Lecture 16: Recall:
Prop: Let V be an inner product space and
$$S_n = \{\overline{w}_1, ..., \overline{w}_n\}$$

be a linearly independent subset of V. Define:
 $S_n' = \{\overline{v}_1, \overline{v}_2, ..., \overline{v}_n\}$ where $\overline{v}_1 = \overline{w}_1$ and
for $R = 2, ..., n$,
 $\overline{v}_R = \overline{w}_R - \sum_{j=1}^{K-1} \left(\frac{(\overline{w}_R, \overline{v}_j)}{||\overline{v}_j||^2} \right) \overline{v}_j$
Then: S_n' is orthogonal and $Span(S_n') = Span(S_n)\overline{w}_2, \overline{v}_2$
 $\overline{v}_2 = \overline{w}_1 = \overline{v}_1$

$$\frac{Pro \cdot f:}{For n=1}, \text{ we simply have } S_1' = S_1 \dots \text{ The statement is obviously true}.$$
Suppose the statement is true for $n = m-1$. Induction That's, $S_{m-1}' = \{\vec{v}_1, \dots, \vec{v}_{m-1}\}$ is orthogonal and hypothesic Span $(S_{m-1}') = Span (S_{m-1}')$
Now, consider a lin. independent subset $S_m = \{\vec{w}_1, \vec{w}_2, \dots, \vec{w}_{m-1}, \vec{w}_m\}$
Then: for $\vec{v}_m \stackrel{\text{def}}{=} \vec{w}_m - \sum_{j=1}^{m-1} \frac{\langle \vec{w}_m, \vec{v}_j \rangle}{\|\vec{v}_j\|^2} \vec{v}_j$, we have:
 $\langle \vec{v}_m, \vec{v}_i \rangle = \langle \vec{w}_m, \vec{v}_i \rangle - \langle \vec{v}_m, \vec{v}_j \rangle$

... Sm is orthogonal.
Also,
$$\vec{U}_m \neq \vec{O}$$
 since otherwise, $\vec{W}_m \in \text{Span}(S_{m-1})$
 $Span(\{\vec{W}_1, \vec{W}_2, -, \vec{W}_m, M\})$
cuntradicting the condition that Sm is linearly independent.
Hence, $Sm' = \{\vec{U}_1, \vec{U}_2, ..., \vec{U}_{m-1}, \vec{U}_m\}$ is orthogonal subset
consisting of non-zero vectors. ... S'_m is linearly independent.
Also, $Span(S'_m) \subset Span(S_m) \implies Span(S'_m) = Span(S_m)$
 \vec{T}
 $dim = M$

Party of

The above construction of an orthogonal basis is called Gram-Schmidt process.

2

Consider V = P(IR) equipped with the inner product $\langle f, g \rangle = \int_{-1}^{1} f(t) g(t) at$ Let $\beta = \{1, x, x^2, ..., x^n, ..., \}$ be standard ordered basis for P(IR). Take v, = 1. $\langle \chi, \overline{\psi}, \rangle$ $(|\overline{\psi}, ||^2)$ $\overline{\psi}_1 = \chi$ 5 V2 = Then: $\frac{\chi^{2}, \nabla_{1}}{\|\nabla_{1}\|^{2}} = \frac{\chi^{2}, \nabla_{2}}{\|\nabla_{2}\|^{2}} = \chi^{2} - \frac{1}{3}$ J3= x

 $\vec{v}_{4} = \chi^{3} - \frac{\langle \chi^{3}, \vec{v}, \vec{y} \rangle}{||\vec{y}_{1}||^{2}} \vec{v}_{1} - \frac{\langle \chi^{3}, \vec{v}_{2} \rangle}{||\vec{v}_{2}||^{2}} \vec{v}_{2} - \frac{\langle \chi^{3}, \vec{v}_{3} \rangle}{||\vec{v}_{2}||^{2}} \vec{v}_{3}$ $= \chi^3 - \frac{3}{5}\chi \quad and \quad so \quad on , --$ for P(IR) This produces an orthogonal basis 20, 02, ... 3, whose elements are called Legendre polynomial.

Corollarg: Let V be a non-zero finite-dim inner product space.
Then, V has an orthonormal basis
$$\beta = \{\vec{v}_1, \dots, \vec{v}_n\}$$
 s.t.
 $\forall \vec{x} \in V$, we have: $\vec{x} = \sum_{i=1}^{n} \langle \vec{x}, \vec{v}_i \rangle \vec{v}_i$
Corollarg: Let V be a non-zero finite-dim inner product space
with an orthonormal basis $\beta = \{\vec{v}_1, \vec{v}_2, \dots, \vec{v}_n\}$. Let T be
a linear operator on V. Let $A = [T]\beta$. Then: $A_{ij} = \langle T(\vec{v}_j), \vec{v}_i \rangle$
 $\frac{Proof:}{Proof} [T]\rho = \left(-\dots [T(\vec{v}_j)]\rho - \dots \right) T(\vec{v}_j) = \sum_{i=1}^{n} \langle T(\vec{v}_j), \vec{v}_i \rangle \vec{v}_i$

Orthogonal complement Def: Let S be a non-empty subset of an inner product space V. The orthogonal complement of S is defined as: St det f x eV : < x, y>= 0 for VyeS}

Proposition: Let V be an inner product space and
$$W \subset V$$
 a
finite-dim subspace of V. Then: $\forall \vec{y} \in V, \exists ! \vec{u} \in W$ and $\vec{z} \in W^{\perp}$
such that $\vec{y} = \vec{u} + \vec{z}$.
Furthermore, if $\underbrace{\underbrace{z}}_{v_1}, \underbrace{v_2}, \dots, \underbrace{v}_{h} \underbrace{3}_{is}$ an orthonormal basis for W,
then: $\vec{u} = \underbrace{\underbrace{z}}_{i=1}^{k} \langle \vec{y}, \vec{v} i \rangle \overrightarrow{v}_i$
The vector $\vec{u} \in W$ is called the orthogonal projection of
 \vec{y} on W .

