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Q1

(a). The image of X is {4,2,1,0,—1, —2}.
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The expected value of the money we are going to get for playing 100 games
is (0 — 2) x 100 = —200 dollars.

(c). It it not fair. The game is biased against us.

Q2

The possible values of X are 1,2,3,4,5,6 and the probabilities that X
takes on each of these values are
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Q3

First, find the mass probability functions of X and Y. Let 2 = {40, 33,25, 50}.
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P(X =40) = 13438
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P(X =50) = 118

P(Y:z’):i, 1€ Q)

Then we are going to calculate the expectation and variance of X and Y.
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Q4

(a). By simple observation, we can see the event {X = 1} is equal to
{(H,7),(T,H)}.

P(X =1)= P{(H,T),(T, H)} = 0.6 x (1 —0.7) + (1 — 0.6) x 0.7 = 0.46
(b). Similarly, {X =2} = {(H, H)}. Then

E(X) =) kP(X =k)
k=0

—0-P(X=0)+1-P(X=1)4+2P(X =2)
=1-0.46+2- (0.6 x 0.7)
= 1.3
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(a). Denote the event “first coin is flipped” by Cy, with Cs defined similarly.
Let X be the number of heads out of 10 tosses.
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(b). By conditioning on the outcome of the first flip, we update the proba-
bility (now evenly split between coins 1 and 2 ) that coin 1 is being flipped.
Let H; denote the event “the first flip is heads”.
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Our updated probabilities are now: P(Cy | Hy) = -+ and P(Cs | Hy) = .

Then
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Q6

The number of potential interviewees who consent to the interview X is a
binomial random variable, withn = 5 and p = % Q: What is the probability
that each of the 5 people consents to the interview?
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(b). Now X ~ Binom (8, %)
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(c). We are asked for the probability that the 6th potential interviewee
will be the 5th to consent.
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Q7

As the expected value of a function of a discrete random variable X equals
Z f(z;) P{X = x;}, ¢* has as an expected value of

ElX] =dP{X=1}+c'P{X =-1}
E[c*] = clp) + (%) (1-p)

B =cpt 2



Setting this equal to 1,

If p =0, then ¢ = 1 (disregarded). If p # 0, we solve this quadratic
equation and get
1+ 4/(-1)2 —4p(1 —p)
c= 2p
14++/(2p— 1)
c= o
1+ (2p—1)
c= 5

Solving the equation above, we get ¢ = 117 — 1 or ¢ =1 (disregarded)
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Q9

Note that a Poisson r.v. has the parameter A > 0 and P(X = k) = k,
for k= 0,1,2,... Fixak € {0,1,2,...} and let fy(\) = X¢°. If k = 0,
note that fy(\) = e™*, A > 0, so no maximum is attained for k = 0. If
k > 0, then
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Hence A = k maximizes P(X = k).

Q10

First, according to the expectation of a function of random variables, we

have
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We have known FE(X) = A. Then by the formula proved above,
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