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Compulsory Part

1. A nontrivial abelian group A (written multiplicatively) is called divisible if for each ele-
ment a ∈ A and each nonzero integer k there is an element x ∈ A such that xk = a, i.e.
each element has a kth root in A.

(a) Prove that the additive group of rational numbers, Q, is divisible.

(b) Prove that no finite abelian group is divisible.

Answer. (a) For any p
q
∈ Q and k ∈ Z, we have k p

kq
= p

q
. Thus it is divisible.

(b) Let G be a finite divisible group of order m, then there is a non-trivial element g
such that the order of g. Since G is divisible, there exists fm = g. However fm = e,
this contradicts to our choice of g.

2. Let G be a group of order pq, where p and q are primes. Show that every proper subgroup
of G is cyclic.

Answer. Let H be a proper subgroup of G, by Lagrange’s theorem, it has order 1, p or q.
If |H| = 1, then it is the trivial group, which is cyclic. If |H| = p or q, since it has prime
order, it is generated by any nonidentity element. So H is cyclic.

3. Let H1 ≤ H2 ≤ H3 . . . be an ascending chain of subgroups of a group G. Prove that the
union ∪∞

i=1Hi is a subgroup of G.

Answer. Let H = ∪∞
i=1Hi. We prove that H ≤ G.

First, eG ∈ H1 ⊆ H . Second, take arbitrary a, b ∈ H . Then a ∈ Hi, b ∈ Hj for some
i, j ≥ 1. Then a, b ∈ Hi+j . Therefore, ab−1 ∈ Hi+j ⊆ H.

Therefore, H ≤ G.

4. Let H ≤ K ≤ G. Show that [G : H] = [G : K][K : H]. (Warning: G,H and K may not
be finite.)

Answer. Note that G =
⊔

i∈I giK, and K =
⊔

j∈J kjH for some I, J, gi, kj (by axiom of
choice). Then G =

⊔
i∈I, j∈J gikjH .

Then [G : H] = |I × J | = |I||J | = [G : K][K : H].

5. Show that if H is a subgroup of index 2 in a group G, then aH = Ha (as subsets in G )
for all a ∈ G. (Warning: Again, G may not be finite.)

Answer. Since [G : H] = 2, there are only two left cosets {H, aH} and two right cosets
{H,Ha}. Since cosets partition a group G, aH ⊔ H = G = Ha ⊔ H and therefore
aH = G−H = Ha.
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6. Show that any group homomorphism ϕ : G → G′, where |G| is a prime number, must
either be the trivial homomorphism or an injective map.

Answer. Since kerϕ is a subgroup of G of prime order, kerϕ has order 1 or p. When it
has order 1, it is injective. When it has order p, kerϕ = G and the map is trivial.

Optional Part

1. Recall that an element a of a group G with identity element e has order r > 0 if ar = e
and no smaller positive power of a is the identity. Show that if G is a finite group with
identity e and with an even number of elements, then there exists an order 2 element in
G, i.e. there exists a ̸= e in G such that a2 = e.

Answer. Let ∼ be a relation on G defined by g ∼ h for g, h ∈ G if and only if g = h
or g = h−1. It is easy to verify that ∼ is an equivalence relation on G. Let [g] be the

equivalence class containing g for each g ∈ G. Then |[g]| =

{
1, if ord (g) = 1, 2,

2, if ord (g) > 2.
.

Since |G| is even and |G| is partitioned into equivalence classes by ∼, there must be an
even number of equivalence classes that has size 1. Note that exactly one element e ∈ G
has order 1. Therefore there must be an element in G of order 2.

2. Using the Theorem of Lagrange, show that if n is odd, then an abelian group of order 2n
contains precisely one element of order 2.

Answer. Suppose there are two distinct elements a, b of order 2, then the subgroup gen-
erated by a, b is {e, a, b, ab}. It is a subgroup of order 4. But 4 does not divide 2n by
assumption, so this would contradict Lagrange’s theorem.

Remark. Can you find an nonabelian group of 2n elements containing more than 1 ele-
ment of order 2?

