
MMAT5270 Introduction to Inverse Problems

Assignment 2

1 Problems:
5.1 The Discrepancy Principle

The purpose of this exercise is to illustrate the sensitivity of the discrepancy principle to variations of the
estimate of the error norm. First generate the shaw test problem for n = 100, and add Gaussian noise with
standard deviation η = 10−3 to the right-hand side.

Use the discrepancy principle to compute the Tikhonov solution. The discrepancy principle is implemented in
the MATLAB function discrep from Regularization Tools. This function may occasionally have convergence
problems; if this happens, then create a new noise realization (or change η slightly) and try again.

You should first use the "safety factor" νdp = 1. As the "right-hand side" ‖e‖2 in (5.6), try to use both
the norm estimate

√
nη and the actual 2-norm ‖e‖2 of the perturbation vector e (perhaps try with different

perturbations). Is there a significant difference in the results?

Still with the "safety factor" νdp = 1, use several values of
√
nη and/or ‖e‖2 that are slightly too large and

slightly too small; this simulates a situation where only a rough estimate is available. For example, scale√
nη and/or ‖e‖2 up and down by 5-10%. How sensitive is the regularized solution to overestimates and

underestimates of the noise level?

Finally, repeat the experiments with the "safety factor" νdp = 2, and comment on the new results.

Solution.

Using the "safety factor" νdp = 1:

[A,b,x] = shaw (100);
[U,s,V] = csvd (A);
e = 1e-3*randn (size(b));
b = b + e;
x_lambda = discrep (U,s,V,b,norm(e));
figure(1)
plot ([x,x_lambda]);

x_lambda2 = discrep (U,s,V,b,sqrt(100)*1e-3);
figure(2)
plot ([x,x_lambda2]);

x_lambda = discrep (U,s,V,b,norm(e)*1.1);
figure(3)
plot ([x,x_lambda]);

x_lambda = discrep (U,s,V,b,norm(e)*0.9);
figure(4)
plot ([x,x_lambda]);

x_lambda2 = discrep (U,s,V,b,sqrt(100)*1e-3*1.1);
figure(5)
plot ([x,x_lambda2]);
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x_lambda2 = discrep (U,s,V,b,sqrt(100)*1e-3*0.9);
figure(6)
plot ([x,x_lambda2]);

Using the "safety factor" νdp = 2:

[A,b,x] = shaw (100);
[U,s,V] = csvd (A);
e = 1e-3*randn (size(b));
b = b + e;
x_lambda = discrep (U,s,V,b,2*norm(e));
figure(1)
plot ([x,x_lambda]);

x_lambda2 = discrep (U,s,V,b,2*sqrt(100)*1e-3);
figure(2)
plot ([x,x_lambda2]);

x_lambda = discrep (U,s,V,b,2*norm(e)*1.1);
figure(3)
plot ([x,x_lambda]);

x_lambda = discrep (U,s,V,b,2*norm(e)*0.9);
figure(4)
plot ([x,x_lambda]);

x_lambda2 = discrep (U,s,V,b,2*sqrt(100)*1e-3*1.1);
figure(5)
plot ([x,x_lambda2]);

x_lambda2 = discrep (U,s,V,b,2*sqrt(100)*1e-3*0.9);
figure(6)
plot ([x,x_lambda2]);
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Figure 1: Using the actual 2-norm ‖e‖2

Figure 1,2,3 and 5 show that the results are similar if we use the norm estimate
√
nη and the actual 2-norm

‖e‖2 of the perturbation vector e or scale
√
nη and/or ‖e‖2 up by 5-10%.
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Figure 2: Using the norm estimate
√
nη
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Figure 3: Scaling ‖e‖2 up by 10%

Figure 4,6 show that regularized solution is sensitive to underestimates of the noise level.

If we use the "safety factor" νdp = 2, we can get the same figure as figure 1.
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Figure 4: Scaling ‖e‖2 down by 10%
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Figure 5: Scaling
√
nη up by 10%

0 10 20 30 40 50 60 70 80 90 100

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5
×10

8

Figure 6: Scaling
√
nη down by 10%
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5.2 The GCV and L-curve Methods

This exercise illustrates the use of the GCV and L-curve methods for choosing the regularization parameter,
and we compare these methods experimentally. As part of this comparison we investigate how robust-or
reliable-the methods are, i.e., how often they produce a regularization parameter close to the optimal one. We
use the shaw test problem and the parameter-choice functions gcv and l_curve from Regularization Tools.

Plot the GCV function for, say, 5 or 10 different perturbations with the same η, and note the general behavior
of the GCV function. Is the minimum always at the transition region between the flat part and the more
vertical part (cf. Figure 5.6)?

Use the L-curve criterion to compute the regularization parameter for the same 5 or 10 perturbations as above.
Does the regularization parameter computed by means of l_curve always correspond to a solution near the
corner (cf. Figure 5.4)?

For a fixed perturbation of the right-hand side, compute the regularization error and the perturbation error for
Tikhonov’s method, for a range of regularization parameters λ. Plot the norms of the two error components
∆xbias and ∆xpert, and relate the behavior of this plot to the two regularization parameters found by the
GCV method and the L-curve criterion.

Solution.

For the L-curve criterion, we can find the regularization parameter computed by means of l_curve always
correspond to a solution near the corner. The norm of ∆xpert is larger than the norm of ∆xbias before the
corner value of λ calculated by the L-curve.

