
Math 3030 Algebra I
Review of basic ring theory

1 Rings

Definition 1.1. A ring (R,+, ·) is a set R together with two binary operations: addition and multiplica-
tion +, · : R×R→ R such that

1. (R,+) is an abelian group;

2. (a) · is associative; and

(b) there exists a multiplicative identity in R, i.e. an element 1 ∈ R such that a1 = 1a = a for
any a ∈ R.

3. · is distributive over +, i.e.

a(b+ c) = ab+ ac and (a+ b)c = ac+ bc

for any a, b, c ∈ R.

Definition 1.2. • We say that a ring R is commutative if ab = ba for any a, b ∈ R.

• A triple (R,+, ·) satisfying all the above conditions except 2(b) is called a rng or a ring without
identity.

Here are some examples of rings:

1. Z, Q, R, C (equipped with the usual addition and multiplication) are all commutative rings.

2. Let R be any commutative ring. Then the set of polynomials R[x] with coefficients in R is also a
commutative ring. Examples are Z[x], Q[x], R[x], C[x].

3. For an integer n ≥ 2, nZ is a commutative rng.

4. The only ring in which 1 = 0 is R = {0}, called the zero ring. Any ring with 1 6= 0 is called a
nonzero ring.

5. For any nonzero integer n, Zn is a finite commutative ring.

6. Let R be any commutative ring. Then for any integer n ≥ 2, the set Mn×n(R) of n × n matrices
with entries in R is a noncommutative ring.

1



2 Special classes of rings

Definition 2.1. Let R be a ring. If a, b ∈ R are two nonzero elements of R such that ab = 0, then we call
them 0-divisors. (More precisely, a is called a left 0-divisor while b is called a right 0-divisor.)

Definition 2.2. An integral domain is a nonzero commutative ring which contains no 0-divisors.

Proposition 2.3. A nonzero commutative ring R is an integral domain if and only if the cancellation law
hold for multiplication, i.e. whenever ca = cb and c 6= 0, we have a = b.

Examples:

1. The finite ring Zn is an integral domain if and only if n is a prime.

2. If D is an integral domain, then the polynomial ring D[x] is also an integral domain.

Definition 2.4. LetR be a nonzero ring. A nonzero element u ∈ R is called a unit if it has a multiplicative
inverse in R, i.e. there exists u−1 ∈ R such that uu−1 = u−1u = 1.

Definition 2.5. A field is a nonzero commutative ring in which every nonzero element is a unit.

It is not hard to see that any field is an integral domain. Conversely, we have the following

Proposition 2.6. Any finite integral domain is a field.

Examples:

1. Q, R, C are fields.

2. By the above proposition, Zp is a finite field for any prime p.

3. Q[
√

2] := {a+ b
√

2 : a, b ∈ Q} is a field.

Definition 2.7. Let D be an integral domain. If there exists a positive integer n such that na = 0 for any
a ∈ D, then D is said to be of finite characteristic, and the smallest such positive integer is called the
characteristic of D, denoted by char(D). If no such integer exists, then we say D is of characteristic 0,
written as char(D) = 0.

Proposition 2.8. If n1 6= 0 for any positive integer n, thenD is of characteristic 0. Otherwise, char(D) =
min{n ∈ Z>0 : n1 = 0}.

Proposition 2.9. The characteristic of an integral domain is either 0 or a prime p.

Examples:

1. Z, Q, R, C are of characteristic 0.

2. Zp is of characteristic p.
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Given an integral domain D, the field of quotients (or fraction field) of D, denoted by Frac(D), is the
quotient of the product D × (D \ {0}) by the equivalence relation:

(a, b) ∼ (c, d) if and only if ad = bc.

Proposition 2.10. Frac(D) is a field under the addition and multiplication inherited fromD, with additive
identity [(0, 1)], multiplicative identity [(1, 1)], and the inverse of a nonzero element [(a, b)] given by
[(b, a)].

Furthermore, there is a natural embedding j : D ↪→ Frac(D) by a 7→ [(a, 1)], which is universal
among all embeddings from D to a field, i.e. for any embedding ι : D ↪→ L from D into a field L, there
exists an embedding i : Frac(D) ↪→ L such that ι = i ◦ j.