3. Show that every group G with identity e and such that x2 = e for all x ∈ G is abelian.

Answer. Let g, h ∈ G be arbitrary. Then g2 = h2 = ghgh = 1. Then g−1h−1gh =
ghgh = 1. Therefore, gh = hg.

Therefore, G is abelian.

4. Let p be a prime and Fp the finite field with p elements. Compute the orders of the groups
GLn(Fp) and SLn(Fp).

Answer. |GLn(Fp)| = (pn − 1)(pn − p)...(pn − pn−1), and |SLn(Fp)| = (pn − 1)(pn −
p)...(pn − pn−1)/(p− 1).

The reason is that GLn(Fp) = {M | M ∈ Mn(Fp), columns of M are linearly independent}.
The first column has pn − 1 choices. After choosing the first one, the second column has
pn − p choices, and so on. The last column has pn − pn−1 choices.

Note that det : GLn(Fp) → F×
p is surjective, with kernel SLn(Fp). Therefore, |SLn(Fp)| =

|GLn(Fp)|/|F×
p | = (pn − 1)(pn − p)...(pn − pn−1)/(p− 1).
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5. Prove that a cyclic group with only one generator can have at most 2 elements.

Answer. Let G be a cyclic group with exactly one generator g. Then G = ⟨g⟩. Then
G = ⟨g−1⟩. Therefore, g = g−1, and ord (g) = 1 or 2. Then |G| = ord (g) = 1 or 2.

6. Show that a group with no proper nontrivial subgroups is cyclic.

Answer. Let G be a group with no proper nontrivial subgroup. Let e denote the identity
element in G.

If |G| = 1. Then G = ⟨e⟩ is cyclic. If |G| > 1. Let g ∈ G\{e}. Then ⟨g⟩ is a nontrivial
subgroup of G, so it cannot be proper. Then G = ⟨g⟩, so G is cyclic.

7. Show that a group which has only a finite number of subgroups must be a finite group.

Answer. We prove the contrapositive. Suppose G is infinite.

Case 1. Some g ∈ G has infinite order. Then ⟨gn⟩ are different subgroups of G for
different n ∈ Z>0.

Case 2. All g ∈ G has finite order. Then G =
⋃
g∈G

⟨g⟩. But G is infinite, and each ⟨g⟩ is

finite. Then there is an infinite number of distinct ⟨g⟩’s. Therefore, G has infinitely many
subgroups.

In either case, G has infinitely many subgroups.

8. Let G be a group and suppose that an element a ∈ G generates a cyclic subgroup of order
2 and is the unique such element. Show that ax = xa for all x ∈ G. [Hint: Consider
(xax−1)2.]

Answer. Note that a is the unique element in G of order 2. Let x ∈ G. Then (xax−1)2 =
xa2x−1 = xx−1 = e. Also xax−1 ̸= e because otherwise a = e. Then ord (xax−1) = 2.
Then xax−1 = a, and so xa = ax.

9. Let n be an integer greater than or equal to 3. Show that the only element σ of Sn

satisfying σg = gσ for all g ∈ Sn is σ = ι, the identity permutation. [Hint: First show
that Sn is a nonabelian group for n ≥ 3.]

Answer. Suppose σ ∈ Sn satisfies σg = gσ for any g ∈ Sn.

Suppose σ is not the identity. Then σ(i) ̸= i for some 1 ≤ i ≤ n. Let j = σ(i).
Since n ≥ 3, we can find 1 ≤ k ≤ n distinct from i, j. Then ((j, k) ◦ σ)(i) = k, but
(σ ◦ (j, k))(i). Therefore, (j, k)σ ̸= σ(j, k). Contradiction arises.

Therefore, σ = ι, the identity permutation.

10. Prove the following statements about Sn for n ≥ 3:

(a) Every permutation in Sn can be written as a product of at most n− 1 transpositions.

(b) Every permutation in Sn that is not a cycle can be written as a product of at most
n− 2 transpositions.
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(c) Every odd permutation in Sn can be written as a product of 2n + 3 transpositions,
and every even permutation as a product of 2n+ 8 transpositions.

