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Abstract

This is a note of the course Honours Mathematical Analysis I in 2023-24, 1%¢ term

1 Order structure of R

Throughout this section, a number L means that it is a real number and let S be a non-
empty subset of R.

Definition 1.1 Using the notation as above:

(i) S is said to be bounded above (resp. bounded below) if there is a number L (resp. £
such that x < L (resp. £ <z ) for all x € S. In this case, such number L (resp. {) is
called an upper bound (resp. lower bound) for S.

Furthermore, S is said to be bounded if it is both are bounded above and bounded below.

(ii) S is said to have a mazimal element (resp. minimal element) if there is an element
M € S (resp. m € S such that x < M (resp. m < x) for allx € S. In this case, write
max S and min S for the mazimal element and the minimal element of S respectively.

Remark 1.2 (i) It is noted that the maximum of a set may not exist even it is bounded
above. For example, if let S = {1 — % :n = 1,2...}, then S is bounded above but
max S does not exist.

(ii) It is clear that max S exists if and only if min(—S) exists, where —S = {—z : z € S}.

In this case, we have — max S = min(—5).

The following notion plays an important role in mathematics.

Definition 1.3 Using the notation as above, a number L € R (rep. [) is called the
supremum (resp. the infimum ) of S if L is the least upper bound (resp. the great-
est lower bound) for S. In this case, we write

L:=supS ; {:=inf S.

The following result is easy shown by the fact that a number L is an upper bound for
S if and only if —L is a lower bound for the set —S.



Proposition 1.4 Using the notation as above, then sup S exists if and only if inf(—S5)
exists. In this case, we have

—sup S = inf(-295).

The following is a very useful result for checking a number whether it is the supremum
of a given set. In addition, the technique of the proof is standard.

Theorem 1.5 Assume that sup S exists. A number L = sup S if and only if it satisfies the
following two conditions.

(i) L is an upper bound for S.
(i) For any e > 0, there is an element ¢ € S such that L — e < xy.

Similarly, if inf S exists, then a number £ = inf S if and only if the following two conditions

hold:
(i’) £ is a lower bound for S;
(ii’) For any e > 0, there is an element yo € S such that yo < £ + €.

Proof: We are going to show the case of supremum first. For showing (=), assume
that L = sup S. It is noted that the condition (i) automatically holds by the definition of
supremum. It remains to show that the condition (iz) holds. Let € > 0. Then L — e < L.
Since L is the least upper bound for S, L — ¢ is not an upper bound for S. Therefore, there
is an element Xy € S such that L — ¢ < zy as desired.

Now for showing the converse statement, assume that the conditions (z) and (ii) hold for
the number L. Then by the definition of the supremum, it needs to show that if L1 is an
upper bound for S, then L < L;. Suppose not, that is, we assume that there is an upper
bound L; for S such that L; < L. Then ¢ :=1/2(L — L) > 0. The condition (ii) gives an
element zy € S such that

1
L1<§(L1—|—L):L—€<$0§L.

The last statement can be obtained by considering —S' in the first assertion above. (|

Axiom of Completeness of R: FEvery bounded above non-empty subset of R must have
the least upper bound, that is, the supremum of a bounded above non-empty subset of R
must exist.

Proposition 1.6 Let A and B be non-empty bounded above subsets of R. Put A+ B :=
{r+y:2€ Aye B}. Then we have sup(A + B) = sup A + sup B.

Proof: Note that L; :=sup A and Lo := sup B exist by the Axiom of Completeness. It is
clear that L + Lo is an upper bound for the set A + B. By using Theorem 1.5, it suffices
to show the condition (iz) in Theorem 1.5 holds. Let & > 0. Then by Theorem 1.5, there
are elements a € A and b € B such that L; — %5 < a and Ly — %E < b. Hence, we have
L+ Ly —e < a+b. Thus the condition (i7) holds for the set A+ B. The proof is finished.
O



Proposition 1.7 If S is a bounded below non-empty subset of R, then inf S must exist.

Proof: Note that the set —S is bounded above. Then by the completeness of R, sup(—.S)
exists and hence, inf S = —sup(—S) must exist. O

Theorem 1.8 Archimedean Property: For each x € R, there is a positive integer n
such that x < n.

Proof: The proof is shown by the contradiction. Suppose that there is a real number M
such that n < M for all n € Z. Thus, the set of all positive integers Z, is bounded above.
The Axiom of Completeness tells us that the supremum L := sup Z; must exist. Then by
considering € = 1 in Theorem 1.5, there is an element m € Z4 such that L — 1 < m and
hence, L < m + 1. This implies that n < m + 1 for all n € Zy. It leads to a contradiction
because m+1 € Z,. O

Corollary 1.9 inf{l/n:n=1,2..} =0.

Proof: Let S:={1/n:n=1,2..}. It is noted that 0 is a lower bound for the set S. By
using Theorem 1.5, it needs to show that for any € > 0, there is an element a € S such that
a < 0+4e¢e. Now let € > 0. Then by Archimedean property, there is a positive integer N such
that 1/e < N. Thus, we have 1/N € S and 1/N < ¢ as required. The proof is finished. O

Definition 1.10 We say that a subset A of R is dense in R if (a,b) N A # ().
Example 1.11 The set of all integers Z is not dense in R.

The following shows that the set of rational numbers a dense subset of R which Q is an
important dense subset.

Proposition 1.12 For each pair of real numbers a and b with a < b, then we have (a,b) N
Q # 0. In this case, the set of all rational numbers is dense in R.

Proof: Note that we may assume 0 < a < b. (Why?) By using Corollary 1.9, there is
a positive integer N such that 1/N < b — a and hence, we have 1 < Nb — Na. On the
other hand, let p := max{k € N : k < Na}. This implies that Na < p + 1. In addition,
since Nb — Na > 1, we have p +1 < Nb. Therefore, we have Na < p+ 1 < Nb. Thus,
% € QN (a,b). The proof is finished. O

Before showing the following proposition, we have a simple but useful observation first.

Lemma 1.13 Let e, f € R. Then we have e < f if and only if for all € > 0, we have
e< f+e.

Proposition 1.14 There is a unique real number x such that x> = 2. Consequently, such
real number is irrational.



Proof: Let S := {x > 0: 2% < 2}. Note that 1 € S, hence, S # (. On the other hand,
if z > 2, then 22 > 4. This implies that the set S is bounded by 2 and thus, the set S is
bounded above. Then the Axiom of Completeness assures that a := sup S exists. We are
going to show that a? = 2 as required.

We first note that by the characterization of the sup, for each positive integer n, there is
an element x,, € S such that a — % < xp. This implies that

1 2 1 4 1
2 2 _ 2
a <($n+ﬁ) _x"+ﬁ$"+ﬁ<2+ﬁ+ﬁ (1.1)

It is noted that we have %—i— # < % for all positive integer n. Therefore, we have inf {% + # :
n =1,2...} =0 because inf{l/n :n =,1,2....} = 0. This implies that for any € > 0, there
is a positive integer m such that % + # < €. Therefore, we have

a?<2+¢

for all € > 0. Lemma 1.13 implies that a? < 2.
Finally, it remains to show that a? < 2 is impossible. Assume that a? < 2. Then by using
the fact inf{% + # :n = 1,2....} = 0 again, one can choose a positive integer N such that

% + ﬁ < 2 —a?, and hence, we have a? + % + % < 2. This implies that
2 1 4 1
2 _ 2 2
Thus, we have (¢ +1/N) € S and a < a+ 1/N. It leads to a contradiction. Therefore,
2
a® = 2.
The uniqueness clearly follows from the fact that if > = b?> = 2, then we have a? — b? =
(a—0b)(a+b)=0.
Now write v/2 := supS. Then by above we have (v/2)? = 2. Suppose that v/2 = p/q is
rational, for some positive integers p and q. We have p? = 2¢. Then by the Unique Prime
Factorization theorem, there are natural numbers n and s such that p = 2"s and s is not
divided by 2. Similarly, there are natural numbers m and ¢ such that ¢ = 2"t and ¢ is not
divided by 2. Thus, we have

From this we have 2n = 2m + 1. It is impossible. The proof is complete. ([l

Theorem 1.15 For any open interval (a,b), we have (a,b) N Q¢ # 0, i.e., the set of all
irrational numbers is dense in R.

Proof: We may assume that a > 0 and hence, we have v/2a < v/2b. Since Q is dense in
R, there is an element 7 € Q N (v/2a, v/2b). Hence, we have

r
a< — <b.

V2

Since v/2 is irrational and r is rational, we see that the number % is irrational as required.
O



2 Sequences

A sequence of real numbers means that it is a real-valued function z defined on Z (or N).
Write x,, := z(n) for n = 1,2... and = = (z,).

The following definition plays a very important role in mathematics.

Definition 2.1 We say that a sequence (zy,) is convergent if there is a number L € R which
satisfies the following condition:
For any € > 0, there is a positive integer N = N (€) (depends on the choice of €), such that

|z, — L| <e  whenever n > N.

In this case, we say that (x,,) converges to L and L is a limit of (x,). If such L does not
exist, we say that (xy) is divergent.

Remark 2.2 Using the notation above, we have:

(i) A number £ is Not a limit of (xy,) if there is € > 0 such that for any positive integer
N, we can find a positive integer n with n > N so that |z, — | > €.
Warning: in this case, it does not imply that (x,) is divergent !!!!

(ii) The Definition 2.1 is clearly equivalent to the following statement:
there is a constant C' > 0 such that for any n > 0, there is a positive integer N
satisfying |z, — L| < Cnpasn > N.

The following is one of important properties of limits.

Proposition 2.3 If (x,) is a convergent sequence, then its limit is unique.
In this case, we write lim x,, for “the” limit of (x,).

Proof: Let L and L' be limits of (x,,). Then for any € > 0, there are positive integers N
and N’ such that |z, — L| < ¢ for any n > N and |z, — L'| for any n > N’. Now if we
choose a positive m so that m > N and m > N’, then we have

|L—L'| <|L— x|+ |zm — L'| < 2e.

Therefore, we have |L — L'| < 2¢ for all £ > 0. This implies that |L — L'| = 0 and thus,
L = L'. Otherwise, if we choose 0 < & < £|L — L’|, then it leads to a contradiction. O

Example 2.4 Show that if x, := Z—ﬂ forn =2,3.., then the sequence limzx, = 1.

Proof: Note that for each positive integer n with n > 2, we have |z, — 1| = —2;. Now let
g > 0. Therefore, we have |z, — 1| < ¢ if and only if % + 1 < n. The Archimedean property
tells us that there is a positive integer IV such that N > % + 1. Hence, we have |z, — 1| < &
as n > N. The proof is complete. [l

Example 2.5 Let x,, = (—1)" for n =1,2.... Show that the sequence (x,) is divergent.



Proof: Warning: It is clear that neither 1 nor —1 both is the limit of the sequence of (x,).
However, we cannot conclude from the Definition 2.1 that the sequence (z,) is divergent
since the sequence () may converge to the number which is other than 1 and —1.

Now suppose that the sequence (z,,) is convergent with L := lim x,,. Now if for each positive
integer N, put Ay := {x,, : n > N}, then Ay = {1, —1}. Therefore, for any positive integer
N the intersection (L — 1/4, L + 1/4) N Ay contains at most one point. This implies that
for any positive integer N, there is m > N such that x,, ¢ (L — 1/4,L + 1/4), that is,
|z, — L] > 1/4. Tt leads to a contradiction since L is the limit of (x,) by the assumption.
O

Example 2.6 Show that if x,, = n for all n = 1,2..., then the sequence (xy) is divergent.

Proof: suppose not, we assume that the sequence (z,) converges to some number L.
Then by Definition 2.1, if we consider € = 1, then there is a positive integer N such that
|z, —L| < 1for all n > N and thus, n < |L|+1 for all n > N. This implies that n < |L|+1
for all positive integers n. This contradicts to the Archimedean property. (|

Using the similar idea as the proof of Example 2.6, one can obtain a more general result as
follows.

Proposition 2.7 FEvery convergent sequence is bounded.

Proof: Let (z,) be a convergent sequence with the limit L. If we take ¢ = 1 in the
Definition 2.1, there is a positive integer N such that |z, — L| < 1 for all n > N. Hence,
we have |z, | < |L| + 1 for all n > N. Thus, if we take M := max{|z1|,...,|zn_1|,|L| + 1},
then we have |z, | < M for all n = 1,2,... Thus, (x,) is bounded. O

Proposition 2.8 Let (x,) and (y,) be the convergent sequences. Let a := limz, and
b :=limy,. We have the following assertions.

(i) (zn + yn) is convergent with im(z,, + y,) = a + b.
(i) The product (x,yy) is convergent with lim z,y, = ab.

(113) If yn # 0 for alln and b # 0, then the sequence (x,,/yy) is convergent and lim x,, /ypm =
a/b.

Proof: For showing (7): let ¢ > 0. Then there is a positive integer N such that |z, —a| < &
and |y, — b| < e for all n > N. This implies that
[(@n 4+ yn) — (@ +b) < |zn —af + [yn — b] < 2¢

for all n > N. Thus, (x, + y,) is convergent with lim(z, + y,) = a + b.

