0 \\ m \neq 0}}^{m\times m} (F_{m} \overline{x}'')_{j}$

Note:
$$n \times n$$
 matrix multiplication becomes $\frac{n}{2} \times \frac{n}{2} = m \times m$
matrix multiplication.
For simplicity, we denote: $\begin{pmatrix} U_{1} \\ V_{2} \\ \vdots \\ V_{n} \end{pmatrix} \otimes \begin{pmatrix} U_{1} \\ W_{2} \\ W_{n} \end{pmatrix} = \begin{pmatrix} V_{1} & W_{1} \\ V_{2} & W_{2} \\ V_{2} & W_{2} \end{pmatrix}$
Summary of FFT
Step1: Split \bar{X} into $\bar{X}' = \begin{pmatrix} \chi^{\circ} \\ \chi^{\circ} \\ \chi_{2(m-1)} \end{pmatrix}$ and $\bar{X}'' = \begin{pmatrix} \chi^{\circ} \\ \chi^{\circ} \\ \chi_{2m-1} \end{pmatrix}$
Step 2: Compute $\bar{y}' = Fm\bar{X}'$ and $\bar{y}'' = Fm\bar{X}''$, where $Fm = \frac{n}{2} \times \frac{n}{2}$
Step 3: Compute: Gn
 $\begin{pmatrix} W^{\circ} \\ W^{\circ} \\ W^{\circ} \end{pmatrix} = \bar{y}' + \begin{pmatrix} W^{\circ} \\ W^{\circ} \\ W^{\circ} \end{pmatrix} \otimes \bar{y}''$ and $\begin{pmatrix} ym \\ ym \\ ym \\ ym \\ W^{m+1} \end{pmatrix} = \bar{y}' - \begin{pmatrix} W^{\circ} \\ W^{\circ} \\ W^{\circ} \\ W^{\circ} \end{pmatrix} \otimes \bar{y}''$

Remark: Computational cost :
$$O(m^2) + O(m)$$
 (multiplication +)
ss (addition)
 $O(m^2)$
Let $Cm = computational cost of Fm. Then $C_1 = 1$.
Let $Cm = 2Cm + 3m$
Proof: $Step 2$: $g' = Fm \vec{x}'$, $g'' = Fm \vec{x}''$ ($= 2Cm$)
 $Step 3$: $Yj = \vec{y}j' + wn^{\dagger}\vec{y}j''$ ($= 1$ multiplication
 $y_{ij+m} = \vec{y}j' - wn^{\dagger}\vec{y}j''$ ($= 1$ multiplication
for $j = 0, (1, 2) - m - 1$ ($substraction$)
 $U = 3m$
 $Cam = 2Cm + 3m$$

1

Now,
$$n = 2^{k}$$
.
 $\therefore C_{2^{k}} = 2C_{2^{k-1}} + 3 \cdot 2^{k-1}$.
 $\therefore 2^{-k}C_{2^{k}} = 2^{-(k-1)}C_{2^{k-1}} + \frac{3}{2} = 2^{-(k-2)}C_{2^{k-2}} + 2(\frac{3}{2})$
 $= \vdots$
 $\log_{n} = 2^{\circ}(C_{2^{\circ}} + k(\frac{3}{2}) = 1 + \frac{3}{2}k)$
 $\therefore C_{2^{k}} = \frac{2^{k}}{n} + \frac{3}{2}k + \frac{3}$

Butterfly diagram (Algorithmic visualization) Consider F4 (4×4 matrix). $\begin{bmatrix} \text{Recoll} : \ \vec{y}e = \vec{y}' = F_m \vec{x}' \\ \vec{y}e = \vec{y}' = F_m \vec{x}' \end{bmatrix}$ Denote $\vec{x}' := \vec{x}e, \vec{x}'' = \vec{x}e$ $\vec{y}_{e} := F_{2} \vec{x}_{e} \overset{(x_{0})}{=} (\cdot) \xrightarrow{(y_{0})} (y_{1}) \qquad \vec{\omega}_{4} = \begin{pmatrix} \omega_{4}^{\circ} \\ \omega_{4}^{\circ} \end{pmatrix}$ $\vec{y}_{0} := F_{2} \vec{x}_{0} = \begin{pmatrix} x_{1} \\ x_{3} \end{pmatrix} = (\cdot) \xrightarrow{(\omega_{4})} \begin{pmatrix} y_{2} \\ y_{3} \end{pmatrix} \qquad \vec{\omega}_{4} = \begin{pmatrix} \omega_{4}^{\circ} \\ \omega_{4}^{\circ} \end{pmatrix}$ Diagran means: (yo) = ye + w4 & y. $\begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix} = \overline{y}_0 - \overline{w}_4 \otimes \overline{y}_0$ Depend on $\begin{pmatrix} y_2 \\ y_3 \end{pmatrix} = \overline{y}_0 - \overline{w}_4 \otimes \overline{y}_0$ J \overline{y}_0 and \overline{y}_e .

