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(c). Assume that the lifetimes of the electronic devices are independent.
Let Y be the random variable of the number of devices that will function
for at least 15 hours. Then Y has a binomial distribution with parameters

n = 6 and p, where
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First, note that
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Moreover, we have
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By the above two equations, we have a = 0 and b = 3,
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Var(X) = E[X?] — (B[X])* = 0.0375.
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Next, the expectation is
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Here, let A be a set in the real line where y 4(x) is defined to be 1, if z € A,
and to be 0, if z ¢ A.
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—4Y 4+ 1/16Y2 + 16(Y — 6)
8

16Y2 +16(Y —6) > 0

The roots x1 = are real if and only if



So we need to find this probability

P (16Y*+16(Y —6) > 0) = P({Y > 2} U{Y < -3})
= P(Y < -3)+ P(Y >2)

= 0+/ e Mdx
2

Q5

First, we use AB to denote the line segment. Let C be a point randomly
chosen in AB. Let X be a random variable denoting the length of the line
segment AC. We can see X is uniformly distributed on [0, L]. Also, the
event the ratio of the shorter to the longer segment is less than i can be

represented as
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Assume that the annual rainfalls are independent from year to year. Let
X be the random variable of annual rainfall. Then X ~ N (40, 42).

X —40

P(X <50) =P ( < 2.5) = §(2.5) ~ 0.9938.

The required probability is P(X < 50) ~ 0.9397.



Q7

Denote Xﬁm by Z. Then Z is a standard normal random variable.
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where ® is the cumulative distribution function of the standard normal
random variable.

Therefore, c = 2 - ®71(0.9) + 12.
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We assume that X is a continuous random variable with density f(x).
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Q10

Let f(x) denote the probability density function of a normal random vari-
able with mean p and variance 2. Show that p — o and p + o are points
of inflection of this function. That is, show that f”(x) =0 when z = py—o
or x = i1 + 0. Recall that

Fa) = e~ la=n? /2
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Taking the derivative with respect to x twice, we get
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and ) )
f//(x) _ —0° + (I’ B :u) ef(x—,u)z/ZJZ.
V2mo®
Thus f"(z) =0 & -0+ (zx—p)> =0z =pu—ocorz=pu+o,as
claimed. So u — ¢ and p + o are the points of inflection of this function.
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(a). By integration by parts, we have
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Here, we need the additional assumption that
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Then we have E [¢'(Z)] = E[Zg(Z)].
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(b). Put g(z) = 2", for n > 1. Note that gjgliaoog(x)e_7 = 0, so by
(a), we have E[¢(Z)| = E[Zg(Z)]. Therefore, E [Z"| = E[Zg(Z)] =
Elg (Z)] E[nz"1] = nE [2771].

(c). By(b), we have E (Z*) = 3E (Z?) = 3.

Q12

Let F'xy and Fjx be the distribution of X and kX respectively. Let fx and
frx be the density of X and kX respectively. For ¢ > 0,

Frx(t) = P(kX < t) = P(X < t/k) = Fx(t/k),
fex(t) = Fix(t) = %fx(t/k) %eit

For t < 0, Fix(t) = 0 and fxx(t) = 0. Hence, kX is an exponential random
variable with parameter \/k.



