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Solution to Assignment 7

1. Consider the linear partial differential equation of second order with two variables

A
∂2u

∂x2
+B

∂2u

∂x∂y
+ C

∂2u

∂y2
+D

∂u

∂x
+ E

∂u

∂y
+ Fu = G ,

where A,B,C,D,E, F and G are given functions of (x, y) in some plane region D. The
equation is called homogeneous if G ≡ 0. Show that if u1 and u2 are solutions to this
equation in the homogeneous case, a1u1 + a2u2 is again a solution for any a1 and a2.
When G 6= 0, show that every solution can be written as u = v + w where v is a solution
to the corresponding homogeneous equation and w is a particular solution to the full
equation. (Note. The same result applies to all linear PDE’s of all orders and variables.)

Solution. A straightforward verification. It shows that all solutions to a homogeneous
linear differential equation form a vector space.

2. Consider the initial-boundary value problem under the Neumann condition
ut = uxx in [0, π]× (0,∞) ,

u(x, 0) = f(x) in [0, π],

ux(0, t) = ux(π, t) = 0 , t > 0,

(1)

(a) By extending the solution to [−π, π] as an even function in x, use cosine series to find
the solution of this problem. (This was done in class.)

(b) Use the method of separation of variables to solve the problem.

Solution. We do (b) only. First find all separated solutions X(x)T (t). Plugging in the
equation leads to the problem X ′′ + λX = 0, X ′(0) = X ′(π) = 0 and T ′ + λT = 0. It is
routine to show that there no non-trivial solutions for X when λ < 0. When λ = 0, X is
any non-zero constant. When λ > 0, it must be equal to n2, n ≥ 1 and X is a non-zero
multiple of cosnx. Correspondingly we have T (t) = e−n

2t. Hence the formal solution is

u(x, t) =
a0
2

+

∞∑
n=1

ane
−n2t cosnx ,

where an’s are determined by the expansion

f(x) ∼ a0
2

+
∞∑
n=1

an cosnx.

3. Optional. Instead of separation of variables, use Fourier series to study the normalized
heat equation under ux(0, t) = 0, u(π, t) = 0 . Hint: You need to extend u to become a
4π-periodic function.

Solution. Extend f as an odd function with respect to the axis x = π so to get a function
defined on [0, 2π]. Then extend it as an even function over [−2π, 2π]. Keeping doing this
we obtain a 4π-periodic even function which is odd with respect to x = π. As a 4π-periodic
function

u(x, t) =
a0(t)

2
+

∞∑
n=1

an(t) cos
nx

2
.
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The condition u(π, t) = 0 implies a2n = 0, so

u(x, t) =
a0(t)

2
+
∞∑
n=0

a2n+1(t) cos
(2n+ 1)x

2
.

Note. Although the Fourier approach works after some tricky extension, the method
of separation of variables is more straightforward. It shows that when it comes to the
determination of the formal solution, separation of variables is more efficient.

4. Consider the heat equation (l = 1, κ = 1) under the Robin condition u(0, t) = 0, ux(1, t)+
u(1, t) = 0. Show that all eigenvalues of the corresponding problem are given by λn, n ≥ 0,
where λn ∈ ((2n − 1)2π2/4, n2π2) either analytically or by plotting graphs. Then find a
formal solution to this problem.

Solution. Parallel to the discussion in the lecture notes, we need to solve

X ′′ = −λX, X(0) = 0, X ′(1) +X(1) = 0 .

Here X(x) = α cos
√
λx+β sin

√
λx. X(0) = 0 implies α = 0 and X ′(1)+X(1) = 0 implies

that λ should satisfy
tan
√
λ = −

√
λ.

By plotting taking
√
λ as the x-axis, we see that there is exactly one

√
λn in ((n −

1/2)π, nπ), n ≥ 1 .

As in the lecture notes, there is no non-zero solution to λ ≤ 0.

The formal solution is equal to

u(x, t) =

∞∑
n=1

Ane
−λnt sinµnx ,

where

f(x) ∼
∞∑
n=1

An sinµnx .