Answer. (a) Note that a cycle (x1, x2, ..., xk) of length k can be written as a prod-
uct of k − 1 transpositions: (x1, x2, ...xk) = (x1, x2)(x2, x3)...(xk−1, xk). Also,
a permutation in Sn can be written as a product of disjoint cycles. Let the lengths
of the disjoint cycles be l1, l2, ..., lr. Then l1 + ... + lr ≤ n. Write each cycle
as a product of transpositions. Then the number of transpositions used would be
l1 − 1 + ...+ lr − 1 = l1 + ...+ lr − r ≤ n− r ≤ n− 1. (The identity permutation
(1)=(1,2)(1,2). Better, it can be thought of as the product of 0 transpositions and
thus, as a length 1 cycle, fall into the above discussion.)

(b) When g ∈ Sn is not equal to any cycle, its cycle decomposition contain at least 2
cycles. Then r ≥ 2 in (a). Thus the number of transpositions used is at most n− 2.

(c) By (a), every odd permutation g is a product of k ≤ n ≤ 2n+ 3 transpositions, and
k is odd because g is odd. Say g = t1...tk is the product, where each ti is a transpo-
sition. Then g = t1...tk((1, 2)(1, 2))

(2n+3−k)/2 is a product of 2n + 3 transposition.
The case for even permutation is similiar.

11. Show that if σ ∈ Sn is a cycle of odd length, then σ2 is a cycle.

Answer. Let σ = (x1, ..., x2k−1) be a cycle of odd length, where k ∈ Z>0. Then σ2 =
(x1, x3, x5, ..., x2k−1, x2, x4, ..., x2k−2) is a cycle.

12. If n is odd and n ≥ 3, show that the identity is the only element of Dn which commutes
with all elements of Dn.

Answer. Recall that Dn = ⟨r, s | rn = s2 = rsrs = 1⟩ = {sjri | 0 ≤ i ≤ n − 1, j =
0, 1}.

Let n ≥ 3. Suppose g ∈ Dn commutes with all elements of Dn. Write g = sjri, where
0 ≤ i ≤ n − 1, j = 0, 1. Then sjris = ssjri. Then ri = sris−1 = (srs−1)i = (srs)i =
(r−1)i = r−i. Therefore, r2i = 1. But the order of r is n, so n | 2i. But n is odd, so n | i.
Since 0 ≤ i ≤ n− 1, i = 0. Then g = 1 or s.

But the above discussion shows that s does not commute with sjri for i ̸= 0. In particular
s does not commute with r . Therefore, g = 1.

13. Consider the group S8.

(a) What is the order of the cycle (1, 4, 5, 7)?

(b) State a theorem suggested by part (a).

(c) What is the order of σ = (4, 5)(2, 3, 7)? of τ = (1, 4)(3, 5, 7, 8)?

(d) Find the order of each of the permutations given in Exercise 14 (a) through (c) (see
below) by looking at its decomposition into a product of disjoint cycles.

(e) State a theorem suggested by parts (c) and (d). [Hint: The important words you are
looking for are least common multiple.]

Answer. (a) 4.
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(b) The order of a cycle is equal to its length.

(c) The order of σ = (4 5)(2 3 7) is 6. The order of τ = (1 4)(3 5 7 8) is 4.

(d) The cycle decompositions of the permutations given in Exercises 10 through 12 are
(1 8)(3 6 4)(5 7), (1 3 4)(2 6)(5 8 7) and (1 3 4 7 8 6 5 2) respectively, and their
orders are 6, 6 and 8 respectively.

(e) The order of a permutation is equal to the least common multiple of the lengths of
the cycles in its cycle decomposition.

14. Express the permutation of {1, 2, 3, 4, 5, 6, 7, 8} as a product of disjoint cycles, and then
as a product of transpositions:

(a)
(

1 2 3 4 5 6 7 8
8 2 6 3 7 4 5 1

)
(b)

(
1 2 3 4 5 6 7 8
3 6 4 1 8 2 5 7

)
(c)

(
1 2 3 4 5 6 7 8
3 1 4 7 2 5 8 6

)
Answer. (a) (18)(364)(57) = (18)(36)(64)(57).

(b) (134)(26)(587) = (13)(34)(26)(58)(87).

(c) (13478652) = (13)(34)(47)(78)(86)(65)(52).

