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Chapter 4

Cholesky factorization

The Cholesky factorization of a sparse symmetric positive definite matrix A is the
product A = LLT , where L is a lower triangular matrix with positive entries on its
diagonal. Entries in L that do not appear in A are called fill-in. Let GL+LT be
the undirected graph of L + LT ; it is called the filled graph of A. The structure of
GL+LT is given by the following theorem.

Theorem 4.1 (Rose, Tarjan, and Lueker [175]). The edge (i, j) is in the undirected
graph GL+LT of L+LT if and only if there exists a path i � j in the undirected graph
of A where all nodes in the path except i and j are numbered less than min(i, j).

Numeric Cholesky factorization is typically preceded by a symbolic analysis
step that determines either GL+LT or some of its key properties. The goal is to keep
the numeric factorization as simple as possible in terms of time complexity, memory
usage, and clarity of code. The analysis step presented here finds the elimination
tree, computes its postordering, and then computes the column counts, which are
the number of nonzeros in each column of L. Some numeric Cholesky factorization
algorithms also need the nonzero pattern of L.

There are many ways to compute the Cholesky factorization A = LLT and
the graph GL+LT . The sparse triangular solve, Lx = b, forms a common thread
throughout this book; it is used as the basis of an up-looking sparse Cholesky fac-
torization described here. Consider a 2-by-2 block decomposition LLT = A,[

L11

lT12 l22

] [
LT

11 l12
l22

]
=

[
A11 a12

aT12 a22

]
, (4.1)

where L11 and A11 are (n − 1)-by-(n − 1). The three equations that lead to the
up-looking Cholesky factorization algorithm are L11L

T
11 = A11, L11l12 = a12, and

lT12l12 + l222 = a22. The first equation can be solved recursively to obtain L11,
followed by a sparse triangular solve using the second equation to compute l12.
Finally, a sparse dot product and scalar square root, l22 =

√
a22 − lT12l12, result in

l22. If the matrix is positive definite, then a22 > lT12l12 holds, and the Cholesky
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38 Chapter 4. Cholesky factorization

lki

lji

lkj xk

xi

xj

Thm. 4.2: aik �= 0 implies lki �= 0

Thm. 4.3: lji �= 0 and lki �= 0 implies lkj �= 0

Thus lki redundant for X = ReachL(i)

Figure 4.1. Pruning the directed graph GL yields the elimination tree T

factorization exists. The nonrecursive version of this algorithm is demonstrated by
chol up below. It is called up-looking because it looks up (accessing L11 or rows 1
to k − 1 of L) to construct the kth row of L.

function L = chol_up (A)

n = size (A) ;

L = zeros (n) ;

for k = 1:n

L (k,1:k-1) = (L (1:k-1,1:k-1) \ A (1:k-1,k))’ ;

L (k,k) = sqrt (A (k,k) - L (k,1:k-1) * L (k,1:k-1)’) ;

end

4.1 Elimination tree
The elimination tree is even more important to sparse matrix algorithms than the
sparse triangular solve. It appears in many algorithms and many theorems, both in
this book and elsewhere. One motivation for deriving the tree is to reduce the time
required to compute the graph reachability (Theorem 3.1) for the sparse triangular
solve presented in Section 3.2. This triangular solve is required by the up-looking
sparse Cholesky factorization algorithm just described in the previous section.

Consider (4.1). The vector l12 is computed with a sparse triangular solve,
L11l12 = a12, and its transpose becomes the kth row of L. Its nonzero pattern is
thus Lk = ReachGk−1

(Ak), where Gk−1 is the directed graph of L11, Lk denotes
the nonzero pattern of the kth row of L, and Ak denotes the nonzero pattern of the
upper triangular part of the kth column of A.

