Solution 6

p. 183: 1, 2, 6

1. Find the closest point in the plane 2x + y - 3z = 0 to a point $\mathbf{x} \in \mathbb{R}^3$. (Hint: Find M^{\perp} .)

Solution. Let M be the subspace 2x + y - 3z = 0, which has unit normal vector $\mathbf{n} = \frac{(2,1,-3)}{\sqrt{2^2+1^2+(-3)^2}} = \frac{1}{\sqrt{14}}(2,1,-3)$. Then $M = \{\mathbf{n}\}^{\perp}$.

Let $\mathbf{x} = (x_0, y_0, z_0)$. Then the closest point in M to \mathbf{x} is given by

$$P\mathbf{x} = \mathbf{x} - \langle \mathbf{n}, \mathbf{x} \rangle \mathbf{n}$$

$$= (x_0, y_0, z_0) - \langle (x_0, y_0, z_0), \frac{1}{\sqrt{14}} (2, 1, -3) \rangle \frac{1}{\sqrt{14}} (2, 1, -3)$$

$$= (x_0, y_0, z_0) - \frac{2x_0 + y_0 - 3z_0}{14} (2, 1, -3)$$

$$= \frac{1}{14} (10x_0 - 2y_0 + 6z_0, -2x_0 + 13y_0 + 3z_0, 6x_0 + 3y_0 + 5z_0)$$

- 2. Let (a) M := [y], or (b) $M := \{y\}^{\perp}$, where y is a unit vector. The orthogonal projection P which maps any point x to its closest point in M is (a) $Px = \langle y, x \rangle y$, (b) $Px = x \langle y, x \rangle y$.
 - **Solution.** (a) Since $Px \in M$, we have $Px = \lambda y$ for some scalar λ . Also $x Px \in M^{\perp}$. Hence

$$0 = \langle y, x - Px \rangle = \langle y, x \rangle - \lambda \langle y, y \rangle = \langle y, x \rangle - \lambda.$$

Thus $\lambda = \langle y, x \rangle$ and $Px = \langle y, x \rangle y$.

(b) Note that $x - Px \in M^{\perp} = (\{y\}^{\perp})^{\perp} = [\![y]\!]$, so that $x - Px = \lambda y$, for some scalar λ . As $Px \in M$, we have

$$0 = \langle y, x \rangle = \langle y, x - \lambda y \rangle = \lambda - \langle y, x \rangle$$

Again $\lambda = \langle y, x \rangle$ and hence $Px = x - \langle y, x \rangle y$.

6. Let T be a square matrix, and suppose both subspaces M and M^{\perp} are T-invariant, so that T takes the schematic form $\begin{pmatrix} A & 0 \\ 0 & B \end{pmatrix}$. Show that $\|T\| = \max(\|A\|, \|B\|)$. (Hint: Take x = a + b, then $\|Tx\|^2 = \|Ta\|^2 + \|Tb\|^2$.)

Solution. Take x = a + b, where $a \in M$ and $b \in M^{\perp}$. Then Tx = Ta + Tb. Since M and M^{\perp} are T-invariant, we have $Ta = Aa \in M$ and $Tb = Bb \in M^{\perp}$. Now, by Pythagoras' theorem,

$$||Tx||^2 = ||Ta||^2 + ||Tb||^2$$
 and $||x||^2 = ||a||^2 + ||b||^2$.

Hence

$$\frac{\|Tx\|^2}{\|x\|^2} = \frac{\|Ta\|^2 + \|Tb\|^2}{\|a\|^2 + \|b\|^2}
\leq \frac{\|A\|^2 \|a\|^2 + \|B\|^2 \|b\|^2}{\|a\|^2 + \|b\|^2}
= t\|A\|^2 + (1-t)\|B\|^2, \quad \text{(where } t = \frac{\|a\|^2}{\|a\|^2 + \|b\|^2} \in [0,1])
\leq \max(\|A\|^2, \|B\|^2).$$

By taking supremum over ||x|| = 1, we have $||T|| \le \max(||A||, ||B||)$.

On the other hand, for any $a \in M$, $b \in M^{\perp}$, we have

$$||Aa|| \le ||T|| ||a||$$
 and $||Bb|| \le ||T|| ||b||$,

so that $||A|| \le ||T||$ and $||B|| \le ||T||$. Hence $||T|| = \max(||A||, ||B||)$.