For (ii), let € > 0 and let N be chosen as in Part (). Since (y,) is convergent, (y,) is
bounded and hence, there is M > 0 such that |y,| < M for all n. Hence, the triangle
inequality implies that

[ZnYn — ab| < |TnYn — ayn| + |ayn — ab| < |z, — allyn| + |al|yn — 0] < (M + |a])e



for all n > N. This implies that (z,y,) is convergent and lim x,y, = ab.

For showing (ii1), it suffices to show that the sequence (yi) converges to 1/b by using Part

(i). !
Let € > 0 and N be as in Part (7) again. It is noted that since b # 0, by using the Definition
2.1 there is a positive integer N1 > N such that |y, — b| < @ for all n > Nj. This gives

|yn| > @ for all n > N;. Hence, we have

1 1 —b 2
|77*|:|yn ’§j5
Yo O ynllbl T 0]

for all n > Nj. The proof is complete. O

Proposition 2.9 Let (zy,) and (y,) be the convergent sequences with the limits a := lim x,,
and b:=limy,. If v, <y, for alln=1,2..., then a <b.

Proof: It suffices to show that a < b+ ¢ for all € > 0; otherwise, if b < a, then by taking
e=a—0b>0 we have a < b+ (a — b) = a which is impossible. Now let ¢ > 0. Then there
is a positive integer N such that |z —a| < € and |yny — b| < e. This implies that

a—e<xzy <yny <b+e.

Thus, we have a < b+ 2¢. The proof is complete. [l

Proposition 2.10 Let (z,), (yn) and (z,) be the sequences which satisfy x,, < yn < zy for
allm. If a :==limx,, = lim z,,, then (y,) is convergent and limy,, = a.

Proof: Let € > 0. Then by the Definition 2.1, there is a positive integer N such that
|z, —a| < e and |z, —a| < e for all n > N. This implies that

a—e<zp <y <zp<a+e¢

for all n > N. Hence, we have |y, — a| < € for all n > N. The proof is finished. O

Proposition 2.11 let S be a non-empty bounded above subset of R. Then a number L =
sup S if and only if L is an upper bound for S and there is a sequence (xzy) in S such that
limz, = L.

Proof: For showing (=), assume L = supS. Then L is an upper bound for S by the
definition. It suffices to show that there is a sequence (x,) in S such that limx, = L.
Recall the characterization of supremum that for any € > 0, there is an element x € S such
that L — e < x. From this for each positive integer n, there is an element x,, € S such that
L— % < xp, < L. This implies that |z, — L| < % for all n and thus, lim x,, = L as required.
The converse is clear due to the characterization of supremum again. O

Definition 2.12 A sequence (x,,) is said to be increasing (resp. decreasing) if x, < Tpi1
(resp. xy > xpyq for all n.



Theorem 2.13 Let (z,,) be an increasing (resp. decreasing) sequence. Then (xy) is con-
vergent if and only if (x,,) is bounded. In this case, we have limx,, = sup{x, : n = 1,2...}
(resp. lim x,, = inf{x, :n =1,2...}).

Proof: Assume that (z,) is increasing. It is noted that this part (=) is always true even
() is not increasing.

Now for showing the part (<), assume that (z,,) is bounded. Then the set S := {z, :n =
1,2,...} is bounded. The Axiom of Completeness tells us that L := sup(S) exists. We are
going to show that limx, = L. In fact, for any € > 0, there is an element x € S such that
L —¢e < zn because L = sup(S). Since (z,,) is increasing, we have L —e¢ < xy < x,, < L for
all n > N. Hence, |z, — L| < ¢ for all n > N. Therefore, (z,,) converges to L as desired.
When (z,,) is decreasing, the assertion can be obtained by considering the sequence (—xy,).
O

Example 2.14 Then the following limit exists
lim(1 + 1)”
e :=lim )™
n

Proof: For each positive integer, let

1
zn = (14 )™

They by using Proposition 2.13, it suffices to show that (xy) is a bounded increasing se-
quence.
We first claim that (x,,) is increasing. In fact, by the Binomial Theorem, we see that

n

xn:1+1+zn(n_1)”é!(n_k+l)1:Z 1(1—3)(1—2)-%1—%)- (2.1)
k=2

k=1
It is noted that each term in above is positive and the coefficients of % for2 <k<mninx,
and x,1 are

1 2 k—1 1 2 k—1
(1=2)a=2)(1="2) and (1= —)(1- =) (1=

n n n n+1

)

respectively. From this we see that x, < x,y1 for all n and thus, the sequence (x,) is
ncreasing.
It remains to show that (x,,) is bounded. In fact, for each 2 < k < n we have

1 1 2 k—1 1
—(1-)1-2). - —
S- (1= 2) (1= ) <
Then
1
xn<1+1+22—k<3.
k=1
The proof is complete. O



Remark 2.15 The limit e in Example 2.14 above is very important in mathematics which
is called the natural base today. It was first studied by Jacob Bernoulli (1683). The notation
e was introduced induced by Euler (1748). The study of the limit lim, (1 + )™ is motivated
by the Compound interest formula, that is

,
A=P1+-)"
(1+25)

where A is the total amount; P is the principal; r is the annual interest rate; n is the number
of payment in a year.

Theorem 2.16 Nested Intervals Theorem Let (I, := [an,by]) be a sequence of closed
and bounded intervals. Assume that Iy D Iy D I3 O .... Then we have (o, I, # 0.
Furthermore, if we further assume that lim,, (b, —ay) = 0, then there is a unique real number
¢ such that (2, I, = {c}.

Proof: It is noted that since (I,,) is a decreasing sequence of closed and bounded intervals,

we have
a1 <ay <---<a,<b, <b,—1 <---<by<by

for all positive integers n. Therefore, (a,) and (by,) are bounded and they are increasing
and decreasing and respectively. This implies that (z,,) and (y,) both are convergent and
a = lima, = sup{a, : n = 1,2..} and b := limb,, = inf{b, : n = 1,2...}. In addition, we
have a < b because a,, < b, for all n. Thus, if we fix some ¢ such that a < ¢ < b, then
cE ﬂ;o:l I,, as desired because we have a, < a <c¢ <b<b, for all n.

It remains to show (.-, I, = {c} if lim(b, — an) = 0. In fact,if ¢ ¢ in ()2, I, then we
have |¢ — | < |by, — ay,| for all n. This implies that |¢ — ¢/| = 0 and thus, ¢ = ¢/. The proof
is finished. t

Remark 2.17 The assumption of the boundedness and closeness of the intervals I,, cannot
be removed in the Nest Intervals Theorem.
For example, if I,, := (0, %) and Jy, := [n,00), for all n = 1,2, ..., then I, = J, = 0.

3 Subsequences

Definition 3.1 A subsequence (x,,)32, of a sequence (x,) means that (ny)32 , is a sequence
of positive integers satisfying ny < ng < -+ < ng < ngy1 < ---, that is, such sequence (ny)
can be viewed as a strictly increasing function n: k € {1,2,..} — ni € {1,2,...}.

Remark 3.2 In this case, note that for each positive integer N, there is K € N such that
ni > N and thus we have ny, > N for all k > K.

Proposition 3.3 If (z,,) is a convergent sequence, then any subsequence (xy,) of (zy)
converges to the same limit. In this case, we have limy, x,, = lim x,,.

Proof: We assume that limxz, = a € R exists. Let (z,,) be a subsequence of (z,). We
claim that limz,, = a. Let ¢ > 0. In fact, since lim z,, = a, there is a positive integer N
such that |a — x| < ¢ for all n > N. Note that by the definition of a subsequence, there is
a positive integer K such that n; > N for all £ > K. Hence, we see that |a — x,, | < € for
all k > K. Thus we have limj_,o 25, = a. The proof is complete. ]



Theorem 3.4 Bolzano-Weierstrass Theorem (write B-W Theorem for short):
Every bounded sequence has a convergent subsequence.

Proof: We give two different proofs in here, however, each proof basically is due to the
Axiom of Completeness.

Let (zy) be a bounded sequence and put X := {z, : n = 1,2,..}. The Theorem clearly
holds if X is a finite set. In fact in this case, there must have an element x,, appears infinite
many times. Hence, we can choose a subsequence (zy, ) so that x,, = x,, for all k =1,2....
Thus we may assume that the set X is infinite.

Method 1:

Since (x,,) is bounded, there is a closed and bounded interval Iy = [a1, b1] such that x,, € I
for all n. Put z,, := z;.

It is noted that one of the following sets must be infinite:

a1 + by

b
5 I} Bg::{n€Z+:xn€[al+ !

T,bl]}.

Ay :={n€Z; :x, € |a,

We may assume that the set A, is infinite. Hence there is an element no € A, such that

ny < ng. Put Iy := [ag, ba] = [a1, %Lbl] Thus x,, € I5. Similarly, one of the following sets
is infinite:
b b
Ayi={n € 2y an € lan, 202Ny By = {n € Zy i €[22 b))

In addition, we may assume that the set Ag is infinite. Hence, there is an element ng € As
such that ny < ng < ns. Put I3 := [ag, b3] = [ag, “2'{”2]. Thus, z,, € I3. By repeating the
same step, we can get a decreasing sequence of a closed and bounded intervals Iy, = [ay, by]

and a subsequence (x,, ) of (z,) such that the following conditions hold:

1. lim(by — a) = lim 2%(b1 —ap) =0.
2. &y, €I forall k=1,2....

The Nest Intervals Theorem tells us that there is a number ¢ such that ¢ € I}, for all k and
hence, we have |z,, —c| < (by —ag) = #(bl —ap) — 0. Therefore the subsequence (z,, ) is
convergent as required. The proof is finished.

Method 2

This method is the Weierstrass’ original proof.

Recall our assumption that the set X = {z,, : n =1,2...} is infinite. Let

S:={reR: (z,00) N X is infinite}.

We first note that since (z,) is bounded, there are real numbers m and M so that m <
xn, < M for all n. Since the set X = {x,, : n = 1,2...} is infinite, the set S is a bounded
above non-empty set because m € S and x < M for all x € S. The Axiom of Completeness
implies that L := sup(S) must exist. We want to show that there is a subsequence (zy,, ) of
(z5,) which converges to L.

Claim: For any € > 0, there is an element u € S such that [u — L| < e and (u,L+¢]NX
is infinite.

In fact, if let € > 0, then by the characterization of the supremum there is an element u € S
such that L — e < u. Since u € S, we have (u,00) N X is infinite. It implies that the set
(u, L +e] N X must be infinite, otherwise, (L + ¢, 00) N X is infinite and thus, L +¢ € S by
the construction of S. It leads to a contradiction because L is an upper bound for S. Thus,

10



the Claim follows.

Now for € = 1, then there is u; € S such that L —1 < u; < L+1. Then by the Claim above,
choose z,, € (u1, L+ 1] and hence, L — 1 < z,,, < L+ 1. Next, we considering £ = 1/2,then
there is an element us € S such that the set (ug, L + 1/2] is infinite by the Claim above
again. Therefore we can find z,, such that n; < ng and L —1/2 < ug < zp, < L+1/2. By
repeating the same step and considering ¢ = % for k = 1,2... in the Claim above, we can
get a subsequence (zy, ) of (z,,) such that L — ¢ < x,,, < L+ 1 for all k = 1,2.... Therefore,
(xn,) is a convergent subsequence of (z,) with the limit L. The proof is complete. O

Remark 3.5 The assumption of the boundedness of (z,,) cannot be removed. For example,
let 2, = n for all n = 1,2.... Then (z,) does not have a convergent subsequence because
|Ty, — | > 1 for n # m.

Proposition 3.6 Let (x,) be a bounded sequence. For each positive integer n, put
ap :=1inf{zy : k >n} and b, :=sup{zy:k>n}.
Then we have the following assertions.

(i) The limits lim a,, and limb,, always exist with liIMn < limb,,. In this case, we write
limz, := lima, (called the liminf of (z,)) and limz,, = limb,, (called the limsup of

(#n)).

(ii) (zn) is convergent if and only if limz, = limz,. In this case, we have limz, =
limz,, = limz,,.

(iii) There exists a subsequence (xp,) of (zy) such that limx,, = limz,. Consequently,
the Bolzano- Weierstrass Theorem holds.

Proof: For showing part (i), we note that if a,, < zy for all k& > n, then a,, < zj for
k > n+1. Thus, we have a,, < a4 for all n. Similarly, we have b,4+1 > b,. Thus, we have
ap < ap < apt1 < bpy1 < by <--- < by for all n. This implies that (a,,) and b, both are
bounded monotone sequences. Therefore, lim a,, and lim b,, both exist. In fact, we have

limz, =sup inf z < limzx, = infsup xi.
n k=n n k>n

For part (i7), we first assume that [ := lim x,, exists. Thus, for any € > 0, there is a positive
integer N such that [ — e < x,, <l + ¢ for all n > N. Then by the definition of a,, and b,
we have

l_fgangbngl"’_g

for all n > N. Thus, we have |b, — a,| < 2¢ for all n > N. By taking n — oo, this gives
[limz,, — limz,| < 2¢ for all € > 0, and hence, we have limz,, = limz,,.

Now for showing the converse (<=), we assume that we have [ := limz,, = limz,,. Then for
any ¢, there is a positive integer N so that | —e < a, < b, <l +¢€ for all n > N. Since we
always have a,, < zp < b, for all £ > n. Therefore, we have | —e <z <l+eforallk > N
and hence, limxz; = [.