5. Consider the eigenvalue problem on [0, 1]:

(p(x)X ′)′ + q(x)X = −λX, αX ′(0) + βX(0) = 0, γX ′(1) + δX(1) = 0 ,

where p, q are nice functions and αβ 6= 0, γδ 6= 0. Show that the eigenfunctions corre-
sponding to different eigenvalues are orthogonal on [0, 1].

Solution. Indeed, we have

−λ1
∫ 1

0
X1X2dx =

∫ 1

0
(pX ′1)

′X2dx+

∫ 1

0
qX1X2dx

= pX ′1X2

∣∣∣1
0
−
∫ 1

0
pX ′1X

′
2dx+

∫ 1

0
qX1X2dx

= pX ′1X2

∣∣∣1
0
− pX1X

′
2

∣∣∣1
0

+

∫ 1

0
(pX ′2)

′X1dx+

∫ 1

0
qX1X2dx

= −λ2
∫ 1

0
X1X2dx .
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If λ1 6= λ2, ∫ 1

0
X1(x)X2(x)dx = 0 .

Note. This problem suggests the method of separation of variables may work for equations
like

ut = (p(x)ux)x + q(x)u ,

which is more general than the heat equation.

6. Find all solutions to the first order equation ut = cux where c is a non-zero constant of
the form X(x)T (t). Can you use them to solve the initial-boundary value problem for this
equation under Dirichlet boundary condition?

Solution. For the separated solution X(x)T (t) it is readily seen that X satisfies X ′(x) =
−λX so X(x) is a constant multiple of e−λx where λ is any real number. From T ′ = −cλT
we get T a constant multiple of e−cλt. Therefore the separated solutions are given by

e−λ(x+ct), λ ∈ R .

In fact, this computation inspires us to discover that given any differentiable function f(x),
the function u(x, t) = f(x+ ct) solves the equation with initial function f . It shows that
the imposition of any boundary condition is not natural.

7. In (5), Ex 6, we solve the initial-boundary value problem for the wave equation. Show
that the solution u can be expressed in the following close form:

u(x, t) =
1

2
(f(x− ct) + f(x+ ct)) +

1

2c

∫ x+ct

x−ct
g(y) dy .

Solution. The solution u obtained in that problem is

u(x, t) =
∞∑
n=1

(cn cos cnt+ dn sin cnt) sinnx ,

where cn and dn are determined by

f(x) ∼
∞∑
n=1

cn sinnx ,

and

g(x) ∼
∞∑
n=1

cndn sinnx .

Using

cos cnt sinnx =
1

2
(sinn(x+ ct) + sinn(x− ct)) ,

and

sin cnt sinnx =
1

2
(cosn(x− ct)− cosn(x+ ct)) ,

and also ∫ x+ct

x−ct
g(y) dy =

∞∑
n=1

cdn(cosn(x− ct)− cosn(x+ ct)) ,

we obtain the desired closed form.
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8. Verify that the general solution to the ordinary differential equation x′′ + bx′ + ax =
0, a, b ∈ R, b2 6= 4a, is given by x(t) = Aeαt + Beβt where α, β ∈ C, are the roots of the
quadratic equation y2 + by + a = 0. Can you find the general solution when b2 = 4a ?

Solution. Try solution of the form x(t) = eαt. Plug in to find that α must satisfy
α2 + bα+ a = 0. Hence when b2 6= 4a, there are two linearly independent solutions given
by eαt and eβt where α and β are two distinct roots of this quadratic equation. When
b2 = 4a, there is a single root α. One can check that the other independent solution is
given by teαt.

If one prefers to have real solutions, when the roots are complex α = c+ id and β = c− id,
we choose the two independent solutions to be ecx cos dx and ecx sin dx.

9. Consider the modified wave equation utt = uxx − 2βut, β ∈ (0, 1), under the Dirichlet
condition u(0, t) = u(π, t) = 0 and initial conditions u(x, 0) = f(x), ut(x, 0) = 0. Using
Fourier series or separation of variables to show that the formal solution is given by

u(x, t) = e−βt
∞∑
n=1

Bn

(
cosαnt+

β

αn
sinαnt

)
sinnx , αn =

√
n2 − β2 ,

where Bn is the coefficient of the sine series of f . Hint: You need the previous problem.

