MATH2048: Honours Linear Algebra II 2024/25 Term 1

Homework 4

Problems

Please give reasons for your solutions to the following homework problems. Submit your solution in PDF via the Blackboard system before 2024-10-04 (Friday) 23:59.

- 1. Let V be a finite-dimensional vector space with an ordered basis β . Define $T: V \to F^n$ by $T(x) = [x]_{\beta}$. Prove that T is linear.
- 2. Let g(x) = 3 + x. Let $T: P_2(\mathbb{R}) \to P_2(\mathbb{R})$ and $U: P_2(\mathbb{R}) \to \mathbb{R}^3$ be the linear transformations respectively defined by

$$T(f(x)) = f'(x)g(x) + 2f(x)$$
 and $U(a + bx + cx^2) = (a + b, c, a - b)$.

Let β and γ be the standard bases of $P_2(\mathbb{R})$ and \mathbb{R}^3 respectively.

- (a) Compute $[U]^{\gamma}_{\beta}$, $[T]_{\beta}$, and $[UT]^{\gamma}_{\beta}$. Then verify the equation $[UT]^{\gamma}_{\beta} = [U]^{\gamma}_{\beta}$ $[T]_{\beta}$.
- (b) Let $h(x) = 3 2x + x^2$. Compute $[h(x)]_{\beta}$ and $[U(h(x))]_{\gamma}$. Then verify the equation $[U(h(x))]_{\gamma} = [U]_{\beta}^{\gamma} [h(x)]_{\beta}$.
- 3. Let V be a finite-dimensional vector space, and $T: V \to V$ be linear such that $T^2 = T$.
 - (a) Find all possible linear transformations T.
 - (b) Suggest an ordered basis β for V such that $[T]_{\beta}$ is a diagonal matrix.
- 4. Let V be a finite-dimensional vector space, and $U, T: V \to V$ be linear.
 - (a) Prove or give a counter-example: If both $U,\ T$ are isomorphism, then UT is an isomorphism.
 - (b) Prove or give a counter-example: If UT is an isomorphism, then both $U,\,T$ are isomorphisms.

Exercises

The following are extra recommended exercises not included in the homework.

- 1. Let $T: \mathbb{R}^2 \to \mathbb{R}^3$ be defined by $T(a_1, a_2) = (a_1 a_2, a_1, 2a_1 + a_2)$. Let β be the standard bases for \mathbb{R}^2 and $\gamma = \{(1, 1, 0), (0, 1, 1), (2, 2, 3)\}$.
 - (a) Compute $[T]^{\gamma}_{\beta}$.
 - (b) If $\alpha = \{(1,2), (2,3)\}$, compute $[T]_{\alpha}^{\gamma}$.
- 2. Let V be a vector space with the ordered basis $\beta = \{v_1, v_2, ..., v_n\}$. Define $v_0 = 0$.
 - (a) Prove that there exists a linear transformation $T: V \to V$ such that $T(v_j) = v_j + v_{j-1}$ for j = 1, 2, ..., n.
 - (b) Compute $[T]_{\beta}$.
- 3. Which of the following pairs of vector spaces are isomorphic?
 - (a) F^3 and $P_3(F)$
 - (b) F^4 and $P_3(F)$
 - (c) $M_{2\times 2}(\mathbb{R})$ and $P_3(\mathbb{R})$
 - (d) $V = \{A \in M_{2 \times 2}(\mathbb{R}) : \text{tr}(A) = 0\}$ and \mathbb{R}^4
- 4. Let V be an n-dimensional vector space, and let $T:V\to V$ be a linear transformation. Suppose that W is a T-invariant subspace of V (see the definition in HW 3) having dimension k. Show that there is a basis β of V such that $[T]_{\beta}$ has the form

$$\begin{pmatrix} A & B \\ O & C \end{pmatrix}$$
,

where A is a $k \times k$ matrix and O is the $(n-k) \times k$ zero matrix.

- 5. Let V be a vector space, and let $T:V\to V$ be linear. Prove that $T^2=T_0$ (zero transformation) if and only if $R(T)\subseteq N(T)$.
- 6. Let A be an $n \times n$ matrix.
 - (a) Suppose that $A^2 = O$. Prove that A is not invertible.
 - (b) Suppose that AB=O for some nonzero $n\times n$ matrix. Could A be invertible? Explain.
- 7. Let B be an $n \times n$ matrix. Define $\Phi: M_{n \times n}(F) \to M_{n \times n}(F)$ by $\Phi(A) = B^{-1}AB$. Prove that Φ is an isomorphism.