For proving part (iii), we are going to construct a subsequence (x,,) of (x,) so that
limz,, = limz,. Let L := limxz,. It is noted that for any € > 0, there is a positive
integer N so that L — e < b, := supp>, r < L+ ¢ for all n > N. This implies that
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o < L+e¢eforall k> N.

If we fix n > N, since L —¢ < by, for all n > N, we can choose 7 > 0 such that L—¢ < b, —n.
Using the characterization of surpemum, we have L — e < b, — n < x,, for some m > n.
Therefore, we have shown that

Ve >0,dN,Vn> N,dm>n sothat L—-e<x, <L +e=. (3.1)

Now for considering ¢ = 1 in 3.1, there is N; so that L — 1 < z,, < L + 1 for some
ny > Ni. Next, for considering ¢ = 1/2 in 3.1, there is Ns so that for any n > Ns, we have
L—-1/2 <z, <L+ 1/2 for some m > n. Thus, if we choose n > Ny and n > nj, then
there is ng > n so that ng >n; and L —1/2 <z, < L+ 1/2.

Similarly, if we take € = 1/3, there is a positive integer N3 so that for any n > N3 we have
L—-1/3 <z < L+ 1/3 for some m > n. Therefore, if we take n > N3 and n > ng, then
there is ng > n such that L — 1/3 < z,, < L+ 1/3 and n3 > na.

To repeat the same steps, we get a strictly increasing sequence of positive integers (ny) so
that L — 1/k < zp,, < L + 1/k for all k. Thus, (z,,) is a convergent subsequence with the
limit L. The proof is complete. O

Proposition 3.7 Let (x,) and (y,) be bounded sequences. Then we have
(i) im(—a,) = —lima,.

(i3) lim(ax,) = a(limz,) for a > 0.
(i) limz,, + limy, <lim(z, +y,) < lim(z, + y,) < limz, + limy,
Proof: Parts (i) and (ii) are clear. We want to show part (iii) and claim that

lim(z, + y,) < limz,, + limy,,.

Let b := limz, and c := limy,. Let ¢ > 0. Then there is a positive integer N such that
b, <b+eandc, < c+ ¢ for all n > N. This implies that z; +yr < by +c, < b+ c+ 2¢
for all k > n > N. Therefore, we have supy>,(vx + yr) < b+ c+ 2 for all n < N
and thus, lim(z, + y,) = lim, supps,(zx + yx) < b+ ¢ + 2¢ for all € > 0. This gives
lim(z, + y,) = lim,, supgs, (T + yx) < b+ c as desired.

By considering the sequences (—z,) and (—y,) in above, we see that limz, + limy, <
lim(zy, 4+ yp). the proof is complete. O

Remark 3.8 It is noted that in general we don’t have the equality@(xn +yn) = @xn +
limy,,. For example, if we let z,, = (—1)"*! and y,, = (—1)", then lim(z,, + y,) < limz,, +
limy,,.

4 Sequentially compact sets and Compact Sets

Motivated by the Bolzano-Weierstrass Theorem, the following notation plays a very impor-
tant role in Mathematics.

12



Definition 4.1 A subset A of R is said to be a sequentially compact if for any sequence
(xy) in A, there is a convergent subsequence (xy,) of (zy) such that limx,, € A.

Example 4.2 Clearly, R and (0,1) are not sequentially compact.

Proposition 4.3 FEvery closed and bounded interval is sequentially compact.

Proof: Recall a closed and bounded interval that it is a set [a,b] := {z : a < x < b} for
some —oo0 < a < b < oo.

Let (z,,) be a sequence in [a, b]. Then (z,,) is a bounded sequence. The Bolzano-Weierstrass
Theorem gives a convergent subsequence (xy,). It is noted since a < xz,, < b for all
k=1,2.., we have a < limz,, <b. Thus, limz,, € [a,b] as desired. O

Remark 4.4 However, a sequentially compact set need not be a closed and bounded in-
terval. For example, [0,1] U {2} is a compact set but it is not an interval.

In the remainder of this section, we give a characterization of a sequentially compact set.

Definition 4.5 Let A be a subset of R. A point x is called a limit point (or cluster point)
of A if for any € > 0, there is an element a € A such that 0 < |z — a| < €, i.e., there is
an element a € A with © # a such that |z — a| < e. We write D(A) for the set of all limit
points of A.

Furthermore, A is said to be closed if D(A) C A.

Example 4.6
(i) If A=(0,1]U {2}, then D(A) = [0, 1]. Hence, A is not closed since 0 € D(A) \ A.

(ii) If A =27, then D(A) = () and thus, Z is a closed set.

Proposition 4.7 Let A be a subset of R. Then the following statements are equivalent.
(i) A is closed.
(i1) If (zy,) is a sequence in A and is convergent, then limx,, € A.

Proof: For (i) = (ii), assume that A is closed but the condition (i) does not hold. Then
there is a convergent sequence (z,) in A but the limit [ := limx,, ¢ A. Since A is closed,
D(A) C A. Thus, [ is not a limit point of A. This implies that there is 6 > 0 so that
(=614 \{I})nA = 0. Since limz, = [, there is a positive integer N such that
|xny — 1] < 0. Note that we have | # z because [ ¢ A. Hence, xn € ((I—06,0l+0)\ {{}) NA
which leads to a contradiction. Therefore, (i7) holds.

For (ii) = (i), let z € D(A). Then for any € > 0, there is an element = € A such that
0 < |z — z| < e. Therefore, for each positive integer n, there is an element z,, € A such
that 0 < |z, — 2| < 1/n and thus, z := limz,. The assumption (7) implies that z € A.
Therefore, D(A) C A. The proof is complete. O

13



Definition 4.8 For a subset A of R, put
A=AUD(A).

The set A is called the closure of A.

Example 4.9 We have the following examples.

1. (0,1] = [0,1].

<l
I

2. R.
3. 7 .

N

Proposition 4.10 Let A be a subset of R. Then we have the following assertions.
1. A is closed.
2. A is closed if and only if A= A.

3. z € A if and only if for any & > 0, there is an element a € A so that |z —a| < § if
and only if there is a convergent sequence (x,) in A so that z = lim x,,.

4. A is the smallest closed set containing A, i.e., if B is a closed set containing A, then
ACB.

Proof: For showing part (1), we need to show that D(A) C A. Suppose not, assume
that there is an element 2 € D(A) but z ¢ A. Since z ¢ A, there is § > 0 such that
(2 —6,2+6)NA=10. On the other hand, there is an element b € (2 — 6,z + ) N A because
z € D(A). Now choose r > 0 such that (b —r,b+ 1) C (2 — 6,z + §). Using the definition
of limit points again, we can find some element a € A such that a € (b—r,b+ ) and thus,
a € (z—40d,z+0)NA. It leads to a contradiction because (z — 4,2+ )N A = () by the choice
of 6.

Parts (2)-(4) can be shown by the definition of limit points directly. Try to do it by yourself.

O

Recall that a subset A of R is said to be dense in R if for any open interval I, we have

INA#0D.

Proposition 4.11 Let A be a subset of R. Then A is dense in R if and only if A = R.

Proof: For showing (=): assume that A is a dense set. Let z € R. Then for any § > 0,
we have (z — 0,z + 0) N A # () by the definition of a dense set. Hence, there is a € A such
that |2 — a| < 6. Thus, z € A by Proposition 4.10(3) above.

Conversely, assume that A = R. Let I be an open interval. We want to show I N A is
non-empty. Fix an element z € I. Since [ is an open interval, we can choose § > 0 such
that (z —d,2+0) C I. Since A = R, by using Proposition 4.10(3) again, there is an element
a € A such that |z — a| < 0. Therefore, a € (z — 9§,z + ) N A and hence, I N A # (. The
proof is finished. ([l

Theorem 4.12 Let A be a subset of R. Then A is sequentially compact if and only if A is
a closed and bounded subset.
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Proof: For showing the necessary part, we assume that A is sequentially compact.

We first claim that A is bounded. Suppose that A is unbounded. If we fix an element
x1 € A, then there is z9 € A such that |z —x2| > 1. Using the unboundedness of A, we can
find an element x3 in A such that |x3 — x| > 1 for k£ = 1,2. To repeat the same step, we
can find a sequence (z,) in A such that |z, —x,,| > 1 for n # m. Thus A has no convergent
subsequence. Thus A is bounded

Finally, we show that A is closed. Let (z,) be a sequence in A and it is convergent. It
needs to show that lim, z, € A. Note that since A is sequentially compact, (x,) has a
convergent subsequence (z,, ) such that limy x,,, € A. Then by Proposition 3.3, we see that
lim, z,, = limy x,,, € A. The proof is finished.

Conversely, we suppose that A is closed and bounded. Let (x,) be a sequence in A and thus
(zn,) is a bounded sequence in R. Then by the Bolzano-Weierstrass Theorem, (x,) has a
convergent subsequence (z, ). Since A is closed, limy x,, € A. Therefore, A is sequentially
compact. ]

Example 4.13 Let A= {1/n:n=1,2,..} U{0}. Then A is a sequentially compact set.

A is clearly bounded. Then by Theorem 4.12, it suffices to show that the set A is closed.
Clearly, 0 € D(A). We are going to show D(A) = {0}. In fact, if z # 0, clearly we can
find some r > 0 such that the intersection (z —r,z + r) N A contains at most one point.
Therefore, if z # 0, then z ¢ D(A). Thus, D(A) = {0}. Hence, the set A is closed as

desired.

In the rest of this section, we are going to use another description of a sequentially
compact set. For this purpose, we first introduce the following a very important notation
in mathematics.

Definition 4.14 A subset U of R is said to be an open in R if every point ¢ € U, there is
r > 0 such that (c—r,c+1r) CU. In this case, such point c is called an interior point of U.

The following result is easily shown by the definition. It’s a good exercise. Try to do it
by yourself.

Proposition 4.15 Using the notation is given as above, we have the following.
1. The empty set () and the whole set R are open.
2. If {Ui}ier is a family of open sets, then | J;c; U; is open.
3. If {U;}N.| is a finite family of open sets, then Uy N ---NUy is open.

4. F s a closed subset of R if and only if its complement F° in R is open.

Remark 4.16 Notice that an intersection of infinite opens sets need not be open, for
example, (2, (S, 1) = {0}

For convenience, we call a collection of open sets {J, : « € A} an open cover of a given
subset A of R, where A is an arbitrary non-empty index set, if each J, is an open subsets
of R (not necessary bounded) and

AC UJQ.
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Theorem 4.17 Heine-Borel Theorem: Any closed and bounded interval [a, b] satisfies
the following condition which is called the Heine-Borel Property.

(HB) Given any open cover {Jo}taca of a,b], there are finitely many Ju,, .., Ja, Such that
[a,0] C Jo, U---U gy

Proof: Suppose that [a,b] does not satisfy Heine-Borel Property. Then there is an open
cover {Ju}aen of [a,b] but it has no finite sub-cover. Let I} := [a1,b1] = [a,b] and m; the
mid-point of [a1,b1]. Then by the assumption, [a;,m1] or [mi,b;] cannot be covered by
finitely many J,’s. We may assume that [a1, m1] cannot be covered by finitely many J,’s.
Put I := [ag, be] = [a1,m1]. To repeat the same steps, we can obtain a sequence of closed
and bounded intervals I,, = [ay, b,] with the following properties:

(@) 2L 232D - ;
(b) limy, (b, — an) = 0;
(c) each I,, cannot be covered by finitely many J,’s.

Then by the Nested Intervals Theorem, there is an element & € ﬂn I,, such that lim,, a,, =
lim, b, = £. In particular, we have a = a; < £ < by = b. Hence, there is ag € A such that
€ € Ju,- Since J,, is open, there is € > 0 such that (§ —¢,{ +¢€) C J,,. On the other hand,
there is N € N such that ay and by in (§ —€,& + ¢) because lim,, a,, = lim,, b, = . Thus
we have In = [an,by] C (€ —e,§+¢€) C Jy,. It contradicts to the Property (c¢) above. The
proof is complete.

U

In view of the Heine-Borel Theorem 4.17, it is naturally led to the following extremely
important definition.

Definition 4.18 A subset A of R is said to be compact if for every open cover {U;}icr of
A, we can find a finite subcover, U, ....,Uiy, of A that is ACU;, U---UU;,.
Example 4.19 1. Every finite set is compact.

2. Every closed and interval is compact.

3. (0,1) is not compact. To see this, consider the open cover {(%,1) :n=1,2....} of
0,1

(0,1).

4. [0,00) is not compact. To see this, consider the open cover {(=,n) :n =1,2...}.

Lemma 4.20 A subset A is a closed subset of R if and only if for each element x ¢ A,
there is r > 0 such that (x —r,z +7r)N A= .

Proof: Recall the definition of a closed that if it contains all its limit points. From this,
the result is obtained immediately. O

The following is a very important feature of a compact set.
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Theorem 4.21 Let A be a subset of R. Then the following statements are equivalent.
(i) A is compact.
(ii) A is sequentially compact.

(iii) A is closed and bounded.