Solution. Straightforward.

10. Consider the nonhomogeneous wave equation

utt = c2uxx − g ,

where g is a positive constant under the Dirchlet condition u(0, t) = u(π, t) = 0 and
initial conditions u(x, 0) = ut(x, 0) = 0. Use separation of variables to show that a formal
solution is given by

u(x, t) =
4g

πc2

∞∑
n=1

1

(2n− 1)3
cos(2n− 1)ct sin(2n− 1)x− g

2c2
x(π − x) .

Solution. We set
w = u+

g

2c2
x(π − x)

so that wtt = c2wxx and w(0, t) = w(π, t) = 0, w(x, 0) = gx(π − x)/2c2 and wt(x, 0) = 0.
Since w satisfies the wave equation and Dirichlet condition, we have

w(x, t) =

∞∑
n=1

(an cosnct+ bn sinnct) sinnx .

Using wt(x, 0) = 0 we get bn = 0 for all n, so it remains to determine an. Here, we compute
the sine series of x(π − x) to get

x(π − x) ∼ 8

π

∞∑
n=1

1

(2n− 1)3
sin(2n− 1)x .

It follows that

a2n−1 =
4g

πc2
1

(2n− 1)3
,

and a2n=0.
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11. Consider
ut = κuxx + F (x, t) (x, t) ∈ [0, π]× [0,∞), κ > 0,

u(x, 0) = f(x) , x ∈ [0, π],

ux(0, t)− au(0, t) = φ(t),

ux(π, t) + bu(π, t) = ψ(t), a, b > 0, t > 0

This is a nonhomogeneous heat equation with nonhomogeneous boundary conditions.
Show that it has at most one solution. You may proceed formally by assuming the solu-
tions are as regular as possible. Let w = u2 − u1 where u1 and u2 are solutions and show
w ≡ 0. Suggestion: Differentiate the integral∫ π

0
w2(x, t)dx

in time.

Solution. It suffices to show that w ≡ 0. By subtracting the equation it is readily seen
that w satisfies the homogeneous heat equation wt = κuxx together with the homogeneous
boundary conditions wx(0, t)−aw(0, t) = 0, wx(π, t)+bw(π, t) = 0 and zero initial condition
w(x, 0) = 0. The integral

I(t) =

∫ π

0
w2(x, t)dx

is a function of t only. We have

I ′(t) =

∫ π

0
2w(x, t)wt(x, t)dx

=

∫ π

0
2κw(x, t)wxx(x, t)dx

= 2κw(x, t)wx(x, t)
∣∣∣π
0
− 2κ

∫ π

0
w2
x(x, t)dx

= −2κ

(
bw2(π, t) + aw2(0, t) +

∫ π

0
w2
x(x, t)dx

)
,

where shows that I is decreasing. Since I is always non-negative and I(0) = 0, it implies
that I(t) ≡ 0 for all t. Therefore, as it is continuous, w ≡ 0.

12. Find the general solution to the ordinary differential equation

t2x′′(t) + tx′(t)− a2x(t) = 0, a > 0 .

Hint: Look at the equation satisfied by y(r) = x(t), t = er . The answer is

x(t) = Ata +Bt−a, A,B ∈ R .

Solution. A direct verification.

13. Consider 
∂2u

∂r2
+

1

r

∂u

∂r
+

1

r2
∂2u

∂θ2
= 0 in Ω,

u = ϕ on ∂Ω ,
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where Ω is the plane domain bounded by the arcs r = 1, r = 2 and θ = 0, θ = π. The
boundary data ϕ is zero on r = 1, θ = 0, π and equal to a constant c0 on r = 2. Roughly
speaking, this domain is half of the region bounded by two concentric circles r = 2 and
r = 1. Use separation of variables to solve this problem. Hint: The previous problem is
needed.

