
MATH2050B Mathematical Analysis I

Suggested solution to HW 3

(1) If x1 < x2 are some real numbers and xn = 1
4
xn−1 + 3

4
xn−2 for n > 2. Show that

{xn}∞n=1 is convergent and find the limit.

Solution. Note that, for n ∈ N,

xn+2 − xn+1 =
1

4
xn+1 +

3

4
xn − xn+1 = −3

4
(xn+1 − xn),

and thus

xn+2 − xn+1 −
3

4
(xn+1 − xn) = · · · = (−3

4
)n(x2 − x1).

Summing up the expression, we have

xn+2 − x1 =
n∑

k=0

(xk+2 − xk+1) = (x2 − x1)
n∑

k=0

(−3

4
)n = (x2 − x1)

1− (−3
4
)n+1

1− (−3
4
)
.

Therefore, lim
n→∞

xn = lim
n→∞

{
x1 + 4

7
(x2 − x1)[1− (−3

4
)n+1]

}
= 3

7
x1 + 4

7
x2.

(2) Let x1 = 1 and xn+1 = 1 +
√
xn − 1. for all n ∈ N. Show that the sequence is

convergent and find the limit.

Solution. It is easy to see by induction that {xn} is a constant sequence of 1’s.
Clearly {xn} is convergent and the limit is 1.

(3) Suppose all subsequence of (xn) has a sub-sequence converging to 0. Show that xn → 0
as n→ +∞.

Solution. Suppose xn 6→ 0 as n→ +∞. By Theorem 3.4.4, there exists ε0 > 0 and a
subsequence (xnk

) of (xn) such that |xnk
−0| ≥ ε0 for all k ∈ N. The assumption then

implies that (xnk
) has a further subsequence (xnkl

) converging to 0. This contradicts
the condition |xnkl

− 0| ≥ ε0 for all l ∈ N. Therefore xn → 0 as n→ +∞.

(4) Suppose (xn) is a sequence of positive real numbers. Show that

lim sup
n→+∞

x1/nn ≤ lim sup
n→+∞

xn+1

xn

provided that the limsup on the right hand side exists. Show that we cannot improve
≤ to = by giving an example.

Solution. Let α > lim sup
n→+∞

xn+1

xn
= inf

n≥1

(
sup
m≥n

xm+1

xm

)
.

Then there exists n0 ∈ N such that
xm+1

xm
< α for all m ≥ n0. Hence, for m ≥ n0 + 1,

xm
xn0

=
xn0+1

xn0

· xn0+2

xn0+1

· · · xm
xm−1

< αm−n0 ,
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so that
m
√
xm < α1−n0

m x
1
m
n0 = α · m

√
C,

where C = xn0α
−n0 . Since lim

m→+∞
m
√
C = 1, we have

lim sup
m→+∞

m
√
xm ≤ lim sup

m→+∞
(α · m

√
C) = lim

m→+∞
(α · m

√
C) = α.

As α > lim sup
n→+∞

xn+1

xn
is arbitrary, we have

lim sup
n+∞

n
√
xn ≤ lim sup

n+∞

xn+1

xn
.

The inequality could be strict. For example, consider xn = 2 + (−1)n for n ∈ N.
Then lim sup

n→+∞
n
√
xn = lim

n→+∞
n
√
xn = 1 since 1 ≤ n

√
xn ≤ n

√
3 for all n ∈ N. However,

lim sup
n→+∞

xn+1

xn
= 3 since xn+1

xn
is 3 when n is odd, and is 1/3 when n is even.

(5) Suppose {xn}∞n=1 is a Cauchy sequence such that xn is an integer for any n ∈ N. Show
that there is N such that xn is a constant for n > N .

Solution. Let ε = 1/2. By the definition of a Cauchy sequence, there exists N ∈ N
such that

|xn − xm| < ε =
1

2
for n,m ≥ N.

In particular,

|xn − xN | <
1

2
for n ≥ N.

Since xn is an integer for any n ∈ N, we must have xn = xN , that is a constant, for
n ≥ N .

(6) Let p ∈ N be fixed. Construct an example of (xn) which is not Cauchy but satisfies
|xn+p − xn| → 0 as n→ +∞.

Solution. Consider the sequence (xn) given by

xn =

{
1 if n is a multiple of p

0 otherwise.

Then |xn+p − xn| = 0 for all n ∈ N. However, (xn) is not Cauchy as it is divergent.

In fact, we can give an example of (xn) does not depend on p. For example, xn :=
1 + 1

2
+ · · ·+ 1

n
is divergent hence not Cauchy. However, for any p ∈ N,

|xn+p − xn| =
1

n+ 1
+ · · ·+ 1

n+ p
≤ p

n+ 1
→ 0 as n→ +∞.