Proof: The result will be shown by the following path

For (i) = (ii), assume that A is compact but it is not sequentially compact. Then there
is a sequence (z,,) in A such that (x,) has no subsequent which has the limit in A. Put
X = {x, : n =1,2,...}. Then X is infinite. Note that for each element a € A, there
is 6 > 0 such that J, := (a — d4,a + 05) N X is finite. Indeed, if there is an element
a € A such that (a — d,a + 0) N X is infinite for all § > 0, then (x,) has a convergent
subsequence with the limit a. On the other hand, we have A C (J,c4 Ja- Then by the
compactness of A, we can find finitely many a1, ...,an such that A C J,, U---UJ,, . Hence,
we have X C J,, U---UJg,. Then by the choice of J,’s, X must be finite. This leads to a
contradiction. Therefore, A is sequentially compact.

The implication (ii) = (i7i) follows immediately from Theorem 4.12.

Finally we want to show (iii) = (i). Suppose that A is closed and bounded. Then we
can find a closed and bounded interval [a,b] such that A C [a,b]. Now let {Jy}aca be
an open cover of A. Note that for each element = € [a,b] \ A, there is §; > 0 such that
(x—0z,x+0d,)NA = () since A is closed by using Lemma 4.20. If we put I, = (x — ., z+0;)
for x € [a,b] \ A, then we have

o C | wu |J L.
a€cl z€[a,b]\ A

Using the Heine-Borel Theorem 4.17, we can find finitely many J,’s and I.;’s, say Jq,, ..., Jay
and I, ..., I, , such that A C [a,b] C Jo, U+ UJgy Ul U---UI,, . Note that [, NA =)

y LT Ry

for each x € [a,b] \ A by the choice of I,,. Therefore, we have A C J,, U---UJ,, and hence
A is compact.
The proof is complete. O

Remark 4.22 Although Theorem 4.21(i) tells us that the notation of the compactness and
the sequentially compactness for a subset of R are equivalent, however, these two notations
are different for a general topological space.

5 Cauchy sequences

The following notation is the landmark in the development of the 20th century mathematics.

Definition 5.1 A sequence (x,) is called a Cauchy sequence if it satisfies the following
condition:

for any € > 0, there is a positive integer N so that |z, — x,| < & whenever m,n > N.
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Remark 5.2 According to the definition of a Cauchy sequence, a sequence (z,) is not a
Cauchy sequence if there is € > 0 so that for any positive integer N, we can find some
m,n > N such that |z, —x,| > €.

Theorem 5.3 Cauchy Criterion: A sequence (x,) is convergent if and only of it is a
Cauchy sequence.

Proof: The necessary part is clear. In fact, if (x,) is a convergent sequence with the limit
L, then for any ¢ > 0, there is a positive integer N such that |z_L| < ¢ for all n > N.
Therefore, we have

|Tm — xn| < |zm — L|+|L — 2, <2 asm,n>N.

Conversely, we assume that (z,) is a Cauchy sequence.

We first Claim that (x,,) is a bounded sequence. In fact, since (x,,) is a Cauchy, we can find
a positive integer Ny such that |z, —zn,| < 1 for all m > N; and thus, |z,,| < 1+ |zN,]
for all m > Nj. Therefore, we have |z,,| < max(|z1], ..., |xn,—1|, |zn,| + 1) for all positive
integers m.

The Bolzano-Weierstrass Theorem tells us that (z,,) has a convergent subsequence (zy, ).
Let L := limy, xp, . If we show that L is the limit of (x,,), then the proof is finished.

Let € > 0. Then there is a positive integer N such that |z, — x,| < & as m,n > N. On the
other hand, since L = limy, x,, , we can choose K large enough such that |L — x| < ¢ and
ngk > N. This implies that for any n > N, we have

|zy, — L| < |y — Tng| + |Tn, — L] < 2e.

The proof is complete. 0

Example 5.4 Let s, = > ._,1/k. Then (s,) is not a Cauchy sequence and thus, (sy) is
divergent.
In fact, it is noted that for n < m, we have

m—n

1
— 2
m m

|Sm — sn| = n—|—1+.
Hence, we always have |sa, — Sp| > % for all n. Thus, if we take € = 1/2, then for any
positive integer N by taking n = N and m = 2N, we have |say — sn| > 1/2 = €. Hence,
(sn) is not a Cauchy sequence.

Remark 5.5 A sequence (z,) properly converges to +oo (resp. —oo) if for any M > 0,
there is a positive integer N so that z, > M (resp. x, < —M) for all n > M. In this case,
we write limx,, = oo (resp. limz, = —oc0). Warning!!! In this case, the sequence (z,,) is
still divergent since co is NOT a real number, hence, oo is not the limit of ().

Note that the sequence (s;) in Example 5.4 properly converges to +oo. From this we see
n

1

that the sequence (Z n—a)flo:l also diverges properly to +oo if o <1.
k=1

However, a divergent sequence may not converge properly to oo, for example, if we take

Ty = 0 as n is odd; otherwise, z, = n.
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Example 5.6 Lett, =) ,_, 1%2 Then the sequence (t,) is convergent. Using the Cauchy
Theorem, we need to show that (t,) is a Cauchy sequence.
It is noted that for n < m, we have

m m m
1 1 1 1 1 1 1
tm — tn| = — < = )= =<
[t = tl Z k2 — Z (k—1)k Z(k‘—l k) n o m n
k=n+1 k=n-+1 k=n-+1
Thus, if we are given € > 0, then we choose a positive integer N so that % < € for all
n > N. Therefore, |ty, —t,| < € whenever m > n > N. The proof is complete.

Remark 5.7 We have the following implications in R.

Axiom of Completeness = Bounded Monotone Convergent Theorem (Theorem 2.13) =
Nested Intervals Theroem = Bolzano-Weierstrass Theorem = Cauchy Theorem.

Everything is due to the Axiom of Completeness.

6 Appendix: Bolzano-Weierstrass Theorem and Cauchy Cri-
terion in R™

Throughout this section, for each element = € R™, we write z := (z(1),...,2(m)) and put

We call ||z| the norm of z. Clearly, we have

max |z(k)| < [lz]| < vm max |z (k)| (6.1)

1<k<m 1<k<m

for all x € R™.

For each element x and y in R™, the distance between = and y is defined by ||z — y||. In
this case, one can define naturally the notation of a convergent sequence in R™ as in the R
case. More precisely, we have the following definition.

Definition 6.1 A sequence (z,) in R™ is said to be convergent if there is an element
u € R™ such that limy, ||z, — u|| = 0. Clearly this element is unique if it exists. In this case
we call w the limit of (xy,) and write v := lim x,.

By using Eq 6.1, we have the following immediately.

Lemma 6.2 Using the notation as above, a sequence (x,) converges to u in R™ if and only
if the sequence (xy,(k)) converges to u(k) in R for allk =1,...,m.
Naturally, one can also have the following notation as in the R case.

Definition 6.3 (i) A point z in R™ is said to be a limit point of a subset A of R™ if for
every r > 0, there is a point a € A such that 0 < ||z — a|| < r. Also, A is said to be a
closed set if A contains all its limit points.
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(ii) A Cauchy sequence (xy,) in R™ means that if for every e > 0, there is a positive integer
N such that ||zy, — x| < € whenever m,n > N.

Theorem 6.4 Cauchy Criterion: A sequence in R™ is convergent if and only if it is a
Cauchy sequence.

Proof: The Eq 6.1 tells us that if a sequence (z,,) in R™ is a Cauchy sequence, then so
is for each coordinate sequence (z,(k)) in R for £ = 1,...m. Hence the result is obtained
immediately by using the Cauchy criterion for the real case. (]

In the rest of this section, we are going to show the Bolzano-Weierstrass Theorem in
the higher dimensional case. Recall that a subsequence of (x,) in R™ is a sequence in R
given by a strictly increasing function ¢ : Zy — Zy, i.e., it is (z4(;))572;-

Theorem 6.5 Bolzano-Weierstrass Theorem: FEvery bounded sequence in R™ has a
convergent subsequence.

Proof: Let (z,) be a bounded sequence in R™. Thanks to the Eq6.1 again, each coordinate
sequence (z,(k)) is also a bounded sequence of real numbers for k = 1,....,m. As k =1,
by the Bolzano-Weierstrass for the real sequence case, there is a convergent subsequence
(2g,()(1))721 of (zn(1)), where ¢1 : Zy — Zy is a strictly increasing function. As k =
2, we consider the subsequence (74, (j)) of (z,). Using the Bolzano-Weierstrass for the
real sequence case again, there is a convergent subsequence (74,(;)(2))52; of (z4,(;)(2)),
where ¢ : Z, — Z4 is a strictly increasing function. Next we consider the subsequence
(Tpg081(5)) Of (Tg,(;)), and so is the subsequence of (z,), for the case of k = 3. To repeat
the same step, we get a subsequence (Z4,.o...04,(j)) Of (¥n) 50 that each coordinate sequence
(Tg,,0--001(j) (K)) is convergent for all k = 1,...,m. Then by the Eq 6.1 again, the subsequence
(T 0001 (j)) 1 convergent in R as desired.

U

7 Limits of functions

Throughout this section let f be a real-valued function defined on a subset A of R.

A point z¢ is called a limit point of A if for any r > 0, there is some element a € A such
that 0 < |xg — a| < r. We write D(A) for the set of all limit points of A. Note that a limit
point of A may not sit in A.

Definition 7.1 Let ¢ € D(A). A number L is said to be a limit of f at ¢ (note that f(c)
may not be defined!!) if for any €, there is 6 = 6(¢) > 0 (depends the choice of €) such that

|f(x) —L| <e wheneverz € A and0< |z —c| <9 .

(Note: we only consider those points in A which are very close to ¢ but do not equal to c!!!)

Remark 7.2 A number L is not a limit of f at ¢ means if there is € > 0 so that for any 9,
we can find some 2/ € A with |2/ —¢| < § but |f(z') — L| > e.
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Proposition 7.3 Using the notation as above if f has a limit at ¢, then its limit is unique.
Consequently, if we write lim f(z) for the limit of f at c, then this notation is well defined.
Tr—cC

Proof: Let L’ be a another limit of f at ¢. Let € > 0. Then by the definition above, there
are some positive numbers § and ¢’ so that |f(x) — L| < e for any z € A with 0 < |z —¢| < 0.
Similarly, we have |f(z) — L'| < € for any € A with 0 < |z — ¢| < §’. Since ¢ € D(A), we
can find some a € A such that 0 < |¢ — a| < 0", where §” = min(d, ¢’). This gives

IL— L <|L = f(a)] +|f(a) - L] < 2.

Since € > 0 is arbitrary, we have L = L’ as desired. O

Example 7.4 Let A= (0,00). Define f(z) := 2?sini.

(i) Show that lim,_o f(x) = 0.
In fact, it is noted that |2?| < |z| for all z € (0,1). Let ¢ > 0. Thus, if we take
0 < 6 = min(e, 1), then we have

f(z) =0l < [2?| < of <&
whenever x > 0 with |z — 0] < 0.

(ii) Using the -0 notation, show that lim,_,o f(z) # 1.
Note that if we take e = 1/2, then for any 6 > 0, we choose a positive integer N such
that 0 < | 5= — 0| < 8, and we have

1
|f(N—7T)—1|:1>5.

Therefore, 1 is not the limit of f at 0.

Proposition 7.5 Using the notation as above, let ¢ be a limit point of A. Then the following
are equivalent.

(i) limy_,. f(x) exists.

(i) If (zy,) is a convergent sequence in A\ {c} with limx,, = ¢, then the sequence (f(xy))
18 convergent.

In this case, lim,_,. f(x) = lim f(x,) whenever a convergent sequence (x,) in A\ {c} with
limz, = c.

Proof: For showing (i) = (ii),we assume that L = lim, . f(z) exists. Let (x,) be a
convergent sequence in A\ {c} with the limit ¢. Let ¢ > 0. Then by the definition of
the limit of a function, we can find 6 > 0 such that |f(z) — L| < £ whenever x € A with
0 < |z —¢| < 4. On the other hand, since lim z,, = ¢ and z,, # ¢ for all n, there is a positive
integer N such that 0 < |z, —c| < d for all n > N and thus, |f(z,) — L| < ¢ for all n > N.
Thus, the condition (i7) holds.

Suppose that the condition (i7) holds. We first claim that the sequence (f(z,)) converges
to the same limit whenever (z,,) is a convergent sequence in A\ {c} such that limz, = c. In
fact, suppose that there are two sequences (z,,) and (y,) in A\ {c} with limz,, = limy, = ¢
such that v := lim f(z,) and v := lim f(y,) are not the same. Put w, = xj if n = 2k

21



and wy, := yi if n = 2k + 1 is odd. Then limw, = ¢. The assumption (ii) implies that
lim f(wy,) exists. However, (f(zy)) and (f(y,)) both are the subsequences of (f(w,)) and
they converge to the different limits. It leads to a contradiction.

Now we fix a sequence (x,) in A\ {c} such that limx, = ¢. Then by the assumption
L := lim f(x,) exists. Suppose that L is not the limit of f(z) at ¢. Thus, there is ¢ > 0
such that for any 6 > 0, we can find some 2’ € A with 0 < |2/ —¢| < but |f(2) — L| > e.
From this, we see that for each positive integer n, there is 2, € A with 0 < |z}, —¢| < 1/n
but |f(z],) — L| > e. Thus, the sequence (z},) sits in A\ {c¢} and converges to ¢ but L is not
the limit of the sequence (f(z])). This contradicts to the above observation. Therefore,

n

the part (z) holds. O

Proposition 7.5, together with Proposition 2.8, we have the following assertion immediately.