Solution. Look for special solution R(r)Θ(θ). The equation is given by

R′′(r)Θ(θ) +
1

r
R′(r)Θ(θ) +

1

r2
R(r)Θ′′(θ) = 0 ,

which leads to

Θ′′ = −λΘ , R′′(r) +
1

r
R′(r) =

λ

r2
R(r) .

The side condition for Θ is Θ(0) = Θ(π) = 0, they are given by sinnθ for n ≥ 1. Next
the equation for R becomes r2R′′+ rR−n2R = 0. The previous problem tells us that the
independent solutions are given by rn and r−n. Therefore, we have

u(r, θ) =
∑
n=1

(anr
n + bnr

−n) sinnθ .

We recall the sine series of the constant function

1 ∼ 4

π

(
sinx+

sin 3x

3
+

sin 5x

5
+ · · ·

)
.

(Here the function is equal to 1 on [0, π] and extended as an odd function on [−π, π]. We
have

c0 =
4c0
π

(
sinx+

sin 3x

3
+

sin 5x

5
+ · · ·

)
=

4c0
π

∞∑
n=1

sin(2n− 1)x

2n− 1
, x ∈ [0, π] .

The coefficients an and bn satisfy an + bn = 0, and

a2n22n + b2n2−2n = 0, a2n−12
2n−1 + b2n−12

−2n+1 =
4c0

π(2n− 1)
.

We solve the linear system to get an = bn = 0 when n is even and

an =
2n+2

n(22n − 1)

c0
π
, bn = −an , n is odd .

The formal solution is given by

u(r, θ) =
∞∑
n=1

(anr
n + b−nn ) sinnθ ,

where an, bn are given above.

14. Optional. Prove the formula

1 + 2
∞∑
n=1

rn cosnx =
1− r2

1− 2r cosx+ r2
, r ∈ [0, 1).

Solution. For z = reiθ, r ∈ [0, 1), we have
∑∞

n=0 z
n = 1/(1 − z). The real part of this

identity gives the desired formula.
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15. Consider the two dimensional Laplace equation on the rectangle R = {(x, y) : x ∈ [0, l], y ∈
[0, L]} satisfying the boundary conditions u(0, y) = u(l, y) = 0, u(x, 0) = f1(x), u(x, L) =
f2(x) . Using separation of variables to show that the formal solution is given by

u(x, y) =
∞∑
n=1

sin
nπx

l

(
αn cosh

nπy

l
+ βn sinh

nπy

l

)
,

where αn and βn are determined from the relation

αn = an, αn cosh
nπL

l
+ βn sinh

nπL

l
= bn ,

and an, bn are defined via

f1(x) ∼
∞∑
n=1

an sin
nπx

l
, f2(y) ∼

∞∑
n=1

bn sin
nπx

l
.

Solution. Looking for special solution of the form X(x)Y (y) leads to

X ′′(x) = −λX(x), X(0) = X(l) = 0 .

It is known that all solutions are given by sin
nπx

l
, n ≥ 1, and λn =

(nπ
l

)2
. Now, assuming

the form for the solution

u(x, y) =
∞∑
n=1

Bn(y) sin
nπx

l
.

Then Bn satisfies B′′n =
(nπ
l

)2
Bn whose independent solutions are given by e

nπ
l
y, e−

nπ
l
y

or cosh nπ
l y, sinh nπ

l y. Thus

u(x, y) =
∞∑
n=1

(αn coshny + βn sinhny) sinnx .

To determine αn and βn we use u(x, 0) = f1(x), f1(x) =
∑∞

n=1 an sin
nπx

l
, and u(x, L) =

f2(x), f2(x) =
∑∞

n=1 bn sin
nπx

l
to get

αn = an, αn cosh
nπL

l
+ βn sinh

nπL

l
= bn , ∀n .

In conclusion, the formal solution is given by

u(x, y) =
∞∑
n=1

sin
nπx

l

(
αn cosh

nπy

l
+ βn sinh

nπy

l

)
,

where αn and βn are defined above.