Proof: Given JeV, we set u = Z<y, vi>vi eW $\vec{y} = \vec{u} + \vec{z}$. and z = y - u. Then: Ŵ TH 77 $= \langle \vec{y}, \vec{v}_j \rangle - \langle \vec{u}, \vec{v}_j \rangle$ $Now, \langle \vec{z}, \vec{v}_j \rangle = \langle \vec{y} - \vec{u}, \vec{v}_j \rangle$ = < y, v;> - (2 < y, v;) < v; , v;) W < y, v;> $\langle z, \sum_{i=1}^{k} b_{k} \overline{v_{i}} \rangle = \sum_{i=1}^{k} \overline{b_{k}} \langle \overline{z}, \overline{v_{i}} \rangle = 0$ i ZEW

-

Corollary: With notations as above, then : for VXeW $\|\vec{y} - \vec{x}\| \ge \|\vec{y} - \vec{u}\|$ and equality holds iff $\vec{x} = \vec{u}$ Remark: Orthogonal projection is the vector in W closest to Y.

$$\begin{array}{l} P_{roof}: \ Let \ \vec{x} \in W \ \text{Then}: \ \vec{y} = \vec{u} + \vec{z} \Rightarrow \vec{z} = \vec{y} - \vec{u} \\ \vec{u} \quad \vec{x} \\ \vec{u} \quad \vec{x} \\ \vec{u} \\ \vec{x} \\ \vec{x}$$

-

-

Proof: (a) We first extend S to a basis:
I U,..., Uh, When, ..., Wn3 for V.
L.I.
Then, we apply the G-S process to this basis.
'.' S is orthonormal, i. U,..., Uh remains the same
during the G-S process.
So, this process gives an orthonormal basis for V of
the form
$$2 \overline{U}_1, \overline{U}_2,..., \overline{U}_k, \overline{U}_{k+1,...,}, \overline{U}_n$$

unchanged new
(b) Exercise. Consider $\overline{W} \in W^{\pm}$ and write $\overline{W} = \sum_{i=1}^{n} b_i \overline{V}_i$. Mae: $\langle \overline{W}_i, \overline{V}_i \rangle = 0$

-

$$dim(V) = n = k + (n - k)$$
$$= dim(W) + dim(W^{\perp})$$

Remark: In fact, a "complement" to a subspace
$$W \subset V$$

is another subspace $U \subset V$ s.t.
 $\int W \cap U = \overline{E}\overline{O}\overline{J}$
 $\int \dim(W) + \dim(U) = \dim(V)$
 $U \subset IS = a complement to W$
a special W
 $\int W = W$
 $\int W = W$
 $\int W = V$
 \int

Adjoint of a linear operator
Prop: Let V be a finite-dim. inner product space over F.
Then for any linear transformation
$$g: V \rightarrow F$$
 (linear functional)
 $\exists ! \vec{y} \in V$ s.t. $g(\vec{x}) = \langle \vec{x}, \vec{y} \rangle$ for all $\vec{x} \in V$.

-

.

Theorem: Let V be a finite-dim inner product space. Let T be
a linear operator on V. Then:
$$\exists !$$
 [inear operator $T^*: V \rightarrow V$
Such that $= \langle T(\vec{x}), \vec{y} \rangle = \langle \vec{x}, T^*(\vec{y}) \rangle$ for $\forall \vec{x}, \vec{y} \in V$.
 T^* is called the adjoint of T.
Proof: Given any $\vec{y} \in V$, the map $g\vec{y}: V \rightarrow F$ defined by.
 $g_{\vec{y}}(\vec{x}) = \langle T(\vec{x}), \vec{y} \rangle$ is linear ('.' $\langle \cdot, . \rangle$ is linear in
the 1st argument)
By the previous proposition, $\exists ! \vec{y}' \in V$
Such that $\langle T(\vec{x}), \vec{y} \rangle = \langle \vec{x}, \vec{y}' \rangle$ for all $\vec{x} \in V$.
 $\vec{g}_{\vec{y}}(\vec{x})$ Now, define : $T^*: V \rightarrow V$ by $T^*(\vec{y}) = \vec{y}'$.

To see that TX is linear, let y, yz EV and CEF. Then $\forall \vec{x} \in V$, we have: $\langle \vec{x}, T^{*}(c\vec{y}_{1}+\vec{y}_{2}) \rangle = \langle T(\vec{x}), c\vec{y}_{1}+\vec{y}_{2} \rangle$ = $\overline{c} < T(\vec{x}), \vec{y}, 7 + < T(\vec{x}), \vec{y}_2 >$ $= \overline{c} < \overline{x}, T^{*}(\overline{y}) + < \overline{x}, T^{*}(\overline{y}_{2}) >$ $= \langle \vec{x}, c T^{*}(\vec{y}_{1}) + T^{*}(\vec{y}_{2}) \rangle$ $= T^{*}(C\vec{y}_{1} + \vec{y}_{2}) = CT^{*}(\vec{y}_{1}) + T^{*}(\vec{y}_{2})$