Examples:

1. Frac(Z) = Q.

2. Let F be a field. Then Frac(F [x]) is called the field of rational functions over F , denoted by F (x).
Formally, we can write

F (x) =

{
f(x)

g(x)
: f(x), g(x) ∈ F [x], g(x) 6= 0

}
.

3 Ring homomorphisms; subrings and ideals

Definition 3.1. Let R and R′ be rings. A map φ : R → R′ called a ring homomorphism (or simply
homomorphism) if the following conditions are satisfied:

1. φ(1R) = 1R′;

2. φ(a+ b) = φ(a) + φ(b), for all a, b ∈ R;

3. φ(ab) = φ(a)φ(b), for all a, b ∈ R.

If φ is furthermore bijective, then it is called an isomorphism. We say that R is isomorphic to R′, denoted
by R ∼= R′, if there exists an isomorphism φ from R to R′.

Remark 3.2. If φ is an isomorphism, then φ−1 is automatically an isomorphism.

Examples of ring homomorphisms:

1. For any positive integer n, the map φ : Z→ Zn defined by mapping k to its reminder when divided
by n is a surjective ring homomorphism.

2. Let R be the set of all functions from R to R. Fix a ∈ R. Then the evaluation map φa : R → R
defined by f 7→ f(a) is a ring homomorphism.
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Proposition 3.3. A subring of a ring (R,+, ·) is a subset S ⊂ R containing 1R and closed under + and
· which forms a ring under the inherited operations.

Proposition 3.4. Let φ : R→ R′ be a ring homomorphism. Then

• φ(0) = 0′, where 0 and 0′ are the additive identities in R and R′ respectively.

• For any a ∈ R, φ(−a) = −φ(a).

• For any subring S ⊂ R, φ(S) is a subring of R′.

• For any subring S ′ ⊂ R′, φ−1(S ′) is a subring of R.

Remark 3.5. Similar to groups, we can define the category Ring of rings. A free object on n generators in
the category Comm Ring of commutative rings is given by the polynomial ring Z[x1, . . . , xn]. This places
the polynomial ring on the same footing as the free group and finite dimensional vector spaces:

FGrp(a1, . . . , an) = free group on n generators,
FAb(a1, . . . , an) = Zn,

FVectF (a1, . . . , an) = F n,

FComm Ring(a1, . . . , an) = Z[x1, . . . , xn].

Definition 3.6. Let φ : R→ R′ be a ring homomorphism. The additive subgroup

kerφ := φ−1(0′) = {a ∈ R : φ(a) = 0′}

is called the kernel of φ.

Proposition 3.7. A ring homomorphism φ : R→ R′ is injective if and only if kerφ = {0}.

Definition 3.8. An additive subgroup I of a ring R such that aI ⊂ I and Ib ⊂ I for any a, b ∈ R is called
an ideal of R.

Proposition 3.9. For any homomorphism φ : R→ R′, kerφ is an ideal of R.

Theorem 3.10. Let I ⊂ R be an additive subgroup. Then the multiplication

(a+ I)(b+ I) = (ab) + I

on additive cosets is well-defined if and only if I is an ideal.

Corollary 3.11. Let I ⊂ R be an ideal. Then the additive cosets of I in R form a ring, called the quotient
ring of R by I and denoted by R/I , under the operations

(a+ I) + (b+ I) = (a+ b) + I,

(a+ I)(b+ I) = (ab) + I.

Proposition 3.12. Let I ⊂ R be an ideal. Then the map π : R → R/I defined by π(a) = a + I is a
surjective ring homomorphism with kerπ = I; this map is called the projection map or canonical map.
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Hence “ideal” and “kernel of a ring homomorphism” are equivalent concepts.

Theorem 3.13. (First Isomorphism Theorem) Let ϕ : R → R′ be a ring homomorphism. Let I = kerϕ.
Then the map ϕ : R/I → ϕ(R) defined by

ϕ(a+ I) = ϕ(a)

is an isomorphism such that ϕ = ϕ ◦ π.