15. Find the maximum possible order for an element of S6.

Answer. The maximal order is lcm(2, 3) = lcm(6) = 6.

16. Find the maximum possible order for an element of S10.

Answer. The maximal order is lcm(2, 3, 5) = 30.

17. Complete the following with a condition involving n and r so that the resulting statement
is a theorem:

If σ is a cycle of length n, then σr is also a cycle of length n if and only if...

Answer. If σ is a cycle of length n, then σr is also a cycle of length n if and only if n and
r are relatively prime.

Proof. We may assume that σ = (1 2 · · · n).
(⇐=) Suppose n and r are relatively prime. Then there are integers x and y such that
nx+ ry = 1. Hence, (σr)y = σ so that the list σr(1), (σr)2(1), (σr)3(1), . . . contains the
same elements as what σ(1), σ2(1), σ3(1), . . . contains. They are 1, 2, 3, . . . , n. In other
words, σr is a cycle of length n.

(=⇒) Since σr is a cycle of length n, there is an integer y such that (σr)y(1) = σ(1).
It follows that for any i ∈ {1, 2, . . . , n}, σ1−ry(i) = σ1−ryσi−1(1) = σi−1σ1−ry(1) =
σi−1(1) = i. Hence σ1−ry = Id and so 1− ry is a multiple of n, which means that n and
r are relatively prime.
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A more constructive approach: Let a denote the only element in (a+ nZ) ∩ {1, 2, ..., n},
the remainder of a divided by n in {1, 2, ..., n}. Then σr(i) = i+ r.

(⇐=) Let r be relatively prime to n. Then ×r : Z/nZ → Z/nZ is a bijection. Then
{r, 2r, ..., nr} = {1, 2, ..., n}. Then (1, 2, ..., n)r = (r, 2r, ..., nr) is a cycle of length n.

(=⇒) Suppose r is not relatively prime to n. Let d = gcd(r, n). Then d > 1, and
gcd(r/d, n/d) = 1. Then σr = (σd)r/d = ((1, d+ 1, ..., n− d+ 1)(2, d+ 2, ..., n− d+
2)...(d, 2d, ..., n))r−d = (1, d + 1, ..., n − d + 1)r/d...(d, 2d, ..., n)r−d. Since each term
is an r/d-th power of a cycle of length n/d and gcd(r/d, n/d) = 1, by (⇐=), it is also
a cycle of length n/d. These cycles (i, d + i, ..., n − d + i)r/d will again be disjoint for
different i. Therefore, σr is the product of d-many disjoint cycles, each of length n/d.

Therefore σr is a cycle of length n if and only if d = 1. (Note: The relatively prime
condition is necessary in view of the case when n | r, where σr = (1) is also a cycle.)

18. Show that Sn is generated by {(1, 2), (1, 2, 3, . . . , n)}.

[Hint: Show that as r varies, (1, 2, 3, . . . , n)r(1, 2)(1, 2, 3, . . . , n)n−r gives all the trans-
positions (1, 2), (2, 3), (3, 4), · · · , (n − 1, n), (n, 1). Then show that any transposition is
a product of some of these transpositions and use Corollary 9.12.]

Answer. Let G = ⟨(1, 2), (1, 2, 3, ..., n)⟩ and we want to show that G = Sn.

Note that (1, 2, 3, . . . , n)r(1, 2)(1, 2, 3, . . . , n)−r = (r + 1, r + 2) for 0 ≤ r ≤ n − 2.
Therefore, {(1, 2), (2, 3), (3, 4), · · · , (n− 1, n)} ⊆ G.

Let 1 ≤ i < j ≤ n. Fix i and we do induction on j to show that (i, j) ∈ G. If j = i + 1,
then (i, j) ∈ G. If (i, j) ∈ G, then (i, j+1) = (j, j+1)(i, j)(j, j+1) ∈ G. By induction
on j, (i, j) ∈ G for all i < j ≤ n. Therefore, G contains all transpositions in Sn.

By Compulsory Part 8(a), transpositions in Sn generate Sn. Therefore, G = Sn.

