Lecture 15: Recall:
Inner product and norm
Assume
$$F = IR$$
 or C .
Definition: Let V be a vector space over F . An inner product
on V is a map $\langle \cdot, \cdot \rangle = V \times V \rightarrow F$ s.t. $\forall \vec{x}, \vec{y}, \vec{z} \in V$
and $c \in F$, it satisfies:
(a) $\langle \vec{x} + \vec{z}, \vec{y} \rangle = \langle \vec{x}, \vec{y} \rangle + \langle \vec{z}, \vec{y} \rangle$
(b) $\langle c \vec{x}, \vec{y} \rangle = c \langle \vec{x}, \vec{y} \rangle$
(c) $\langle \vec{x}, \vec{y} \rangle = c \langle \vec{y}, \vec{x} \rangle$
(d) $\langle \vec{x}, \vec{x} \rangle > 0$ if $\vec{x} \neq \vec{0}$

For A, B, C EV and REF, we check: (a) $\langle A + B, C \rangle = tr(C^*(A + B)) = tr(C^*A' + C^*B)$ = $+r(C^*A) + +r(C^*B)$ $= \langle A, C \rangle + \langle B, C \rangle$ (b) $\langle \lambda A, B \rangle = tr(B^*(\lambda A)) = tr(\lambda(B^*A))$ $= \lambda + r(B^*A)$ = λ < Α, B> $tr(\vec{B}^*A) = tr(\vec{B}^TA)$ (c) $\langle A, B \rangle = tr(B^*A)$ = $= + r \left(\left(B^{T} \overline{A}^{T} \right)^{T} \right) = + r \left(\overline{A}^{T} \left(B^{T} \right)^{T} \right)$ $Tr(C) = Tr(C^T)$ $= tr(A^*B) = \langle B, A \rangle.$

(d)
$$\langle A, A \rangle = \operatorname{tr}(A^*A) = \sum_{i=1}^{n} (A^*A)_{ii}$$

$$= \sum_{i=1}^{n} \left(\sum_{k=1}^{n} (A^*)_{ik} A_{ki} \right)$$

$$= \sum_{i=1}^{n} \sum_{k=1}^{n} \overline{Ak_i} A_{ki}$$

$$\langle A, A \rangle = \sum_{i=1}^{n} \sum_{k=1}^{n} |A_{ki}|^2 \ge 0$$
and $\langle A, A \rangle = 0$ iff $A_{ki} = 0 \quad \forall k, i \quad (i.e. A = 0)$

Definition: A vector space V equipped with an inner
product is called an inner product space.
If
$$F = C$$
, we call V a complex inner product space
If $F = IR$, we call V a real inner product space.

v

-

Proposition: Let V be an inner product space. Then, VX, J, ZEV and UCEF, we have: (a) $< \vec{x}, \vec{y} + \vec{z} > = < \vec{x}, \vec{y} > + < \vec{x}, \vec{z} >$ (6) くえ、 ビジ> こ こくズ、ダ> (c) $\langle \vec{x}, \vec{o} \rangle = \langle \vec{o}, \vec{x} \rangle = 0$ (d) $\langle \vec{x}, \vec{x} \rangle = 0$ iff $\vec{x} = \vec{0}$ (e) $\Pi \langle \vec{x}, \vec{y} \rangle = \langle \vec{x}, \vec{z} \rangle$ for $\forall \vec{x} \in V$, then $\vec{y} = \vec{z}$.

 $\frac{Proof:}{(a)} < \vec{x}, \vec{y} + \vec{z} > = < \vec{y} + \vec{z}, \vec{x} >$ = < y, x> + くを, x> $= \langle \vec{y}, \vec{x} \rangle + \langle \vec{z}, \vec{x} \rangle = \langle \vec{x}, \vec{y} \rangle + \langle \vec{x}, \vec{z} \rangle$ (6) $\langle \vec{x}, c \vec{y} \rangle = \langle c \vec{y}, \vec{x} \rangle = c \langle \vec{y}, \vec{x} \rangle = c \langle \vec{y}, \vec{x} \rangle$ (c) $\langle \vec{x}, \vec{o} \rangle = \langle \vec{x}, \vec{o} + \vec{o} \rangle = \langle \vec{x}, \vec{o} \rangle + \langle \vec{x}, \vec{o} \rangle$ $S_0, \langle \vec{X}, \vec{0} \rangle = 0$, $Similarly, \langle \vec{0}, \vec{X} \rangle = 0$ (d) If $\vec{X} = \vec{0}$, then $\langle \vec{X}, \vec{X} \rangle = 0$ by (c) If x to, then <x, x>>0 by definition.

(e) If
$$\langle \vec{x}, \vec{y} \rangle = \langle \vec{x}, \vec{z} \rangle$$
 for all $\vec{x} \in V$.
Hen $\langle \vec{x}, \vec{y} - \vec{z} \rangle = 0$ $\forall \vec{x} \in V$.
In particular, we can choose $\vec{x} = \vec{y} - \vec{z}$.
Then: $\langle \vec{y} - \vec{z}, \vec{y} - \vec{z} \rangle = 0 \Rightarrow \vec{y} - \vec{z} = \vec{o}$ (by (d))
 $\Rightarrow \vec{y} = \vec{z}$.
Remark: (a) + (b) together say that the inner product
is conjugate linear in the second argument.

Channel.