Proposition 7.6 Let f and g be the functions defined on A. Let ¢ be a limit point of A.
Assume that L = lim,_,. f(x) and R := lim,_,. g(x) both exist. Then we have the following
statements.

1. im(f + g)(x) exists and ;};lglc(f +g)(z)=L+R

Tr—C

2. im(f - g)(x) exists and 9161_>Irlc(f -g)(x)=L-R.

Tr—C
3. if we further assume that g(x) # 0 for all x € A and R # 0, then hgl(f/g)(:v) exists
and lim(f/g)(x) = L/R.

The following result is regarded as the Cauchy criterion in the case of functions.

Proposition 7.7 Using the notation as before, lim,_,. f(z) exists if and only if for any
e > 0, there is 6 > 0 such that |f(z") — f(2")| < & whenever ', 2" € A with 0 < |2’ —¢| < §
and 0 < |z" —¢| < 0.

Proof: For showing (=) we assume that L := lim,_,. f(z) exists. Let € > 0. Then there
is 0 > 0 such that |f(z) — L| < e as x € A with 0 < |z — ¢| < §. Thus, if 2/, 2" € A with
0< |2/ —c] <dand0< |z —¢| <6, we see that

f(a") = f@")] < |f(@") = LI+ |L = f(&")] < 2e.

Hence, the necessary condition holds.

Note that since ¢ is a limit point of A, we can find a sequence Let (x,) in A\ {¢} such that
lim z,, = c¢. Then the necessary condition implies that (f(zy,)) is a Cauchy sequence. In fact,
for any € > 0, the necessary condition above gives § > 0 so that |f(z')— f(z”)| < € whenever
2" € Awith 0 < |2/ —¢| < d and 0 < |2 — ¢| < §. Since limz,, = ¢, there is a positive
integer N such that |z, — ¢| < ¢ for all n > N and hence, we have |f(zy,) — f(xm)| < € for
all m,n > N. Thus, (f(x,)) is a Cauchy sequence. Hence, lim f(z,,) exists. The proof is
complete by using Proposition 7.5.

U

Definition 7.8 Using the notation as before, let f be a function defined on A and let ¢ be
a limit point of A.
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1. We say that f diverges to +00 (resp. —o0) as x tends to c if for any M > 0, there is
d > 0 such that f(z) > M (resp. f(x) < —M) asx € A with 0 < |z —c| <. In this
case, write limy_,. f(x) = +oo (resp. lim,_,. f(z) = —00).

2. We further suppose that A is not bounded above. We say that f has a limit L as x tends
to +oo if for any € > 0, there is a positive number R > 0 such that |f(z) — L| < ¢
as x € A with x > R. In this case, a limit must be unique if it exists. Write
lim, o f(x) = L.

Similarly, one can define the notion lim,_,_ f(x) = L when A is not bounded below.
For simply, when we are talking about notion lim,_,~ f(x), A has been assumed to be
unbounded above in advance.

3. Similarly, one can give a suitable definition for the notion: lim,_,~ f(x) = +oo.

Proposition 7.9 Using the notation as before, let f,g be the functions defined on A.
(i) If limy . f(z) = +00 and lim,_,. g(x) exists, then lim,_,.(f + g)(xz) = +o0.
(11) If limg . f(x) = +00 and lim,_,. g(z) > 0 ezists, then limy,.(f - g)(z) = +o0.
(117) If limy oo f(x) = 400 and limg—o0 g(x) > 0 exists, then lim, oo (f - g)(z) = +00.

Proof: For showing part (ii), let M > 0. Since [ := lim,_,. g(z) > 0, there is 41 > 0 so
that g(z) > -1 =L >0forallz € Awith 0 < |z —c| < &. Moreover, lim,_,. f(z) = 400,
and so we can find 0 < § < d; such that f(z) > 2% as 2 € A with 0 < |z — ¢| < § and
hence in this case, we have

LS =M.

2 |
I 2

f(x)g(z) >
Part (iz) follows.
Using the similar argument, try to finish the proof by yourself. O

Remark 7.10 The assumption of the non-zero limits in Proposition 7.9(i7) and (¢i¢) cannot
be removed. For example, by considering f(z) := 1/z;g(z) := x for x > 0, note that
lim, 0 f(x) = oo and lim, ¢ g(x) = 0 but f(x)g(x) =1 for all > 0.

Example 7.11 Let p(z) := an2" + apn_12" ' + -+ + a12 + ag be a polynomial of degree
n > 0, where x € R. If the leading coefficient a,, of p is positive, then lim,_,  f(z) = +00.
In fact, since a, # 0, we see that

n—1 _ An—2 _
—X 1 —X 2

+ +...+@x—")

p(x) = apz™(1+
Gnp Qn an

for all x > 0. In addition, since ap, > 0 and n > 0, clearly we have limg_ o0 a4pz" = +00.
The result follows immediately from Proposition 7.9.

Definition 7.12 A point c is called a right (resp. left) limit point of A if for any r > 0,
there is some x € A such that 0 <x —c <71 (resp. 0 < c—x <r), ie., (c,c+r)NAZ£D
(resp. (c—r,c)NA#0D). Write D,.(A) (resp. D;(A)) for the set of right (resp. left) limit
points of A.

Clearly, we have D,(A)U D;(A) = D(A).
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Example 7.13 We have the following examples.
1. If A= (0,1)U{2}, then D,(A) =10,1) and D;(A) = (0,1].
2. If A=1{1,1/2,1/3,...}, then D.(A) = {0} and D;(A) = 0.

Definition 7.14 Using the notation as above, let ¢ € D,(A). We say that f has a right
(resp. left) limit L of f at c if for any € > 0, there is 6 > 0 such that |f(x) — L| < € for all
re€Awith0<z—c<d (resp. 0<c—xz<J).

It is noted that if a right (resp. left) limit exists, then it is unique.

We write limg_ycq f(x) and limy_,.— f(x) for the right and left limit respectively.

Example 7.15 Let A = R\ {0}. Define f(xz) =1 if x > 0; otherwise, f(x) = —1. Then
lim, 0+ f(z) =1 and lim,_o— f(x) = —1. This function is called the sign function.
We always denote it by sgn(z).

Proposition 7.16 Letc € D,.(A)ND;(A). Thenlim,_,. f(x) exists if and only if limy .4 f(x)
and limg_s.— f(x) both exist and limy_cy f(x) = limgy_ye— f(2).
In this case, we have limg_,. f(x) = limg_yey f(x) = limgye— f(x).

Proposition 7.17 Let f(x) be a function defined on (0,00) and g(xz) = f(1/x). Then
lim, 100 f(2) exists if and only if limy_04+ g(x) exists.
In this case, we have lim,_, ~ f(z) = limy_ 04 g(x).

8 Continuous functions

Throughout this section, let A be a non-empty subset of R and let f be a function defined
on A.

Definition 8.1 Let c € A. We say that a function f is continuous at c if for any € > 0,
there is 6 > 0 such that |f(z) — f(c)| < € whenever x € A with |z — ¢| < 6.
Furthermore, f is said to be continuous on A if it is continuous at every point in A.

Remark 8.2 Using the notation as above, note that

1. A function f is discontinuous at c if there is € > 0 so that for any ¢ > 0, we can find
some z € A satisfying |x — ¢| < ¢ but [f(x) — f(c)| > e.

2. If a point ¢ € A is not a limit point of A, then a function f is continuous automatically
at ¢. In fact, if ¢ € A is not a limit point of A, then there is » > 0 such that
(c—r,c+r)NA = {c}. Therefore, for any ¢ > 0, we can choose § = r in the Definition
8.1 above.

Definition 8.3 Let A be subset of R. A subset E of A is said to be open in A if for each
c € E, there is r > 0 such that (c—r,c+r)NACE.
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FE is an open subset of R.
For example, if we consider A = [0,1] and E = (0, 1], then E is an open subset of A but it
is not an open subset of R.

The following result is an important characterization of continuity. We can use the
following characterization as the definition of a continuous function.

Proposition 8.5 Let f : A — R be a function defined on a subset A of R. Then f is
continuous on A if and only if the pre-image f~*(V) :={x € A: f(z) € V} is open in A
for any open subset V' of f(A).

Proof: Assume that f is continuous on A and V is open subset of f(A). Let ¢ € f~1(V).
We want to find an 7 > 0 so that (c —r,c+7r)N A C f~1(V). To see this, since V is open
in f(A), we can find € > 0 so that (f(c) —e, f(c) +e)N f(A) C V. As f is continuous at c,
there is r > 0 such that |f(x) — f(c¢)| < € whenever z € A and |z — ¢| < r, and so we have
(c—rc+r)NAC f~HV) as desired.

Conversely, assume the necessary condition holds. Let cinA and € > 0. Put V := (f(c) —
e, f(e)+¢e)N f(A). Then V is an open subset of f(A) and hence, f~1(V) is an open subset
of A by the assumption. Thus, there is § > 0 so that (¢ — d,c+ ) N A C f~1(V). That is,
we have |f(c) — f(c)| < € whenever z € A with |z — a| < §. We finis the proof. O

Proposition 8.6 Let c € A. Then we have the following assertions.

(i) If c € A is a limit point of A, then f is continuous at ¢ if and only if lim,_,. f(x) =
fle).

(1i) f is continuous at ¢ if and only if whenever a sequence (xy) in A with limx,, = ¢, we
have lim f(x,) = f(c).

Proof: Part (i) follows directly from the Definition 8.1.
Part (i) can be obtained by using a similar argument as in Proposition 7.6. Try to do it
by yourself. O

Proposition 8.7 Let c € A and let f,g be functions defined on A. If f,g are continuous
at ¢, then we have the following assertions.

(i) The function f + g is continuous at c.

(ii) The product f - g is continuous at c.

(iii) Moreover, if g(x) # 0 for all x € A, then f/g is continuous at c.

(iv) Moreover, if the image of f is contained in a subset B of R and h : B — R is continuous

at f(c), then the composition ho f is continuous at c.

Proof: The above assertions follows immediately from Propositions 2.8 and 8.6. Alterna-
tively, they can be shown directly by the definition.

For showing part (ii), since g is continuous at ¢, there is 47 > 0 such that |f(z) — f(c)| < 1
and hence, |f(z)] < 1+ |f(c)| for all z € A with |z — ¢| < §;. Using the continuity of f and
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g at ¢, there exists 0 < 0 < d1 so that |f(z) — f(¢)| < e and |g(x) — g(c)| < e as z € A and
|z — ¢| < §. Therefore, we have

[f(@)g(x) = f(e)g(e)] < |f(@)g(x) = fe)g(x)[ +[f(c)g(x) = f(c)g(c)| <e(1+]g(c)| +|f(c)])

as x € A and |z — ¢| < . Part (ii) follows.

By using part (i), we need to show that the function 1/g(x) is continuous at c¢. Note that
we may assume g(c) > 0 (otherwise by considering —g(x)). g(x) is continuous at ¢, and so
there is 01 > 0 so that |g(z) — g(¢) < g(c)/2 and hence, g(z) > g(c)/2 for all x € A and
|z —c| < 1. Now let € > 0, there is 0 < § < §; so that |g(z) — g(c)| < 6 as z € A and
|z — ¢| < §. Therefore, we have

L1 b)) 2
g9(x)  g(o) g9(x)g(c)  ~ g(c)?
for all x € A with |x — ¢| < . The proof of (ii7) is complete.
The last assertion follows clearly from the definition. (Il

Theorem 8.8 If f is a continuous function defined on a compact set A, then f is a bounded
function. Moreover, there are x1 and x2 in A such that f(x1) = min{f(z) : x € A} and

f(z2) = max{f(x):x € A}.

Proof: Recall that the sequentially compactness is equivalent to the compactness of A. In
here, we give two different methods about the claim.

Method I:

Suppose that f is not bounded above. Then for each positive integer n, there is z,, € A
such that f(x,) > n. Since A is compact, there is a convergent subsequence (z,, ) with
c:=limz,, € A. Note that since f is continuous at ¢, we see that the sequence (f(zp,))
converges to f(c) and thus, (f(xy,)) is a bounded sequence but f(z,,) > ny for all k. It
leads to a contradiction because ny — 0o as k — oo.

Next, we want to show that f(a) = max{f(z):x € A} for some a € A.

In fact, note that since the set {f(z) : * € A} is bounded above, L := sup{f(z) : = €
A} exists. Thus, there exists a sequence (z,) in A such that lim f(x,) = L. Using the
sequentially compactness of A again, there is a convergent subsequence (zy, ) of (x,) with
a :=limz,, € A. Thus, we have f(a) = lim f(z,,) and thus, f(a) = L as desired.

By considering —f, we get f(z1) = min{f(x) : + € A} for some z; € A. The proof is
complete.