For F2 Xe: Fi Xee $= (X_{0})$ $= (X_{2})$ $= (X_{2})$ $= F_{2} X_{e} = Y_{e}$ For $F_2 \tilde{X}_0$: $\overset{1=}{F_1 \tilde{X}_{00}} = (X_1) \underbrace{-\tilde{\omega}_2^0}_{1=\tilde{F}_1 \tilde{X}_{00}} = (X_3) \underbrace{-\tilde{\omega}_2^0}_{1=\tilde{U}_2 \tilde{U}_2 \tilde{U}_2} = F_2 \tilde{X}_0 = \tilde{Y}_0$ $\vec{y}_{e} = \begin{pmatrix} \chi_{o} + \vec{\omega}_{2} \otimes (\chi_{2}) \\ \chi_{o} - \vec{\omega}_{2} \otimes (\chi_{2}) \end{pmatrix} = \begin{pmatrix} \chi_{o} + \chi_{2} \\ \chi_{o} - \chi_{2} \end{pmatrix}$ Remark: $\vec{X}_e = \begin{pmatrix} X_o \\ X_z \end{pmatrix}, \vec{X}_o = \begin{pmatrix} X_1 \\ X_3 \end{pmatrix}$ $\vec{y}_{\circ} = \begin{pmatrix} X_1 + \vec{\omega}_2^{\circ} \otimes (X_3) \\ X_1 - \vec{\omega}_2^{\circ} \otimes (X_3) \end{pmatrix} = \begin{pmatrix} X_1 + X_3 \\ X_1 - X_3 \end{pmatrix}$ $\vec{X}_{0e} = (X_1)$ $\vec{X}_{00} = (X_3)$ Xee = (Xo) Xeo = (X2) $\overline{\omega_2}^\circ = (\omega_2^\circ) = (1)$

y Overall diagram yo Xee = (Xo) y,) Xeo = (X2) y2 Xoe = (XI) + $\vec{X}_{00} = (X_3)$ 2. w4 *ъ*. (Butterfly diagram) Using the diagram, find y2. $\Box_1 = X_0 + X_2$ $y_2 = \Box_1 - (\overline{\omega}_4), \Box_2$ $\square_2 = X_1 + X_3$ $= \square_1 - \square_2$ $i y_2 = X_0 + X_2 - (X_1 + X_3)$

Iterative method to solve huge linear system
Recall: Numerical spectral method handles periodic functions.
Consider: (*)
$$\frac{d^2 u}{dx^2} = f$$
, $u(o) = A$, $u(1) = B$
 $x \in [0, 1]$.
Partition $[0,1]$ into $x_j = jA$ where $h = \frac{1}{n+1}$
Then: (*) is discretized as:
 $\frac{u_{i+1} - 2u_i + u_{i-1}}{R^2} = f(X_i)$ or
 $\frac{u_i}{R^2} = f(X_i)$ or
 $\frac{u_i}{R^2} = \frac{1}{R^2} \begin{pmatrix} u_i \\ u_i \\ \vdots \\ u_n \end{pmatrix} = \begin{pmatrix} f(x_i) - \frac{R}{R^2} \\ f(x_i) - \frac{R}{R^2} \\ \vdots \\ f(x_n) - \frac{R}{R^2} \end{pmatrix}$
 $D = \begin{pmatrix} u(X_i) \\ u_i \\ u_i \end{pmatrix}$ has eigenvector e^{iAX} $A = \frac{1}{R^2} \begin{pmatrix} -2 & i \\ 0 & i -2 \end{pmatrix}$

Question: How to solve BIG linear system?
Method I: Gaussian elimination
Comp. cost :
$$O(n^3)$$

Srd : exact.
Method 2: LU factorization.
Decompose $A = LU$ (If A is SPD, then $A = LL^T$)
 $Decompose A = LU$ (If A is SPD, then $A = LL^T$)
 V (Diver upper by Cholesky decomposition)
 V (over upper by Solving $\int Ly = b$ - easy
Comp. cost : $O(n^3)$ ($Ux = y$)
 Srf : exact.

-

Goal: Develop iterative method: find a sequence
$$\vec{X}_0, \vec{X}_1, \vec{X}_2, \dots$$

such that $\vec{X}_R \rightarrow \vec{X}^* = sol.$ of $A\vec{X} = \vec{f}$ as $k \rightarrow o$.
Remark: We can stop when error is small enough.
Method: Splitting method
Consider a linear system $A\vec{X} = \vec{f}$ where $A \in Mnxn(n \text{ is BIG})$
Split A as follows: $A = N + (A - N) = N - (N - A)$
 $= N - P - P$
Then: $A\vec{X} = \vec{f} \Leftrightarrow (N - P)\vec{X} = \vec{f} \Leftrightarrow N\vec{X} = P\vec{X} + \vec{f}$
Develop an iterative scheme as follows?
(A) $N\vec{X}^{nti} = P\vec{X}^n + \vec{f}$
If $\{\vec{X}^n\}_{n=1}^{\infty}$ converges, then it converges to the sol $\vec{X}^{\times} = \vec{f}$

Remark: N should be simple : easy to find inverse. . N should have an inverse

. N should be "related to" A.

• N should be chosen such that {Xn}n=1 converges.

Splitting choice 1: Jacobi method
Take
$$N = D = diagonal part of A$$

Split A as $A = D - (D - A)$
Then: $A\vec{x} = \vec{f} \iff D\vec{x} - (D - A)\vec{x} = \vec{f}$
 $\implies D\vec{x} = (D - A)\vec{x} + \vec{f}$
We can consider an iterative scheme such that:
 $D\vec{x}^{k+1} = (D - A)\vec{x}^{k} + \vec{f}$
 $\iff \vec{x}^{k+1} = D^{-1}(D - A)\vec{x}^{k} + D^{-1}\vec{f}$
Remark: All diagonal entries of A must be non-zero,
such that D is non-singular.