19. Prove that Q×Q is not cyclic.

Answer. If it is cyclic, suppose the generator is g, then there must exists k ∈ Z such that
gk = (1, 0). Thus g = ( 1

k
, 0) cannot generate (0, 1).

20. Exhibit a proper subgroup of Q which is not cyclic.

Answer. Consider the group { a
2n
|a, n ∈ Z} under addition, it is a subgroup of Q. How-

ever for each r as a generator, r
2

cannot be expressed by r.

21. Show that if a group G with identity e has finite order n, then an = e for all a ∈ G.

Answer. By Lagrange’s theorem, the subgroup generated by an element a has order di-
viding |G| = n. The order of ⟨a⟩ is the same as ord a. So an = akord a = e.

22. Let H and K be subgroups of a group G. Define a relation ∼ on G by a ∼ b if and only
if a = hbk for some h ∈ H and some k ∈ K.

(a) Prove that ∼ is an equivalence relation on G.

(b) Describe the elements in the equivalence class containing a ∈ G. (These equiva-
lence classes are called double cosets.)
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Answer. (a) The relation ∼ is reflexive because a ∼ a via a = eae via e ∈ H,K.
If a ∼ b, assume a = hbk for some h, k, then b = h−1ak−1, so b ∼ a. Therefore ∼
is symmetric.
If a ∼ b and b ∼ c, then say a = h1bk1 and b = h2ck2, then a = h1h2ck2k1 for
h1h2 ∈ H and k2k1 ∈ K. Therefore ∼ is transitive.

(b) The equivalence class containing a ∈ G is given [a] = {hak | h ∈ H and k ∈ K}.

23. Let H and K be subgroups of finite index in a group G, and suppose that [G : H] = m
and [G : K] = n. Prove that lcm(m,n) ≤ [G : H ∩K] ≤ mn. Hence deduce that if m
and n are relatively prime, then [G : H ∩K] = [G : H][G : K].

Answer. By result of question 4, since we have H ∩K ≤ H ≤ G and H ∩K ≤ K ≤ G,
the index [G : H ∩K] = [G : H][H : H ∩K] = [G : K][K : H ∩K]. Now m,n both
divides [G : H ∩K], therefore lcm(m,n) also divides [G : H ∩K].

Consider the set of left cosets H/H ∩ K, for h1H ∩ K ̸= h2H ∩ K, we have h1h
−1
2 ̸∈

H ∩K. Since h1, h2 ∈ H this implies that h1, h2 ̸∈ K, so they define different left cosets
of K: h1K ̸= h2K. This shows that there are at least as many left cosets of K in G as
left cosets of H ∩K in H , i.e. [H : H ∩K] ≤ [G : K] = n. So [G : H ∩K] ≤ mn.

When m and n are relatively prime, lcm(m,n) = mn. Then [G : H ∩K] = mn = [G :
H][G : K].

24. Let ϕ : G → G′ be a homomorphism with kernel H and let a ∈ G. Prove the set equality
{x ∈ G : ϕ(x) = ϕ(a)} = Ha.

Answer. Let x ∈ G,

ϕ(x) = ϕ(a) ⇐⇒ ϕ(xa−1) = 0

⇐⇒ xa−1 ∈ kerϕ = H

⇐⇒ Hxa−1 = H

⇐⇒ Hx = Ha

⇐⇒ x ∈ Ha

25. Show that a nontrivial group which has no proper nontrivial subgroups must be finite and
of prime order.

Answer. Let G be a nontrivial group which has no proper nontrivial subgroups. Let
g ∈ G−{e} be arbitrary. Then ⟨g⟩ = G by assumption. Then G is cyclic. If G ≃ Z, then
2Z is a proper nontrivial subgroup. Then G ≃ Zn for some n ≥ 2. If n is not a prime, let
1 < d < n be a divisor of n, then ⟨d⟩ is a proper nontrivial subgroup. Therefore, G ≃ Zp

for some prime p, thus being finite of prime order.

26. If A and B are groups, then their Cartesian product A × B is a group (called the direct
product of A and B ) using the componentwise defined operation. Is any subgroup of
A×B of the form C ×D where C < A and D < B ? Justify your assertion.