Method II:

Notice that since f is continuous on A, then for each element x € A, there is §(z) > 0
such that f(u) < f(z) +1 as u € A with |u — x| < §(x). Note that if we put J, :=
(x = d(x),z + (x)) for x € A, then we have AU |J, 4 Jo. Using the compactness of A,
there are finitely many z1,..,2y € A such that A C J,, U---U J;,. Then implies that
f(z) <max(1+ f(x1), -+ ,1+ f(zn)) for all z € A, so the set f(A) is bounded above.
Finally, we are going to show that the function f attains the maximal value. Let L be the
supremum of f(A) as above. Suppose that f(xz) < L for all x € A. Then for each = € A,
there is €, > 0 such that f(z) + e, < L. Then by the continuity of f, there is §, > 0 so
that |f(2) — f(z)| < e, as € A with |z — §,| < 0. If we put I, := (z — &5, + ), then
by the compactness of A, there are finitely many z1,..,2y in A so that A C I, U---UI,,.
Therefore, if we let L' := max(f(z1) + €z, ..., f(xN) + €2y ), then f(z) < L' forall z € A
and L' < L. It leads to a contradiction because L is the least upper bound for f(A). The
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proof is complete. 0

Remark 8.9 The assumption of compactness in Theorem 8.8 cannot be removed.
For example if A = [1,00) and f(z) = 1/x for € A, then there is no points attains its
minimum on A although f is a bounded function.

Theorem 8.10 If f is a continuous function defined on a compact set, then the image

f(A) :={f(z) : x € A} is compact.

Proof: Method I:
It suffices to show that f(A) is a closed and bounded set. We have shown that f(A) is
bounded by Theorem 8.8. We need to show that f(A) is closed. By applying Proposition
4.7, we need to claim that if (x,) is a sequence in A so that (f(z,)) is convergent, then
the limit L := lim f(x,) € f(A). Indeed, by the compactness of A, (z,) has a convergent
subsequence (x,, ) such that ¢ := limz,, € A. f is continuous at ¢, and so lim f(z,,) = f(c)
and thus, L = f(c) € f(A) as required.
Method II;
Let {J;}icr be an open cover of f(A). Since f is continuous on A, Proposition 8.5 implies
that for each element a € A, there are §, > 0 and i, € I such that f((a—0dq,a+0,)NA) C J;,.
Note that we have

AC | J(a—ba,a+ da).

acA

Then by the compactness of A, there are finitely many a1, ...,an in A such that

N
A g U(ak - 5ak7ak +5ak)
k=1

Therefore, we have

N

N
F(A) € | f((ar = bay, ax + 6a) N A) € | i, -
k=1 k=1

Remark 8.11 In general, the image of a closed set under a continuous map is not neces-
sarily closed. For example, A = [1,00) and f(z) = 1/x,2 € A. Note that A is a closed set
but f(A) = (0,1] is not closed.

Definition 8.12 Two subsets A and B are said to be homeomorphic if there is a bijection
f from A onto B such that f and the inverse f~1 both are continuous. In this case, f is
called a homeomorphism.

Proposition 8.13 Suppose that A and B are homeomorphic. If A is compact, then so is
B.

Proof: It can be shown directly by using Theorem 8.10. ([l
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Example 8.14 Applying Theorem 8.10, it is impossible to find a continuous surjection
from [0,1] onto [0,1) because [0,1] is compact but [0,1) is not. Therefore, [0,1] is not
homeomorphic to [0,1).

Before the next result, let us recall that given a subset X of R, a subset A of X is said
to be open in X if for every point z € A, there is r > 0 such that (z —r,z+7)NX C A (see
Definition 8.3) before. On the other hand, F is a closed subset of R if ad only if R\ F is
open in R (see Proposition 4.15). Thus, it is naturally led to have the following definition.

Definition 8.15 Let X be a subset of R. A subset B of X is said to be closed in X if
X\ B is open in X.

Warning !! a subset B being closed in a given set X may not be closed in R, for example,
the set [1/2,1) is closed in [0,1) but it is not closed in R.

Lemma 8.16 Let X be a subset of R and B be a subset of X. Then the following are
equivalent.

1. B s closed in X;

2. B contains all its limit points in X. More precisely, xo € B whenever o € X satisfies
the condition: for all v > 0, there is an element y € B such that 0 < |y — xo| < r;

3. whenever a convergent sequence () in B with limx, € X, we have limx,, € B;

Proof: It can be shown directly by the definition (see also the proof in Proposition 4.7).
O

From this, we can directly rewrite the characterization of a continuous function in Propo-
sition 8.5 as follows.

Proposition 8.17 Let f : A — R be a function defined on a subset A of R. Then the
following are equivalent.

1. f is continuous on A.
2. The pre-image f~1(V) is open in A whenever V is an open subset of f(A).

3. The pre-image f~1(F) is closed in A whenever F is closed in f(A).

Remark 8.18 Before showing the next result, for A C X C R, let us recall that A is said
to be open in X if for every element a € A, there is > 0 such that (a —r,a+r)NX C A.
In this case, we have shown that A is open in X if and only if there is an open subset U of
R such that A = U N X. From this we see that A is compact if and only if for every open
subsets {V;}icr of A with A = (J;c; Vi, also called an open cover of A, (note that V; may
not be open in R), there are finitely many V;,,---,V;, such that A=V; U---UV,,.

So, we can conclude that the definition of a compact set does not depend on the choice of a
larger set where the set sits in. More precisely, A is a compact in R following the definition
as before if and only if A is also compact in X for every subset X of R containing A.

Proposition 8.19 Let C C A C R.
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1. Suppose that C' is closed in A. If A is compact, then so is the set C.
2. If C is compact, then C is closed in A.

Proof: For showing the first part, we give two different proofs here.

Method 1:

Recall that a subset of R is compact if and only if it is closed and bounded. Hence, A is a
closed and bounded set. This implies that C' is also bounded. On the other hand, since A
is closed R and C' is closed in A, clearly C' is also closed in R by Lemma 8.16. Therefore,
C' is compact.

Method 2:

Let {V;i}ier be an open cover of C, that is each V; is open in C' and C' = (J;c; Vi. Then
for each V;, we can find an open subset U; of A such that V; = C N U;. Since C' is closed
in A, then A\ C is open in A. Therefore, the collection {A \ C} U {U;}icr forms an open
cover of A. Then by the compactness of A, there are finitely many U;,,--- ,U;, such that
A=(A\C)UU;, U---UU;, and thus, C CU;; U---UU,;, and hence, C =V; U---UV;,.
Thus, C is compact.

for showing the second, we need to show that for each element z € A\ C, we can find an
open subset W of A such that z € W and W NC = (.

To see this, we fix z € A\ C. Then for each element ¢ € C, it must be z # ¢. Thus, for each
c € C, we can find a pair of open subsets V.. and W, of A such that V.NW, =0 and c € V,
and z € W,. Then by the compactness of C, there are finitely many V., ..., V., such that
C CVe,.oooy Vep . Notice that if we put W := W, N---NW,,. Then W contains 2z and is
an open subset of A. Moreover, W N C = ) as desired. To see this, for any point ¢ € C, we
have z € V,, for some 1 <k < N. Since W, NV, =0, x ¢ W,, and so, z ¢ W. We finish
the proof. O

Remark 8.20 We keep the notation as given in Proposition 8.19. Although for C' C R, we
have shown that (see Theorem 4.21)

compactness = sequentially compactness = closed and bounded.

In addition, we have seen that the definition of a compact set C' does not depend on the
choice of the set where C sits in. Therefore, Proposition 8.19 (2) can be directly obtained
by the above implications. However, the proof of Proposition 8.19 (2) given above still holds
even we don’t have metric structure on the underlying set A. In the proof, we just only
use the fact that for each pair of elements a,b € A with a # b, there is a pair of disjoint
open neighbourhoods U and V of a and b respectively. In this case, we call A is a Hausdorff
space. In view of the above proof, in fact, we have shown the following assertion.

Every compact subset of a Hausdorff space is closed.

Proposition 8.21 Let A and B be non-empty subsets of R. Let f : A — B be a continuous
bijection. If A is compact, then f is a homeomorphism, i.e., the inverse f~' is continuous.

Proof: Puty = f(z) and g(y) = f~(z), z € A.

Method 1:

Suppose that the function g is discontinuous at some b € B. Then, there is € > 0 so that for
any 0 > 0, there is y € B so that |y—b| < d but |g(y) —g(b)| > €. By considering § = 1/n for
n = 1,2,.... Therefore, there is a sequence (y,) in B so that limy,, = b and |g(y,) —g(b)| > ¢
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for all n. Let z, = g(yn) € A. Then by the compactness of A, (x,) has a convergent
subsequence (z, ) such that a := limz,, € A. Note that b = limy,, = lim f(z,,) = f(a)
because f is continuous and limy, = b. Thus, a = ¢g(b). Therefore, we have lim g(y,,) =
limz,, = a = g(b) which leads to a contradiction because |g(y,) — g(b)| > € for all n.
Method 2:

By using Proposition 8.17, it suffices to show that f(C) = (f71)71(C) is closed in f(A)
for any closed subsets C of A. We first notice that if C is a closed subset of A, then C is
compact too by Proposition 8.19. Since the compactness is invariant under a continuous
map, f(C) is compact. Therefore, f(C) is closed in R, so R\ f(C) is an open subset of R.
This implies that f(A) \ f(C) = (R\ f(C))N f(A) is open in f(A), so f(C) is closed in
f(A). The proof is complete. O

Remark 8.22 The assumption of compactness of the domain on Proposition 8.21 cannot
be removed. For example, by considering A = [0,1) U [1,2] and B = [0,2], a function
f:+A— Bis defined by f(z) =z for x € [0,1) and f(z) =2 — 1 for x € [1,2]. Then f is a
continuous bijection but its inverse is discontinuous at y = 1. Note that A is non-compact
in this case.

Theorem 8.23 Intermediate Value Theorem Let f : [a,b] — R be a continuous func-
tion. Assume that f(a) < L < f(b). Then there is ¢ € (a,b) such that f(c) = L.

Proof: If we consider the function z € [a,b] — f(x) — L, then we may assume that L = 0,
ie., f(a) <0< f(b). We want to show that there is ¢ € (a,b) so that f(c) = 0.

Method 1:

Let S :={z € [a,b] : f(z) > 0. Note that S is non-empty a bounded below set since b € S
and x > b for all z € S. Thus, ¢ := inf S exists. We will show that f(c) = 0. Note that
for each positive integer n, there is x,, € S satisfying ¢ < z,, < ¢+ 1/n, and so limx,, = c.
Since a < x, < b for all n, we see that ¢ € [a,b]. By the continuity of f and f(z,) > 0
for all n, we have lim f(x,) = f(c) and f(c) > 0. We want to show that it is impossible if
f(¢) > 0. Note that ¢ > a since f(a) < 0. Therefore, there is § > 0 such that a < ¢— ¢ and
|f(x) — f(c)] < f(c)/2 as = € [a,b] with |z — ¢| < . Thus, if we fix a point z; such that
a<c—06 <z <c<b, then we have f(x1) > f(c)/2 > 0. This implies that z; € S and
x1 < c. It is a contradiction because c is a lower bound for the set S. Therefore, f(c) = 0.
Method 2:

Let [a1,b1] = [a,b]. We want to construct inductively a sequence of closed and bounded
intervals {[ag, bg]}}_,, where 1 < n < 400, satisfying the following conditions.

1. [alabl] 2 [CLQ,bQ] 2 Tt
2. b —ap = %(bk,l —ag_1), for all 2 < k < n.
3. flag) <0< f(bg), for all 1 <k <mn.

Suppose that the sequence of closed and bounded intervals ([ag, bx]) has been constructed
for 1 < k < mn. We want to construct [a,1,bn+1] so that it satisfies the conditions (1) — (3)
above. Put m,, := %. If f(my) = 0, then the result follows. Otherwise, if f(m,) > 0,
then we put [ant1,bn+1] = [an, my]. If f(m,) < 0, then we put [ant1,bnt1] = [Mn, byl
Therefore, if f(m,) # 0 for all n = 1,2..., then we have an infinite sequence of ([ay, bx])
satisfying the conditions (1) — (3) above. By applying the Nested Intervals Theorem in this
case, we have (o [ak, bx] = {c} for some c € [a, b]. Note that we have lim aj, = limby, = c.
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f is continuous at ¢, so we have f(c) = lim f(a) = lim f(bg). From this, together with the
condition (3) above, we have f(c) = 0. The proof is complete. O

Recall that an interval is a non-empty subset of R which is one of the following forms.

1. (Bounded case): [a,b]; [a,b); (a,b] and (a,b) for a < b.

2. (Unbounded case): [a,+00); (a, +00); (—o0,b); (—o0, b] and R.

Proposition 8.24 Let A be subset of R. Assume that A has at least two points. Then the
followings are equivalent.

1. A is an interval.
2. For each pair of elements a,b € A with a < b, we have [a,b] C A.

Proof: (1) = (2) is clear. We want to show (2) = (1). Assume that the condition (2)
holds.

First, we assume that A is bounded. Then L := sup A and [ := inf A both exist. Then
x € [I,L] for any v € A, so A C [I,L]. Now, if L and [ are in A, then the condition (2)
implies that [[, L] C A and thus, A = [I, L]. By using the similar argument for the other
cases, i.e,l € Aand L¢ A; 1 ¢ Aand L € A; 1 ¢ Aand L ¢ A, we see that A is equal to
[I,L); (I, L] and (I, L) respectively.