Here are some examples:

1. nZ ⊂ Z is an ideal, and Z/nZ ∼= Zn as rings.

2. Let R be the set of all functions from R to R. Fix a ∈ R. Then Ia := {f ∈ R : f(a) = 0} is
an ideal of R since it is the kernel of the evaluation map φa, and R/Ia ∼= R as rings. On the other
hand, the subset S consisting of all constant functions is a subring but not an ideal.

3. For any ring R, both {0} and R are ideals of R. An ideal I $ R is called proper and ideal
{0} $ I ⊂ R is called nontrivial.

4. Let R be a commutative ring. Let a ∈ R. Then the set of all multiples of a

〈a〉 := {ra : r ∈ R}

is an ideal, called the principal ideal generated by a. Note that R = 〈1〉.

5. More generally, let A ⊂ R be a nonempty subset of a commutative ring R. Then the set of all finite
linear combinations of elements of A

〈A〉 := {r1a1 + · · ·+ rkak : k ∈ Z>0, ri ∈ R, ai ∈ A}

is an ideal, called the ideal generated by A.

Proposition 3.14. Let F be a field.

• If char(F ) = 0, then there exists an embedding Q ↪→ F .

• If char(F ) = p, then there exists an embedding Zp ↪→ F .

Because of this, the fields Q, Zp (where p is a prime) are called prime fields.

4 Polynomial rings

Definition 4.1. Let R be a nonzero commutative ring. A polynomial f(x) with coefficients in R is a
formal sum

f(x) =
∞∑
i=0

aix
i

where ai ∈ R and ai = 0 for all but finitely many i’s. If ai 6= 0 for some i, then the largest such integer is
called the degree of f(x). We denote by R[x] the set of all polynomials with coefficients in R.
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Proposition 4.2. R[x] is a commutative ring under the usual addition and multiplication of polynomials.

Proposition 4.3 (Division algorithm). Let F be a field. Let f(x), g(x) ∈ F [x] be two nonzero polynomi-
als. Then there exist unique q(x), r(x) ∈ F [x] such that

f(x) = q(x)g(x) + r(x),

and either r(x) = 0 or deg r(x) < deg g(x).

Corollary 4.4. An element a ∈ F is a root (or zero) of f(x) (i.e. f(a) = 0) if and only if f(x) is divisible
by x− a.

Corollary 4.5. A nonzero polynomial f(x) ∈ F [x] of positive degree n can have at most n roots in F .

Definition 4.6. An integral domain D is called a principal ideal domain (PID) if every ideal in D is
principal.

An example of PID is given by Z.

Proposition 4.7. For any field F , F [x] is a PID.

Definition 4.8. A nonconstant polynomial f(x) ∈ F [x] is said to be irreducible over F if it cannot be
written as a product g(x)h(x) where both g(x) and h(x) have degrees lower than that of f(x). Otherwise,
f(x) is said to be reducible.

Examples:

1. x2 + 1 is irreducible over R but reducible over C.

2. f(x) = x3 + 3x + 2 ∈ Z5[x] is irreducible over Z5 since it has no roots in Z5 (which is easy to
check).

Lemma 4.9 (Gauss’ lemma). If f(x) ∈ Z[x] can be factored as a product of two polynomials in Q[x], it
can also be factored as a product of two polynomials in Z[x].

Theorem 4.10 (Eisenstein criterion). Let p ∈ Z be a prime. Let f(x) = anx
n + · · · + a1x + a0 ∈ Z[x].

Suppose that p - an, p : ai for all i < n and p2 - a0. Then f(x) is irreducible over Q.

Examples:

1. 5x5 − 9x4 − 3x2 − 12 is irreducible over Q.

2. For any prime p, the p-th cyclotomic polynomial

Φp(x) :=
xp − 1

x− 1
= xp−1 + xp−2 + · · ·+ x+ 1

is irreducible over Q.

Theorem 4.11. Let F be a field. For any polynomial f(x) ∈ F [x], the following statements are equiva-
lent:

1. F [x]/〈f(x)〉 is a field.

2. F [x]/〈f(x)〉 is an integral domain.

3. f(x) is irreducible over F .
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