
MATH2050B Mathematical Analysis I

Suggested solution to HW 1

(1) Using the Axioms to show that for all a, b ∈ R,

(−a)2 = a2 and (a + (−b))2 = a2 + (−2ab) + b2.

Solution. First we show that if a + b = 0, then b = −a (∗). Indeed,

b = b + 0 (by A3)

= b + (a + (−a)) (by A4)

= (a + b) + (−a) (by A1, A2)

= 0 + (−a) (by assumption)

= −a (by A3).

Thus, we have −a = (−1)a (∗∗) because

a + (−1)a = 1 · a + (−1)a (by M3)

= (1 + (−1)) · a (by D)

= 0 · a (by A4)

= a · 0 (by M1)

= 0 (by Theorem 2.1.2(c)).

Hence, to show that (−a)2 = a2, it suffices to show that (−a)2 + (−a2) = 0. Now

(−a)2 + (−a2) = (−a)2 + (−1)a2 (by (∗∗))
= (−a)2 + ((−1)a)a (by M1, M2)

= (−a)2 + (−a)a (by (∗∗))
= (−a)(−a + a) (by D)

= (−a) · 0 (by A4)

= 0 (by Theorem 2.1.2(c)).

For the second equality,

(a + (−b))2 = a(a + (−b)) + (−b)(a + (−b) (by D)

= a2 + a(−b) + (−b)a + (−b)2 (by D)

= a2 + a(−b) + a(−b) + b2 (by M1, first equality)

= a2 + a((−1)b) + a((−1)b) + b2 (by (∗∗))
= a2 + (−1)(ab) + (−1)(ab) + b2 (by M1, M2)

= a2 + (−1)(2ab) + b2 (by D)

= a2 + (−2ab) + b2 (by (∗∗)).



Mathematical Analysis I 2

(2) If x > 0, show that there exists n ∈ N such that 3−n < x.

Solution. By Bernoulli’s Inequality, 3n = (1 + 2)n ≥ 1 + 2n > n for all n ∈ N.

If x > 0, the Archimedean property implies that there exists n ∈ N such that 1/n < x,
and hence 3−n < 1/n < x.

(3) Show that if A,B are bounded subsets of R, then

sup(A + B) = supA + supB

where A + B = {a + b : a ∈ A, b ∈ B}. Do we have

supA · supB = sup(A ·B)

where A ·B = {ab : a ∈ A, b ∈ B}? Justify your answer.

Solution. We further assume that A and B are non-empty. Otherwise, the corre-
sponding suprema do not exist.

By the Completeness Axiom of R, both supA and supB exist. It is clear that supA+
supB is an upper bound of A+B. Indeed, for any a ∈ A, b ∈ B, we have a ≤ supA,
b ≤ supB and hence a + b ≤ supA + supB.

Next we show that supA + supB is the least upper bound of A + B. Let ε > 0.
By Lemma 2.3.4, there are a0 ∈ A and b0 ∈ B such that a0 > supA − ε

2
and

b0 > supB − ε
2
. Hence a0 + b0 > supA + supB − ε. By Lemma 2.3.4 again, we have

sup(A + B) = supA + supB.

Consider A = B = {−1, 0}. Then supA = supB = 0, and so supA · supB = 0.
However, A ·B = {0, 1}, so that sup(A ·B) = 1 6= 0 = supA · supB.

(4) Let X be a non-empty set and f, g : X → R be two real-valued functions with
bounded ranges. Show that

sup{f(x) + g(x) : x ∈ X} ≤ sup{f(x) : x ∈ X}+ sup{g(x) : x ∈ X}.

Give an example showing that the inequality can be a strict inequality.

Solution. Since f and g have bounded ranges, A := sup{f(x) : x ∈ X} and B :=
sup{g(x) : x ∈ X} exist by the Completeness Axiom of R. For all x ∈ X, we have
f(x) ≤ A and g(x) ≤ B, and so

f(x) + g(x) ≤ A + B.

Now A + B is an upper bound of {f(x) + g(x) : x ∈ X}, and thus

sup{f(x) + g(x) : x ∈ X} ≤ A + B = sup{f(x) : x ∈ X}+ sup{g(x) : x ∈ X}.

Let X = [−1, 1] and let f, g : X → R be defined by f(x) = −g(x) = x. Then

sup{f(x) + g(x) : x ∈ X} = 0 < 1 + 1 = sup{f(x) : x ∈ X}+ sup{g(x) : x ∈ X}.
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(5) Show by using completeness that there is a unique x ∈ R so that x > 0 and x3 = 4.

Solution. Let S = {s ∈ R : s3 < 4}. Then S 6= ∅ (for example 1 ∈ S) and S is
bounded above by 2 (for s > 2 =⇒ s3 > 8 > 4). By the Completeness Axiom of
R, x := supS exists. Clearly x ≥ 1 > 0. We will show that x3 = 4 by ruling out the
other two possibilities: x3 < 4 and x3 > 4.

We will make use of the following elementary inequality: if 0 ≤ a ≤ b, then

bn − an = (b− a)(bn−1 + bn−2a + · · ·+ an−1) ≤ (b− a)nbn−1.

Suppose x3 < 4. Take ε =
1

2
min{ 4− x3

3(x + 1)2
, 1} > 0. Then

(x + ε)3 − x3 ≤ 3ε(x + ε)2 ≤ (x + ε)2

2(x + 1)2
(4− x3) < 4− x3,

and so (x + ε)3 < 4. Since x < x + ε, this contradicts the fact that x = supS is an
upper bound of S.

Suppose x3 > 4. Take ε =
x3 − 4

6x2
∈ (0, x). Then

x3 − (x− ε)3 ≤ 3εx2 =
1

2
(x3 − 4) < x3 − 4,

and so (x − ε)3 > 4. Now x − ε is an upper bound of S since s > x − ε =⇒ s3 >
(x− ε)3 > 4. Again this contradicts the fact that x = supS is the least upper bound
of S.

Thus, we must have x3 = 4.

The uniqueness of such x is clear because 0 < u < v =⇒ u3 < v3.

Therefore, there is a unique x ∈ R so that x > 0 and x3 = 4.


