
MATH 2028 Honours Advanced Calculus II

2024-25 Term 1

Suggested Solution to Problem Set 3

Problems to hand in

1. Find the volume of the region lying above the plane z = a and inside the sphere x2+y2+z2 = 4a2

by integrating in cylindrical coordinates and spherical coordinates.

Solution. Using cylindrical coordinates,

Volume =
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.

Using spherical coordinates,

Volume =

∫ 2π

0

∫ π
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∫ 2a

a secϕ
ρ2 sinϕ dρdϕdθ

=
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0
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.

2. (a)Find the volume of a right circular cone of base radius a and height h by integrating in

cylindrical coordinates and spherical coordinates.

(b) How about the volume of an oblique cone where the vertex also lies at height h but not

necessarily directly over the center of the circular base?

(c) In general, what is the volume of a generalized cone with a given base area A and height h?

Solution. (a)Using cylindrical coordinates,

Volume =

∫ 2π

0

∫ a

0

∫ h− rh
a

0
r dzdrdθ = · · · = 1

3
πa2h.



Using spherical coordinates,

Volume =

∫ 2π

0

∫ arctan( a
h
)

0

∫ h secϕ

0
ρ2 sinϕ dρdϕdθ = · · · = 1

3
πa2h.

(b) and (c) can be done together . let S(t) be area of section with heigth t , easily S(0) =

A,S(h) = 0 .

V ol(cone) =

∫ h

0
S(t)dt =

∫ h

0
S(h− t)dt (1)

on the other hand S(h− t)/S(o) = ( th)
2 . so we have

V ol(cone) =

∫ h

0
S(t)dt =

∫ h

0
S(h− t)dt =

∫ h

0
(
t

h
)2Adt = Ah/3 (2)

so for (b) , volume equal to πa2h/3

3. Find the volume of the region in R3 bounded by the cylinders x2 + y2 = 1, y2 + z2 = 1, and

x2 + z2 = 1.

Solution. By symmetry,

Volume = 8

∫ π
4
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∫ √
1−r2 cos2 θ

−
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∫ π
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=
16

3

∫ π
4

0

(
sec2 θ − sin3 θ
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4. Let Ω ⊂ R2 be the open subset bounded by the curve x2 − xy + 2y2 = 1. Express the integral∫
Ω xy dA as an integral over the unit disk in R2 centered at the origin.

Solution. Write x2 − xy + 2y2 = (x − y
2 )

2 + (
√
7
2 y)2. Then use the substitution u = x − y

2 ,

v =
√
7
2 y.

5. Let Ω ⊂ R2 be the open subset in the first quadrant bounded by y = 0, y = x, xy = 1 and

x2 − y2 = 1. Evaluate the integral
∫
Ω(x

2 + y2) dA using the change of variables u = xy,

v = x2 − y2.



Solution. Let u = xy, v = x2 − y2. We define function g : (0, 1)2 → Ω as g(u, v) = (x, y). Note

that g is a diffeomorphism with inverse h(x, y) = (xy, x2 − y2). By inverse function theorem, we

have that

|det(Dg)| = |det(Dh)|−1 =
1

2
(x2 + y2)−1 =

1

2
√
v2 + 4u2

.

By change of variables formula, we can conclude that∫
Ω
(x2 + y2) dA =

∫ 1

0

∫ 1

0

√
v2 + 4u2 |det(Dg)| dA =

1

2
.

6. Let Bn(r) denote the closed ball of radius a in Rn centered at the origin.

(a) Show that Vol(Bn(r)) = λnr
n for some positive constant λn.

(b) Compute λ1 and λ2.

(c) Compute λn in terms of λn−2.

(d) Deduce a formula for λn for general n. (Hint: consider two cases, according to whether n is

even or odd.)

Solution. (a) λn = Vol(Bn(1)). The rn arises from the change of variable u⃗ = rx⃗, where

x⃗ ∈ Bn(1).

(b) λ1 = 2 and λ2 = π.

(c) We introduce two methods for deriving the recursion formula.

Method 1: Let Bn(o, 1) =
{
x⃗ ∈ Rn : x21 + · · ·+ x2n < 1

}
be the n−ball of radius 1 centered at

the oringin in Rn. Let P = {x⃗ ∈ Rn : x3 = · · · = xn = 0} be a 2−plane. Let S = Bn(1)∩P .

It is straightforward to see that

S =
{
x⃗ ∈ Rn : x21 + x22 < 1, x3 = · · · = xn = 0

}
.

Now Bn(o, 1) can be regard as the disjoint union of (n − 2)−balls with centers q ∈ S and

radius
√

1− |q|2, i.e.

