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Solution 1

Hand in no. 3 and 5 by Jan 24.

1. Prove the formula

cos θ + cos 2θ + · · ·+ cosNθ =
sin(N + 1

2)θ − sin 1
2θ

2 sin θ
2

, θ 6= 0.

Solution By product to sum formula,

cosnθ sin
θ

2
=

1

2

[
sin(n+

1

2
)θ − sin(n− 1

2
)θ

]
.

Summing it over n, we have(
N∑
n=1

cosnθ

)
sin

θ

2
=

sin(N + 1
2)θ − sin(1− 1

2)θ

2
.

Hence
N∑
n=1

cosnθ =
sin(N + 1

2)θ − sin 1
2θ

2 sin θ
2

, θ 6= 0.

2. Verify that the Fourier series of every even function is a cosine series and the Fourier series
of every odd function is a sine series. A 2π-periodic function is even if f(−x) = f(x) and
odd if f(−x) = −f(x) for x ∈ [−π, π].
Solution Write

f(x) ∼ a0 +
∞∑
n=1

(an cosnx+ bn sinnx).

Suppose f(x) is an even function. Then, for n ≥ 1, we have

bn =
1

π

∫ π

−π
sinnxf(x)dx =

1

π
[

∫ 0

−π
sinnxf(x)dx+

∫ π

0
sinnxf(x)dx].

By a change of variable and using f(−x) = f(x) since f(x) is an even function,∫ 0

−π
sinnxf(x)dx =

∫ π

0
sin(−nx)f(−x)dx = −

∫ π

0
sinnxf(x)dx,

one has

bn =
1

π
[−
∫ π

0
sinnxf(x)dx+

∫ π

0
sinnxf(x)dx] = 0.

Hence the Fourier series of every even function f is a cosine series.

Now suppose f(x) is an odd function. Then, for n ≥ 1, we have

an =
1

π

∫ π

−π
cosnxf(x)dx =

1

π
[

∫ 0

−π
cosnxf(x)dx+

∫ π

0
cosnxf(x)dx].

By a change of variable and using f(−x) = −f(x) since f(x) is an odd function,∫ 0

−π
cosnxf(x)dx =

∫ π

0
cos(−nx)f(−x)dx = −

∫ π

0
cosnxf(x)dx,
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one has

an =
1

π
[−
∫ π

0
cosnxf(x)dx+

∫ π

0
cosnxf(x)dx] = 0.

Furthermore, by a change of variable and using f(−x) = −f(x),

a0
2

=
1

2π

∫ π

−π
f(x)dx =

1

2π
[

∫ 0

−π
f(x)dx+

∫ π

0
f(x)dx]

=
1

2π
[−
∫ π

0
f(x)dx+

∫ π

0
f(x)dx] = 0.

Hence the Fourier series of every odd function f is a sine series.

3. Show that the Fourier series of f1(x) = x2, x ∈ [−π, π], is given by

f1(x) ∼
π2

3
+ 4

∞∑
n=1

(−1)n

n2
cosnx.

Solution As f1(x) is even, its Fourier series is a cosine series and hence bn = 0.

a0
2

=
1

2π

∫ π

−π
x2dx =

1

2π

x3

3

∣∣∣∣π
−π

=
π2

3
,

and by integration by parts, for n ≥ 1,

an =
1

π

∫ π

−π
x2 cosnxdx

=
1

nπ
x2 sinnx

∣∣∣∣π
−π
− 2

nπ

∫ π

−π
x sinnxdx

=
2

n2π
x cosnx

∣∣∣∣π
−π
− 2

n2π

∫ π

−π
cosnxdx

= 4
(−1)n

n2
.

4. Show that the Fourier series of f2(x) = −1, x ∈ [−π, 0) and = 1, x ∈ [0, π], is given by

f2(x) ∼
4

π

∞∑
n=1

sin(2n− 1)x

2n− 1
.

Solution As f2(x) is odd, its Fourier series is a sine series and hence an = 0. For n ≥ 1,

bn =
1

π

∫ π

−π
f(x) sinnxdx =

2

π

∫ π

0
sinnxdx

= − 2

nπ
cosnx

∣∣∣∣π
0

=
2[1− (−1)n]

nπ

=

0 if n = 2m
4

(2m− 1)π
if n = 2m− 1.
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5. Show that the Fourier series of f3(x) = ebx, x ∈ [−π, π], b ∈ R, is given by

f3(x) ∼
sinh bπ

π

∞∑
n=−∞

(−1)n

b− in
einx.

Here the hyperbolic sine function is given by sinh θ = (eθ − e−θ)/2.
Solution First we assume that b 6= 0. For n ∈ Z,

cn =
1

2π

∫ π

−π
f(x)e−inxdx

=
1

2π

∫ π

−π
eb−inxdx

=
1

2π(b− in)
eb−inx

∣∣∣∣π
−π

=
(−1)n

π(b− in)
ebπ − e−bπ

2

=
sinh bπ

π

(−1)n

b− in
.

If b = 0, then it is easy to see that f3(x) = 1 ∼ 1.