[A,b,x] = shaw(100); err=1e-3*randn (size(b));
b = b + err; [U,s,V] = csvd (A);
figure(1);
lambda = gcv (U,s,b);
figure(2);
reg_corner = l_curve(U,s,b);

S=diag(s);
Si=zeros(size(S));
lambda=0.001;
Si=diag(s.^2./(s.^2.+lambda^2));
x_bias=V*(1-Si)*V’*x;
x_pert=V*Si*inv(S)*U’*err;
norm(x_bias)
norm(x_pert)
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Figure 7: GCV
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Figure 8: L-curve
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Figure 9: ∆xbias and ∆xpert
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6.2 Landweber Iteration for Nonnegative Solutions

The purpose of this exercise is to illustrate the use of the augmented Landweber iteration (6.3) where the
operator P represents a nonnegativity constraint. In other words, if x and y = P(x) are vectors, then

yi =

{
xi, xi ≥ 0,
0, xi < 0.

The test problem to be used here is a slightly modified version of the phillips problem from Regularization
Tools:

[A,b,x] = phillips(n);
x = x - 0.5;
x(x<0) = 0;
b = A*x;

This produces an exact solution x which has a smooth "blob" in the middle, surrounded by zeros.

Implement two versions of Landweber’s method: the standard version (6.1) and the augmented version (6.3)
with the above nonnegativity projection P. Use both methods to solve the modified phillips problem; you
should perform several hundred iterations, and we suggest that you use a value of ω slightly smaller than
2/σ2

1 . Compute the error histories for the two methods, study the regularized solutions, and comment on the
results.

Solution.

n=100;
[A,b,x] = phillips(n);
x = x - 0.5;
x(x<0) = 0;
b = A*x;

x_iter=zeros(size(x));
[U,s,V] = csvd (A);
omega=2/s(1)^2-0.001;
k=500;
error_his=zeros(k);
for i=1:k

x_iter=x_iter+omega*A’*(b-A*x_iter);
error_his(i)=norm(x-x_iter)/norm(x);

end
plot(error_his)
hold on

x_iter=zeros(size(x));
[U,s,V] = csvd (A);
omega=2/s(1)^2-0.001;
k=500;
error_his=zeros(k,1);
for i=1:k

x_iter=x_iter+omega*A’*(b-A*x_iter);
x_iter(x_iter<0)=0;
error_his(i)=norm(x-x_iter)/norm(x);

end
plot(error_his)
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The error histories for the two methods show that the augmented version has a better result and converges
faster.

Figure 10: Error history

6.3 Illustration of the CGLS Algorithm

The purpose of this exercise is to illustrate the use of regularizing iterations in the form of the CGLS algorithm
from Section 6.3.2. This algorithm is implemented in Regularization Tools as the function cgls. The exercise
also previews material coming up in Section 7.5.

The model problem is a small image deblurring problem which is generated by means of the function blur
from the same package. Both the exact image and the blurred image are N × N , and they are represented
by N2-vectors by stacking their columns. Use reshape(x,N,N) to get from the "stacked" representation of
the image to the image itself. To display the images, you can use the function imagesc together with the
commands axis image and colormap gray.

Choose N = 64 and generate the test problem with blur(N,10,1.4) (the second parameter controls the
sparsity of A, and the third parameter controls the amount of blurring). Plot the sharp and the blurred
N ×N images. At this stage, do not add noise to the problem. Perform a number of CGLS iterations; note
that the CGLS iterates are returned as columns of the output matrix from cgls. Plot some of the iterates as
images, and notice how the reconstruction gets sharper as the number of iterations increases.

Now add noise e to the blurred image with relative noise level ‖e‖2/‖b‖2 = 0.1, and repeat the CGLS
computations. You should notice that after a certain number of steps, the noise starts to dominate. This
illustrates that the number of iterations indeed plays the role of the regularization parameter for the CGLS
algorithm.

Solution.

No noise:

N=64;
[A,b,x] = blur(N,10,1.4);
x_image=reshape(x,N,N);
figure(1);
imagesc(x_image);
axis image;
colormap gray;
b_image=reshape(b,N,N);
figure(2);
imagesc(b_image);
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axis image;
colormap gray;
k=15;
[X,rho,eta] = cgls (A,b,k);
error_his=zeros(k,1);
for i=1:k

error_his(i)=norm(x-X(:,i))/norm(x);
end
x_image=reshape(X(:,end),N,N);
figure(3);
imagesc(x_image);
axis image;
colormap gray;
figure(4);
plot(error_his);

Adding noise e to the blurred image:

N=64;
[A,b,x] = blur(N,10,1.4);
err=1e-1*randn (size(b));
b = b + err;
x_image=reshape(x,N,N);
figure(1);
imagesc(x_image);
axis image;
colormap gray;
b_image=reshape(b,N,N);
figure(2);
imagesc(b_image);
axis image;
colormap gray;
k=15;
[X,rho,eta] = cgls (A,b,k);
error_his=zeros(k,1);
for i=1:k

error_his(i)=norm(x-X(:,i))/norm(x);
end
x_image=reshape(X(:,end),N,N);
figure(3);
imagesc(x_image);
axis image;
colormap gray;
figure(4);
plot(error_his);
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Figure 11: Sharp image
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Figure 12: Blurred image
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Figure 13: Perform 1 CGLS iteration

11



10 20 30 40 50 60

10

20

30

40

50

60

Figure 14: Perform 2 CGLS iterations
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Figure 15: Perform 5 CGLS iteratios
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Figure 16: Error history for noisy case

12