Bn(1) = ⊔q∈SB
n−2(q,

√
1− |q|2).

Therefore,

λn =

∫
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=
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√
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∫
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√
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∫ 2π

0
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0
(
√
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=
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n
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Method 2: Let

In :=

∫ π

0
sinn θ dθ.

Using integration by parts, we can derive the reduction formula for In:

In =
n− 1

n
In−2 for n ≥ 2, I0 = π, I1 = 2.

Using spherical coordinates for Rn, we have that

λn =
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0
· · ·
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0

∫ 2π
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0
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0
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)
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0
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0
dφ1
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0
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)
=
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n
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k=1

Ik

=
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n
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k
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=
4π
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=
4π

n(n− 2)
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=
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=
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n
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(d) It follows directly from (c) that,

λn =


π

k
λ2k−2 =

πk

k!
if n = 2k

2π

2k + 1
λ2k−1 =

2(k!)(4π)k

(2k + 1)!
if n = 2k + 1.

Suggested Exercises

1. Let Ω ⊂ R2 be the region bounded below by y = 1 and above by x2 + y2 = 4. Evaluate∫
Ω
(x2 + y2)−3/2 dA.

Solution. Using polar coordinates,∫
Ω
(x2 + y2)−3/2 dA =

∫ 5π
6

π
6

∫ 2

csc θ
r−3 · r drdθ

=

∫ 5π
6

π
6

(
sin θ − 1

2

)
dθ

=
√
3− π

3
.



2. Find the area enclosed by the cardioid in R2 expressed in polar coordinates as r = 1 + cos θ.

Solution.

Area =

∫ 2π

0

∫ 1+cos θ

0
r drdθ

=

∫ 2π

0

1

2
(1 + cos θ)2 dθ

=
1

2

∫ 2π

0

(
1 + 2 cos θ +

1 + cos 2θ

2

)
dθ

=
1

2

[
θ + 2 sin θ +

θ

2
+

sin 2θ

4

]2π
0

=
3π

2
.

3. Let Ω ⊂ R3 be the region bounded below by the sphere x2+y2+z2 = 2z and above by the sphere

x2 + y2 + z2 = 1. Evaluate the integral∫
Ω

z

(x2 + y2 + z2)3/2
dV.

Solution. Using spherical coordinates,∫
Ω

z

(x2 + y2 + z2)3/2
dV

=

∫ 2π

0

∫ π
3

0

∫ 1

0

ρ cosϕ

ρ3
ρ2 sinϕ dρdϕdθ +

∫ 2π

0

∫ π
2

π
3

∫ 2 cosϕ

0

ρ cosϕ

ρ3
ρ2 sinϕ dρdϕdθ

=
3π

4
+

π

6

=
11π

12
.

4. Let Ω ⊂ R2 be the open subset lying in the first quadrant and bounded by the hyperbolas xy = 1,

xy = 2 and the lines y = x, y = 4x. Evaluate the integral
∫
Ω x2y3 dA.

Solution. We want u = xy and v = y
x , i.e. x =

√
u
v and y =

√
uv. Formally, we define

g : Γ := (1, 2)× (1, 4) → Ω by g(u, v) = (
√

u
v ,
√
uv). Then g is a bijective C1 map with

Dg(u, v) =

(
1

2
√
uv

−1
2

√
u
v3

1
2

√
v
u

1
2

√
u
v

)
and det(Dg)(u, v) =

1

2v
> 0.

Hence, g is a diffeomorphism.

Note that both ∂Ω and ∂Γ have measure zero.



By the change of variables theorem and Fubini’s theorem, we have∫
Ω
x2y3 dA =

∫ 2

1

∫ 4

1
(

√
u

v
)2(

√
uv)3 · 1

2v
dvdu

=
1

2

∫ 2

1

∫ 4

1
u5/2v−1/2 dvdu

=
2

7
(8
√
2− 1).

5. Let Ω ⊂ R3 be the open tetrahedron with vertices (0, 0, 0), (1, 2, 3), (0, 1, 2) and (−1, 1, 1).

Evaluate the integral
∫
Ω(x+ 2y − z) dV .

Solution. Let Γ = {(u, v, w) : 0 < u+ v + w < 1, u, v, w > 0} and define g : Γ → Ω by

g(u, v, w) = u(1, 2, 3) + v(0, 1, 2) + w(−1, 1, 1) = (u− w, 2u+ v + w, 3u+ 2v + w).

Then g is a bijective C1 map with

Dg(u, v, w) =

1 0 −1

2 1 1

3 2 1

 and det(Dg)(u, v, w) = −2 < 0.

Hence, g is a diffeomorphism. Write

Γ = {(u, v, w) : 0 < w < 1, 0 < v < 1− w, 0 < u < 1− v − w}.