Proof: (a)
$$\|c\bar{x}\| = \int \langle c\bar{x}, c\bar{x} \rangle = \int c\bar{c}\langle \bar{x}, \bar{x} \rangle$$

$$|c|^{2}$$

$$= |c| \int \langle \bar{x}, \bar{x} \rangle = |c| \|\bar{x}\|.$$
(b) $\|\bar{x}\| = \int \langle \bar{x}, \bar{x} \rangle \neq 0$ (by definition)

$$\|\bar{x}\| = o \iff \langle \bar{x}, \bar{x} \rangle = o$$
 iff $\bar{x} = \bar{o}$

(c) and (d) will be shown in the tutorial.

and the same

one

Orthogonality
Definition: Let V be an inner product space. We say
$$\overline{x}, \overline{y} \in V$$

are orthogonal (or perpendicular) if $\langle \overline{x}, \overline{y} \rangle = 0$.
A subset S C V is called orthogonal if any two distinct
vectors in S are orthogonal.
A unit vector in V is a vector $\overline{x} \in V$ with $\|\overline{x}\| = 1$.
A subset S C V is called orthonormal if S is orthogonal
and all vectors in S are unit vectors.

e.g. Let H be the space of continuous complex-valued functions
on
$$[0, 2\pi]$$
. We have inner product defined by:
 $\langle f, g \rangle \stackrel{\text{def}}{=} \frac{1}{2\pi} \int_{0}^{2\pi} f(t) \overline{g(t)} dt$ for $f, g \in H$
For any $n \in \mathbb{Z}^{C \text{ integer}}$, let \mathcal{F}^{T}
 $f_{n}(t) = e^{int} \stackrel{\text{def}}{=} \cos nt + i \operatorname{Sinnt} \operatorname{for} - t \in [0, 2\pi]$
and consider $S = \{f_n : n \in \mathbb{Z}\} \subset H$ $\lim_{z \in \mathbb{Z}} \int_{0}^{2\pi} \cos(mn)t dt$
For any $m \neq n$, we have:
 $\operatorname{def} m = t = \int_{0}^{2\pi} \int_{0}^{2\pi} e^{imt} e^{int} dt = \frac{1}{2\pi} \int_{0}^{2\pi} e^{i(m-n)t} dt = \frac{1}{2\pi} (\frac{1}{1(m-n)})e^{imm}$
 $e^{-int} = 0$

Also,
$$\langle f_n, f_n \rangle = \frac{1}{2\pi} \int_0^{2\pi} e^{int} e^{int} dt = \frac{1}{2\pi} \int_0^{2\pi} 1 dt = 1$$

 e^{-int}

a grown

onto

-

2

12

That are

i. S is orthonormal subset of H.

-

Definition: Let V be an inner product space. A subset of V
is an arthonormal basis for V if it is an ordered basis
which is orthonormal.
Proposition: Let V be an inner product space and
$$S = \{\vec{v}_1, ..., \vec{v}_k\}$$

be an orthogonal subset of V consisting of non-zero vectors.
Then: $\forall \vec{y} \in Span(S)$,
 $\vec{y} = \sum_{i=1}^{K} ((\vec{y}, \vec{v}_i)) \vec{v}_i$

$$\frac{Proof:}{Take inner product with \vec{v}_j \text{ on both sides gives:}} \langle \vec{y}, \vec{v}_j \rangle = \sum_{i=1}^{k} a_i \langle \vec{v}_i, \vec{v}_j \rangle = a_j ||\vec{v}_j||^2 \langle \vec{v}, \vec{v}_j \rangle = \sum_{i=1}^{k} a_i \langle \vec{v}_i, \vec{v}_j \rangle = a_j ||\vec{v}_j||^2 (Corollary I: If, in addition to above, S is orthonormal, then $\forall \vec{y} \in Span(S), \quad \vec{y} = \sum_{i=1}^{k} \langle \vec{y}, \vec{v}_i \rangle \vec{v}_i$$$

$$\frac{Corollary 2:}{Corollary 2:} \quad Let S be an orthogonal subset of an inner product space V consisting of non-zero vectors. Then, S is linearly independent.
$$\frac{Space V consisting of non-zero vectors. Then, S is linearly independent.
$$\frac{Span(\overline{1}\overline{1},...,\overline{1}\overline{1}\underline{1}\underline{5})}{Corol \overline{1}} \quad Span(\overline{1}\overline{1},...,\overline{1}\underline{5}\underline{1}\underline{5})$$

$$\frac{Proof:}{If} \quad \frac{k}{\sum} a_i \overline{1}\overline{1} = \overline{0} \quad for \quad some \quad \overline{1},..., \quad \overline{1}\underline{6}\underline{6}\underline{5} \text{ and} \quad a_1, a_2, ..., \quad a_k \in F,$$$$$$

By previous proposition,
$$p$$

 $a_i = \langle \vec{v}, \vec{v}; \rangle / ||\vec{v}; ||^2 = 0$ for $i=1,2,...,k$.

$$\frac{Prop:}{Let V be an inner product space and Sn=\{\overline{w}_1,...,\overline{w}_n\}}{be a linearly independent subset of V. Define:Sn' = {\overline{v}_1, \overline{v}_{2,...,}, \overline{v}_n} where \overline{v}_1 = \overline{w}_1 andfor $R=2,...,n$,
 $\overline{v}_R = \overline{w}_R - \sum_{j=1}^{K-1} ((\overline{w}_R, \overline{v}_j)) \overline{v}_j$
Then: Sn' is orthogonal and Span(Sn') = span(Sn)
 $\overline{w}_2 = \overline{w}_2 - \overline{v}_1$
 $\overline{w}_2 = \overline{w}_2 - \overline{v}_1$$$