Answer. Consider Z × Z, then (1, 1) generates a subgroup that is not a product of two
subgroups. This is because there are projection maps C ×D → C and C ×D → D. So
if ⟨(1, 1)⟩ is a product, then 1 ∈ C and 1 ∈ D. So C ×D = Z× Z but ⟨(1, 1)⟩ ≠ Z× Z.
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27. Prove, carefully and rigorously, that a finite cyclic group of order n has exactly one sub-
group of each order d dividing n.

Answer. Clearly there is a subgroup of order d in Zn if we let an order d element gen-
erate a subgroup. This subgroup has ϕ(d) many generators by argument above, these are
precisely all those elements of order d. Since every subgroup of cyclic group is cyclic, if
there was another subgroup of order d, then there must be more than ϕ(d) many order d
element, which is a contradiction.

28. The sign of an even permutation is +1 and the sign of an odd permutation is −1.
Observe that the map sgnn : Sn → {1,−1} defined by

sgnn(σ) = sign of σ

is a homomorphism of Sn onto the multiplicative group {1,−1}. What is the kernel?

Answer. The kernel is An, the set of even permutations.

29. Let ϕ : G1 → G2 be a group homomorphism. Show that ϕ induces an order preserving
one-to-one correspondence between the set of all subgroups of G1 that contain ker ϕ and
the set of all subgroups of G2 that are contained in im ϕ.

Answer. Let S1 = {H | ker(ϕ) ≤ H ≤ G1}, and let S2 = {H ′ | H ′ ≤ im(ϕ) ≤ G2}.
We define a bijection between S1 and S2.

For H ≤ H1, ϕ(H) ≤ im(ϕ). For H ′ ≤ im(ϕ), ker(ϕ) ≤ ϕ−1(H ′) ≤ G1. Then we can
define α : S1 → S2 by α(H) = ϕ(H), and define β : S2 → S1 by β(H ′) = ϕ−1(H ′). We
show that α and β are inverse functions of each other.

Let H ∈ S1, then β ◦ α(H) = ϕ−1 ◦ ϕ(H) = {g ∈ G1 | ϕ(g) ∈ ϕ(H)} = H ker(ϕ) = H
because H ⊇ ker(ϕ). Let H ′ ∈ S2, then α ◦ β(H ′) = ϕ ◦ ϕ−1(H ′) = H ′ ∩ im(ϕ) = H ′.
Therefore α ◦ β = β ◦ α = id.

Thus, we get a one-to-one correspondence induced by ϕ as required.

30. Let G be a group, let h, k ∈ G and let ϕ : Z × Z → G be defined by ϕ(m,n) = hmkn.
Give a necessary and sufficient condition, involving h and k, for ϕ to be a homomorphism.
Prove your assertion.

Answer. ϕ is a homomorphism if and only if hk = kh.

(⇒) If ϕ is a homomorphism, then hk = ϕ(1, 0)ϕ(0, 1) = ϕ(1, 1) = ϕ(0, 1)ϕ(1, 0) = kh.
(⇐) If hk = kh, then ϕ(m,n)ϕ(p, q) = hmknhpkq = hm+pkn+q = ϕ(m+ p, n+ q).

31. Find a necessary and sufficient condition on G such that the map ϕ described in the
preceding exercise is a homomorphism for all choices of h, k ∈ G.

Answer. ϕ is a homomorphism for all h, k if and only if hk = kh for all h, k, i.e. G is
abelian.

32. Let G be a group, h be an element of G, and n be a positive integer. Let ϕ : Zn → G be
defined by ϕ(i) = hi for 0 ≤ i < n. Give a necessary and sufficient condition (in terms
of h and n ) for ϕ to be a homomorphism. Prove your assertion.
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Answer. ϕ is a homomorphism if and only if hn = e.

(⇒) If ϕ is an homomorphism, then ϕ(n− 1)ϕ(1) = hn−1h = ϕ(0) = e.
(⇐) If hn = e, then for i+ j < n, ϕ(i+ j) = hi+j = hihj = ϕ(i)ϕ(j). And if i+ j ≥ n,
then ϕ(i+ j) = ϕ(i+ j − n) = hi+j−n = hi+j = ϕ(i)ϕ(j).