Note that both ∂Ω and ∂Γ have measure zero.

By the change of variables theorem and Fubini’s theorem, we have∫
Ω
(x+ 2y − z) dV =

∫
Γ
((u− w) + 2(2u+ v + w)− (3u+ 2v + w)) · | − 2| dV

=

∫ 1

0

∫ 1−w

0

∫ 1−v−w

0
4u dudvdw

=
1

6
.

6. Let Ω ⊂ R2 be the open subset bounded by x = 0, y = 0 and x + y = 1. Evaluate the integral∫
Ω cos

(
x−y
x+y

)
dA. (Hint: note that the integrand is un-defined at the origin.)

Solution. First note that f(x, y) := cos
(
x−y
x+y

)
is a continuous function bounded on Ω.

Next we want u = x+ y and v = x− y, i.e. x = 1
2(u+ v) and y = 1

2(u− v). Then

(x, y) ∈ Ω ⇐⇒ 0 < x < 1 and 0 < y < 1− x

⇐⇒ 0 < u < 1 and − u < v < u.



Define g : Γ := {(u, v) : 0 < u < 1,−u < v < u} → Ω by g(u, v) = (12(u+ v), 12(u− v)). Then g is

a C1 bijective map with

Dg(u, v) =

(
1
2

1
2

1
2 −1

2

)
and det(Dg)(u, v) = −1

2
< 0.

Hence, g is a diffeomorphism.

Note that both ∂Ω and ∂Γ have measure zero.

By the change of variables theorem and Fubini’s theorem, we have∫
Ω
cos

(
x− y

x+ y

)
dA =

∫ 1

0

∫ u

−u
cos
(v
u

)
·
∣∣∣∣−1

2

∣∣∣∣ dvdu
=

∫ 1

0
u sin(1) du =

1

2
sin(1).

7. Find the volume of the solid region Ω ⊂ R3 bounded below by the surface z = x2+2y2 and above

by the plane z = 2x+ 6y + 1 by expressing it as an integral over the unit disk in R2 centered at

the origin.

Solution. Note that Ω = {(x, y, z) : (x, y) ∈ B, x2 + 2y2 < z < 2x + 6y + 1}, where B is the

region in xy-plane bounded by the curve x2 + 2y2 = 2x+ 6y + 1, i.e. (x− 1)2 + 2(y − 3
2)

2 = 13
2 .

Then we use the substitution u =
√

2
13(x− 1), v = 2√

13
(y − 3

2).

8. Let Ω ⊂ R2 be the open triangle with vertices (0, 0), (1, 0) and (0, 1). Evaluate the integral∫
Ω e(x−y)/(x+y) dA

(a) using polar coordinates;

(b) using the change of variables u = x− y, v = x+ y.

Solution. (a) In polar coordinates, Ω = {(r, θ) : 0 < θ < π
2 , 0 < r < 1

cos θ+sin θ}.
(b) Essentially the same as Q4 of “Suggested Excercise”.

Challenging Exercises

1. (a) Let g : Rn → Rn be a linear transformation of one of the following types:

(a) g(ei) = ei for i ̸= j, g(ej) = aej

(b) g(ei) = ei for i ̸= j, g(ej) = ej + ek, g(ek) = ek for k ̸= i, j

(c) g(ei) = ej , g(ej) = ei

If U is a rectangle, show that the volume of g(U) is | det(g)| · vol(U).

(b) Prove that | det(g)| · vol(U) is the volume of g(U) for any linear transformation g : Rn → Rn.

(Hint: If det(g) ̸= 0, then g is the composition of linear transformations of the type considered

in (a).)



Solution. Check tutorial notes of 9 oct .

2. Let Ω ⊂ Rn be a bounded subset with measure zero ∂Ω. Show that for any ϵ > 0, there exists a

compact subset K ⊂ Ω such that ∂K has measure zero and Vol(Ω \K) < ϵ.

Solution. Let ε > 0. Choose a rectangle R ⊃ Ω. By the assumption, 1Ω is integrable on R. So

there is a partition P of R such that

U(1Ω,P)− L(1Ω,P) < ε.

Let K =
⋃

Q∈P :Q⊂Ω

Q. Clearly K is a subset of Ω. It is compact because it is a finite union of

closed bounded rectangles. ∂K has measure zero because it consists of a finite unions of faces of

rectangles. Finally, since L(1Ω,P) = L(1K ,P), we have

Vol(Ω\K) ≤ U(1Ω − 1K ,P) ≤ U(1Ω,P)− L(1K ,P) = U(1Ω,P)− L(1Ω,P) < ε.