Similarly, the result can be obtained in the unbounded case. O

Theorem 8.25 Let f be a continuous function defined on A. If A is an interval, then so
is its image f(A).

Proof: By using Proposition 8.24, we need to show that [c,d] C f(A) whenever ¢,d € f(A)
with ¢ < d. In fact, let f(a) = ¢ and f(b) = d for some a,b € A. We may assume that
a < b. Note that since A is an interval, we have [a,b] C A. By applying the Intermediate
Value Theorem, for any element L € [c, d], there is an element x1 between a and b such that
L = f(x1) € f(A), and hence [c,d] C f(A). The proof is complete. O

Example 8.26 By Theorem 8.25, there is no continuous surjections from [0, 1] onto [0, 1]U
[2,3]. Hence, the set [0,1] is not homeomorphic to [0,1] U [2, 3].

9 Uniform continuous functions
Throughout this section, let f be a function defined on a non-empty subset of R.

Definition 9.1 A function f is said to be uniformly continuous on A if for any ¢ > 0,
there is § > 0 such that |f(z) — f(y)| < € whenever x,y € A with |x —y| < 0.

Remark 9.2 A function f is not uniformly continuous on A if there is € > 0 such that for
any 0 > 0, there are x,y € A with |z —y| < § but |f(x) — f(y)| > e.
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Example 9.3 (i) Let f(x) = 22 for x € [0,00). Then f is not uniformly continuous on
[0,00). In fact for any positive integer n, we have

Fn ) = F)l = @nt 1/n)(1fm) =24 > 2

Therefore, if we let € = 2, then for any § > 0, we choose a positive integer n such that
1/n <8, son+1/n andn in [0,00) with [n+1/n—n| <6 but [f(n+1)— f(n)| > 2.
Thus, f is not uniformly continuous on [0, 00).

Note that from this example we see that a continuous function need not be uniformly
continuous on its domain.

(ii) Let f(x) = 22 for x € [0,1]. Then f is uniformly continuous on [0,1]. In fact for
z,y € [0,1] we have

[f(@) = Fy)l = |z —yllz +y| < 2z —yl.

Let ¢ > 0. Then we can choose 0 < § < /2, so we have |f(z) — f(y)| <2z —y| <e
whenever z,y € [0,1] with |z —y| < §. Thus, f is uniformly continuous on [0, 1].

Theorem 9.4 Let f be a continuous function on A. If A is compact, then f is uniformly
continuous on A.

Proof: Method I:

Suppose that A is compact but f is not uniformly continuous on A. Then there is € > 0
such that for any § > 0, there are z,y € A with |z —y| < ¢ but |f(z) — f(y)| > €. Consider
0 = 1/n for n = 1,2,.... Then for any positive integer n, there are x,, and y, such that
|20 = yn| < 1/nbut |f(zn) = f(yn)] = €.

Then by the compactness of A, the sequence (x,) has a convergent subsequence (z,, ) such
that a := limy, =, . By applying the compactness of A, the sequence (y,, ) has a convergent
subsequence (yp, ) with b := lim;y,, € A. Note that we still have a := lim; z,, . Since
‘l‘nki — ynki| < 1/nki for alli =1, 2, Z, we have a = b. Hence, we have Z

lim f(wn,,) = f(a) = f(b) = lim f(yn,, ),
and so we have
0<e<|f(zn,) = f(Yny, )| =0 asi— oo

It leads to a contradiction.
Method II:
Let € > 0. Let a € A. Since f is continuous at a, there is 6, > 0 so that |f(x) — f(a)| < ¢

) 0,
as z € A and |z —a|] < dq. Put J, := (a — Ea,a—k 5‘1) Then we have A C U Jq. By using
acA
N
the compactness of A, there are finitely many ay,...,ay € A such that A C U Jq,,. Take
k=1

0<6 <16, forall k=1,..,N. Let z,2’ € A with |z — 2’| < §. Note that z € J,, for
some 1 < i < N. Then we have |z — a;| < 16,, < &, and |2/ — a;] < |2’ — 2|+ |z — a;] < &,
Thus, we have

[f(x) = f@)] < |f(@) = fa)| + |f(a) = f(a")] < 2e.
The proof is complete. O
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Theorem 9.5 Weierstrass approximation theorem Let f(x) be a real-valued continu-
ous function defined on [0,1]. Then for any € > 0, there is a polynomial function p(z) such
that |f(z) — p(x)| < e for all x € [0,1].

Proof: Before showing the result, let us recall a class of polynomial functions in the
following, called Bernstein polynomials. For each positive integer n, set

B, (x) := Z ay <Z> k(1 —z)" 7k, where a, € R
k=0

for z € [0,1]. Using the binomial theorem, clearly we have

3 <Z> ZF(1— )k =1 (9.1)

k=0

for all # € [0,1]. Taking (1 — z)4L in Eq 9.1, we have

z”: <Z> [*(1 = 2)" )k — na) = 0.

k=0
Again taking n%a:(l — x)% on both side and applying the product rule of derivatives, we
have
n 1 _
<Z>xk(1 _ SU)n_k(LE . %)2 — 33‘( - 1‘)
k=0
This gives
- k 1
Z (Z) 2*(1— z)" Rz — 5)2 < n for all z € [0, 1] (9.2)
k=0
since max{z(l —z):z € [0,1]} = 1/4.
Now let

n
n .k
pn(x) := Z <k>mk(1 —a)" kf(ﬁ), for x € [0,1].
k=0
The theorem is obtained if we show that for any € > 0, there is a positive integer N such
that |f(x) — pn(z)| < e for all n > N and for all € [0,1]. Note that using the Eq9.1, we

see that
@)= ma() < 3 ()0 =0 H15) - ) 93)

k=0

for all x € [0,1] and for all n = 1,2.... On the other hand, since f is continuous on [0, 1], f is
uniformly continuous on [0, 1]. Thus, for any € > 0, there is > 0 such that |f(u)— f(v)| < &

whenever u,v € [0, 1] with |u — v| < §. Now for any = € [0,1] and n = 1,2, ..., we put
A= ) (n)wk(l — )" | f(x) - f(ﬁ)|
k n
k:|x—%|<6
and

B X (f)ta- ot - s
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Then the Eq 9.3 can be written as the following

[f(z) —pu(z)| < A+ B.
Notice that by the choice of §, we have

A<e Z " b1 -z F =
- k

k:|x—%\<5

We are now going to estimate the value B. By using Eq 9.2, we have
2 n\ —k n\ —k ko _ 1
) Z <k:>$ (1—-x)" %< Z <k>az (1—ax)" (IL‘—E) §%.
k:\x—%\Z(S k:|x—7’i\25

This gives

2 (Z) -2 < 4;52‘

ki|lz—E|>6
n

Since f is continuous, f is bounded on [0, 1]. If we put M := sup|f(z)|, then we can now

conclude that M
ny\ k n—k
B<2M ) <k>x (1—o)" ™ < oy

kilz— 2|26
for all x € [0,1] and for all n = 1,2, .... Therefore, if we choose a positive integer N so that
> <eforalln > N, then |f(z) —pn(2)| < A+ B < 2 for all n > N and for all z € [0,1]
as desired. The proof is complete. (Il

Definition 9.6 A function s : [a,b] — R is called a step function (resp. piecewise linear)
if there exist finitely many points a = xg < x1 < -+ < x, = b such that s is a constant on
each (xg—1,x)) (resp. linear on [xg_1,xk], i.e, s(x) = mpx + by ) for allk =1,..,n.

Proposition 9.7 If f is a continuous function defined on a closed and bounded interval
[a,b], then it can be uniformly approzimated by step functions (resp. piecewise linear func-
tions), that is, for each € > 0, there exists a step function s (resp. piecewise linear function)

defined on [a,b] such that |f(x) — s(x)| < e for all x € [a,b].

Proof: By using Theorem 9.4, we first note that f is uniformly continuous on [a,b]. Let
e > 0. Then there is § > 0 so that |f(z)— f(y)| < € whenever z,y € (a,b) with [z —y| < . If
e choose a partition a = xg < - -+ < x,, = bon [a, b] such that |z —xp_1| < dfork=1,....n.
Now if we let s(z) := f(xg—1) when = € [z)_1, k), then s is the step function as desired.
Using the similar argument, the result is obtained for the case of piecewise linear functions.
O

Proposition 9.8 Let f be a continuous function defined on (a,b). The the followings are
equivalent.

(i) There exists a continuous function F : [a,b] — R such that F(x) = f(x) for all
x € (a,b).
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(ii) f is uniformly continuous on (a,b).

(iii) The limits 1_i>m+ f(x) and lim f(z) both exist.

r—b—

In this case, this continuous extension F is uniquely determined by f. In fact, F(a) =

Jim f(@) and F(b) = lim f(@)

Proof: For (i) = (ii), we assume that (i) holds. Then by Theorem 9.4, F' is uniformly

continuous on [a, b], so f = F|,y) is uniformly continuous on (a,b).

For (ii) = (ii), we are going to show that zliril— f(x) exists.

It suffices to show that the sequence (f(z,)) converges to the same limit whenever any

sequence (z,) in (a,b) that converges to b.

First, we claim that (f(x,)) is a Cauchy sequence for any such sequence (z,) in (a,b).

Let ¢ > 0. Then by the assumption (i), there is 6 > 0 such that |f(z) — f(y)| < € as

z,y € (a,b) with |z — y| < . Now since limz,, = b and thus (z,,) is a Cauchy sequence.

Therefore, we can find a positive N such that |z, — z,,| < 6 when m,n > N. This gives

|f(xm) — f(xn)| < € as m,n > N. The claim follows and thus, the limit 7}1_)120 f(zy) exists.

Next we want to show that if (x,) and (y,) both are the sequences in (a,b) that converge

to b, then lim f(x,) = lim f(y,). Let L = lim f(x,) and L' = lim f(y,). Let ¢ > 0
n—oo n—oo n—oo n—oo

and let 6 be given by the uniform continuity of f. Since limx, = limy,, we can choose

a positive integer N large enough so that |xxy — yn| < d. In addition, such N satisfies

|f(xn) — L] < e and |f(yn) — L'| < & because L = lim f(z,) and L' = lim f(y,). This

n—oo n—oo
implies that

L= L[ <|L— flzn)|+ [f(@n) = flyn)| + | flyn) — L] < 3¢
for all € > 0. Thus, L = L' and hence, the limit mli)rlr)l_ f(z) exists.
The proof of the case xl_1>r£1+ f(z) is similar.
Finally, we show (iii) = (i). Define F'(a) := xlgggr f(z); F(b) := mhj},ﬂ f(z) and F(z) := f(x)
for x € (a,b). Note that F' is continuous on [a,b]. In fact, we have F(a) = mgrg+f(x) =
xlg;i F(z) and F(b) = xlirbni f(z) = xhji‘, F(z). Thus, F is continuous at x = a and b.

The last assertion follows immediately from the continuity of F'. The proof is complete. [

Remark 9.9 Indeed, in the proof of Proposition 9.8 (i) = (ii) above, we have shown the
following fact. Suppose that f is uniformly continuous function defined on A. If (z,) is a
Cauchy sequence in A, then so is the sequence (f(x,)). We can use this simple observation
to see a function "NOT” being uniformly continuous on its domain.

Note the assumption of the uniform continuity of f is essential in here by considering the
simple example that f(z) =1,z € A:=(0,1] and 2z, = 1, n=1,2....

Definition 9.10 Let A be a non-empty subset of R. A function f : A — R is called a
Lipschitz function if there is a constant C' > 0 such that |f(x) — f(y)| < Clx — y| for all
x,y € A. In this case, the Lipschitz constant of f is defined by

[f(z) = f(y)]

Lip(f) = sup{ =

cx,y € Ay £yt
Furthermore, if we can find such 0 < C < 1, then we call f a contraction, that is Lip(f) < 1.
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Clearly we have the following property.

Proposition 9.11 FEvery Lipschitz function is uniformly continuous on its domain.

Example 9.12 (i) : The sine function f(x) = sinx is a Lipschitz function on R since
we always have |sinx —siny| < |x — y| for all z,y € R.

(ii) : Define a function f on [0,1] by f(x) = xsin(1/x) for z € (0,1] and f(0) =0. Then
f is continuous on [0,1] and thus f is uniformly continuous on [0,1], but note that f
is not a Lipschitz function. In fact, for any C' > 0, if we consider x,, = L and

2nm+(m/2)
Yn = ﬁ} then |f(xn) — f(yn)| > Clon — yn| if and only if

2 (2nm+ Z)(2
7'(n7r 2)(mr):4n>C’.
T 2nm + 5

Therefore, for any C > 0, there are z,y € [0,1] such that |f(x) — f(y)| > Clz — y|
and hence f is not a Lipschitz function on [0, 1].

Proposition 9.13 Let X C Y C R. Let f : X — R be a Lipschitz function defined on
X. Then the following function F : Y — R gives Lipschitz extension of f to Y such that

Lip(F) = Lip(f):
F(y) :=inf{f(x) + Lip(f)|lzr —y| :x € X} foryeY. (9.4)

Proof: We first claim that the set given in Eq 9.4 is bounded below and so the function
F is well defined. Put ¢ := Lip(f). Fix an element 9o € X. Let y € Y. Then we have
flxo) — f(x) < clxg — x| < clxg — y| + c|ly — | for all x € X. This gives a lower bound
f(zo) — c|zo — y| for the above set in Eq 9.4 while y € Y is given.

Next we want to show that F(z) = f(z) for all z € X. If x; € X, f(x1) clearly belongs
to the set {f(z) + Lip(f)|x — z1]| : # € X} and hence F(z1) < f(x1). On the other hand,
for any x € X, we have f(x1) < f(z) + ¢lx — x1] for all x € X, so f(z1) < F(x1) by the
definition of F.

Finally we want to show that F'is a Lipschitz function on Y with Lip(F') = Lip(f). To see
this, let u,v € Y, we have

F(u) < f(z)+clz —u| < (f(z) +cle —v|) +clv—u| forallzeX.

Thus, we have F(u) < F(v) + ¢lu — v| for all u,v € Y and hence |F(u) — F(v)| < c|lu — v|.
Therefore, F' is a Lipchitz function on Y with Lip(F') < Lip(f). On the other hand, since
F' is a Lipschitz extension of f and so Lip(f) < Lip(F') and hence Lip(F) = Lip(f). We
finish the proof. ([l

Proposition 9.14 Let A be a non-empty closed subset of R. If f : A — A is a contraction,
then there is a unique fixed point of f, i.e., there is a point a € A such that f(a) = a.

Proof: First we show the existence. f is a contraction on A, so there is 0 < C' < 1 such
that [f(z) — f(y)| < Clz —y| for all z,y € A. Fix 1 € A. Since f(A) C A, we can
inductively define a sequence (x,) in A by x,11 = f(x,) for n = 1,2... Note that we have

|Zn+1 — 2n| = |f(2n) = f(2n-1)] < Clzn — 2p-1]
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for all n = 2,3... This gives
|Tn41 — o] < Cn_1|$2 — 1|

for n = 2,3, .... Thus, for any n,p = 1,2.., we see that

n+p—1 n+p—1
|xn+p — x| < Z |zip1 — x| < |w2 — 21 Z c
=n 1=n

Since 0 < C' < 1, for any € > 0, there is N such that Z?:f_l C1 < eforall n > N and
p = 1,2,... Therefore, (z,) is a Cauchy sequence and thus the limit a := lim, x,, exists.
A is closed, so we have a € A and hence f is continuous at a. On the other hand, since
ZTnt1 = f(xn), we have a = f(a) by taking n — oo.

Finally, we show the uniqueness of the fixed point. In fact, if ¢ and b are the fixed points
of f and a # b, then we have |a —b| = |f(a) — f(b)| < Cla—b| < |a— b| because 0 < C' < 1.
It leads to a contradiction. The proof is complete. The proof is complete. O

Remark 9.15 Proposition 9.14 does not hold if f is not a contraction. For example, if we
consider f(x) = x — 1 for x € R, clearly we have |f(z) — f(y)| = |z — y| and f has no fixed
point in R.

10 Monotone Functions

Using the notation given as before, f is a function defined on a subset A of R. f is called
a monotone function if it is either increasing or decreasing. The following results also hold
for decreasing functions by considering — f instead. Recall that c is a right (resp. left) limit
point of A if for any r > 0 we have (c,c+7r)NA#Q (resp. (c—r,c)NAF#0D).

Proposition 10.1 Let f be an increasing function on A. Let c € A. Put
Lic) =inf{f(z):z € A,z >c} if {xeAx>c}#0.
Similarly, we put
le):==sup{f(z):xecAx<c}t if {xeA:x<c}#0.

If ¢ is a right (resp. left) limit point of A, then L(c) = f(c+) = 1l>m+f(m) (resp. l(c) =
flem) = lim f(z).

Proof: First, we want to prove that if ¢ is a right limit point of A, then the right limit
f(c+) exists. Since ¢ is a right limit point of A, {f(z):x € A,z > ¢} # (). f is increasing,
so f(c) is a lower bound of the set {f(z) : x € A,z > ¢}. The Axiom of Completeness
implies that L(c) := inf{f(z) : x € A,z > ¢} exists and f(c) < L(c¢). Thus, for any € > 0,
there is 1 € A with 21 > ¢ such that f(x1) < L(c) + . Hence, if we take 0 < § < x1 — ¢,
then L(c)—e < L(c) < f(z) < f(z1) < L(c)+¢ whenever x € (¢,c+0). Thus, L(c) = f(c+)
as desired.

The proof for the case of a left limit point is similar. O
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Proposition 10.2 Using the notation given as in Proposition 10.1, let f be a strictly in-
creasing (not necessary continuous) function defined on an interval I, i.e, f(x1) < f(x2) if
and only if x1 < x9 as x1,x9 € I. Let g : f(I) —> I be the inverse of f. If d € f(I), then
g9(d) = L(d) =: inf{g(y) : y € f(I),y > d} (resp. g(d) = U(d) :=sup{g(y) : y € f(I),y >
d} ) provided L(d) (resp. 1(d)) exists.

In addition, if d is a right (resp. left) limit point of f(I), then g(d) = g(d+) (resp.
g(d) = g(d-)).

Consequently, the inverse function g : f(I) — I is continuous.

Proof:

Note that ¢ is also strictly increasing on f(I). Let ¢ := g(d), hence ¢ € I and f(c) = d.
g is increasing, so g(d) < L(d) whenever L(d) exists. We now suppose that g(d) < L(d),
thus we can choose a point z such that ¢ = g(d) < z < L(d). Then by the definition of L(d),
there is y1 € f(I) with y1 > d. Thus, we have z < L(d) < g(y1). If we let x; = g(y1), then
x1 € Tand ¢ < z < L(d) < z1. I is an interval, so z € (¢,x1) C I. Thus, f(z) > f(c) =d, so
f(z) e {y € f(I) : y > d}. This implies that z = g(f(z)) > L(d). It leads to a contradiction
because ¢ < z < L(d) by the choice of z. Therefore, g(d) = L(d).
Similarly, we also have a contradiction if I(d) < g(d). Hence I(d) = g(d).
Finally, we want to show that g is continuous at d in the following cases.
If d is an isolated point of f(I), then g is automatically continuous at d.
If d is a right limit point of f(I) but is not a left limit point of f(I), then by Proposition
10.1, we have g(d) = L(d) = g(d+). Therefore, g is continuous at d. Similarly, if d is a left
limit point of f(I) but is not a right limit point of f(I), then we have g(d) = I(d) = g(d—),
hence g is continuous at d.
Finally, if d is a right and left limit point of f(I). Then, we have g(d) = g(d+) = g(d—)
and so ¢ is continuous at d. The proof is complete. ]

Proposition 10.3 Let f be an increasing function defined on A and let D be the set of
discontinuous points of f. Then D is a countable set.

Proof: For each integer n, we put D,, := {z € D :n—1< f(z) < n}. Then D =, o7 Dn.
Therefore, it suffices to show that each D,, is countable.
We now fix D,,. By using Proposition 10.1, we first note that ¢ € D,, if and only if

fle)=f(e=) > 0or f(et)=f(e) > 0. Put J(c—) := [f(c—), f(¢)] and J(e+) := [f(e), f(e+)].
Then J(c+) or J(c—) is an interval. Therefore, if we put «(c) is the length of (J(c—)UJ (c+))
for ¢ € D,,, then a(c) > 0. On the other hand, if ¢1,co € D,, with ¢; < c2, then
J(c1+) N J(ce—) has at most one point if they exist. Thus, we have

0< Z alc)<m—(m—-1)=1.

CEDm

Since a(c) > 0 for all ¢ € D,y,, the set D,, need to be countable. In fact, note that we have

D= | {c€Dm:alc) > 1/k}.
keZy

Thus, if D,, is uncountable, then there exists a positive integer k so that R := {c¢ € D, :
a(c) > 1/k} is infinite. Therefore, ) p a(c) is infinite. It leads to a contradiction. O
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Let I be an interval. We call a function f : I — R locally bounded at ¢ € I if there
is 7 > 0 such that the function f is bounded on (¢ — r,c+ ) N I. Notice that if lim f(z)
Tr—rC

exists, then f is locally bounded at c.

Proposition 10.4 Now if f is a locally bounded at c € I, then the following always exist.

lim f(z) = 65%1+(0<|i13<5f(x)) and  Lim f() := Jdm (_nf f(@).
Moreover, we have lim, .. f(x) < lim,_. f(x). In addition, lim,_,. f(z) exists if and only
if lim, . f(z) = limy—. f(x). In this case, limy—. f(z) = lim, . f(x) = limy—. f(z).
Proof: For simply, we assume that I is an open interval.

For 0 > 0, put L(0) := supgc|p_c<s f(z) and £(0) := info jp_cj<s f(x). Since f is lo-
cally bounded at ¢, L(0) and ¢)0) are defined for arbitrary small § > 0. Moreover, the
functions L(J) is increasing and ¢(9) is decreasing. Then by Proposition 10.1, we see that
hm:c—)cf(x) = infs> (Sup0<|m—c\<(5 f(.f)) and himx—mf(m) = SUPs>g (inf0<\x—0|<5 f(x))
On the other hand, since £(§) < L(6) for all § > 0, we have lim, ., .f(z) < limy_.f(z).
The last assertion clearly from the definition of the limit of a function. O

Example 10.5 Define f(x) = sin %7]‘07’ x # 0. Then lim,_of(x) = 1 and lim,_,,f(x) =
—1. Hence, the case lim, .o f(z) < limy—of(x) may occur.

Proposition 10.6 Using the notation as in Proposition 10.4, the following are equivalent.
(1) limy_. f(x) exists.
(i) lim,_, f(z) = mw—mf(m)

In this case, we have lim,_. f(z) = lim,_, . f(x) = lim,_,.f(x).

Proof: Let L :=lim,_,. f(z) if it exists.

For showing (i) = (ii), let € > 0, then there is § > 0 such that L — e < f(z) < L+ ¢
whenever x € I with 0 < |x — ¢| < 0. Using the notation as in Proposition 10.4, then we
have L — e < ¢(61) < L(01) < L+ ¢ for all 0 < §; < 6. Taking d; — 0+, we have

L—¢e<lim, . f(z) <limg.f(z) < L+e

for all € > 0. This gives lim, ,.f(z) = lim,_,.f(z) = L as desired.
(73) = (i) follows immediately from the simple observation that ¢(0) < f(x) < L(d) for all
d >0 and for all z € I with 0 < |z —¢| < §. O

Definition 10.7 A function f : [a,b] — R is said to be of bounded variation if it satisfies
the following condition.

fllsv == sup{Z\f(xk) — fzp—1)|:a=x0 < -+ < xp =b} < 0.
k=1

We call || f||gv the total variation of f and write BV[a,b] for the set of all functions of
bounded variation.
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Proposition 10.8 We keep all notation as given above. Then we have
(i) The space BVa,b] is a vector space.
(ii) Ewvery function of bounded variation is bounded.
(i1i) Every monotone function is of bounded variation.
(iv) Every Lipschitz function is of bounded variation.

Proof: Parts (i), (i7i) and (iv) are clear.

For showing Part (i7), let f € BV[a,b] and = € (a,b). Then by considering the partition
a < x < b, we have |f(z) — f(a)| + [f(b) — f(x)] < [Ifllv. This gives 2|f(z)| < [f(a)| +
£ (0)] + || fllBL for all z € (a,b) and hence, f is bounded on [a, b]. O

Remark 10.9 The part (i7i) in Proposition 10.8 tells us that a function of bounded vari-
ation may not be continuous. On the other hand, a bounded function is not necessary to
be of bounded variation.

Example 10.10 Let

B sin(%) if x € (0, %],
f@) = {0 if x = 0.

Notice that f is bounded on [0, 2] but f ¢ BV[0, 2]. In fact, for each positive integer n,

if we let xy, := m for 1 <k <n and consider the partition on |0, %] 0=z9< 21 <
2

e L Ty < Xy, = %, then we have

n

Do) = flar-)l = Y 1f (@) = flae-)| = 2(n = 1)
k=1

k=2

for all n > 2. This implies that f is not of bounded of variation.

Proposition 10.11 Suppose that f € BV[a,b]. Put

Then the functions ¢ and ¢ — f are increasing on |a,b]. Consequently, a function f :
[a,b] — R is of bounded variation if and only if f = u — v for some increasing functions
u and v on |a,b].

Proof: We first notice that since f € BV]a,b], the function ¢ is well defined. In fact, we
have 0 < ¢(z) < ||f|lpv for all x € [a,b]. Let a < z < y < b. For any partition on [a, z]:
a=z9< - <z, = We see that

Do) = flan-0)l < D |f () = fla-)l +1f(y) = f@)] < 6(y).
k=1 k=1

This implies that ¢(z) < ¢(y) and
o) < oy) — [f(y) = f(2)] < oy) — (f(y) — f(2)).
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Thus, we have
o(z) — fx) < o(y) — f(y)-

Therefore, the function ¢ — f is increasing on [a, b].

For the last assertion, if f € BV [a, b], then we have f = ¢—(¢— f) an so f can be written as
the difference of increasing functions as desired. Conversely, since BV [a, b] is a vector space
and every increasing function is of bounded variation, the difference of increasing functions
is a function of bounded variation. The proof is complete. U
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