The depth-first search of Gk−1 is sufficient for computing Lk, but a simpler
method exists, taking only O(|Lk|) time. Consider any i < j < k, where lji �= 0
and aik �= 0, as shown in Figure 4.1. A graph traversal of Gk−1 will start at node
i. Thus, i ∈ Lk, the nonzero pattern of the solution to the triangular system. This
becomes the kth row of L, and thus lki �= 0. The traversal will visit node j because
of the edge (i, j) (corresponding to the nonzero lji). Thus, j ∈ Lk, and lkj �= 0;
two nonzeros in column i (lji and lki) imply that lkj is nonzero also. In terms of
the directed graph GL (not just the graph of L11), edges (i, j) and (i, k) imply edge
(j, k). These facts are summarized in the following theorems that completely define
the nonzero pattern of the Cholesky factor L.D
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original matrix A Cholesky factor L of A elimination tree of A

Figure 4.2. Example matrix A, factor L, and elimination tree

Theorem 4.2. For a Cholesky factorization LLT = A, and neglecting numerical
cancellation, aij �= 0 ⇒ lij �= 0. That is, if aij is nonzero, then lij will be nonzero
as well.

Theorem 4.3 (Parter [165]). For a Cholesky factorization LLT = A, and neglect-
ing numerical cancellation, i < j < k ∧ lji �= 0 ∧ lki �= 0 ⇒ lkj �= 0. That is, if both
lji and lki are nonzero where i < j < k, then lkj will be nonzero as well.

Since there is a path from i to k via j that does not traverse the edge (i, k),
the edge (i, k) is not needed to compute Reach(i). The set Reach(t) for any other
node t < i with a path t � i is also not affected if (i, k) is removed from the directed
graph GL. This removal of edges leaves at most one outgoing edge from node i in
the pruned graph, all the while not affecting Reach(i). If j > i is the least numbered
node for which lji �= 0, all other nonzeros lki where k > j are redundant.

The result is the elimination tree. The parent of node i in the tree is j, where
the first off-diagonal nonzero in column i has row index j (the smallest j > i for
which lji �= 0). Node i is a root of the tree if column i has no off-diagonal nonzero
entries; it has no parent. The tree may actually be a forest, with multiple roots, if
the graph of A consists of multiple connected components (there will be one tree
per component of A). By convention, it is still called a tree. Assume the edges of
the tree are directed, from a child to its parent. Let T denote the elimination tree
of L, and let Tk denote the elimination tree of submatrix L1...k,1...k, the first k rows
and columns of L. An example matrix A, its Cholesky factor L, and its elimination
tree T are shown in Figure 4.2. In the factor L, fill-in (entries that appear in L but
not in A) are shown as circled x’s. Diagonal entries are numbered for easy reference.

The existence of the elimination tree has been shown; it is now necessary to
compute it. A few more theorems are required.

Theorem 4.4 (Schreiber [181]). For a Cholesky factorization LLT = A, and
neglecting numerical cancellation, lki �= 0 and k > i imply that i is a descendant of
k in the elimination tree T ; equivalently, i � k is a path in T .D
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40 Chapter 4. Cholesky factorization

lki �= 0

lkj �= 0
j

i

k

lji �= 0

path j � k in T

Figure 4.3. Illustration of Theorem 4.4
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Figure 4.4. Row subtrees of the example in Figure 4.2

Proof. Refer to Figure 4.3. The proof is by induction on i for a fixed k. Let
j = min {j | lji �= 0 ∧ j > i} be the parent of i. The parent j > i must exist because
lki �= 0. For the base case, if k = j, then k is the parent of i and thus i � k is a
path in T . For the inductive step, k > j > i must hold, and there are thus two
nonzero entries lki and lji. From Theorem 4.3, lkj �= 0. By induction, lkj implies
the path j � k exists in T . Combined with the edge (i, j), this means there is a
path i � k in T .

Removing edges from the directed graph GL to obtain the elimination tree T
does not affect the Reach(i) of any node. The result is the following theorem.

Theorem 4.5 (Liu [148]). The nonzero pattern Lk of the kth row of L is given by

Lk = ReachGk−1
(Ak) = ReachTk−1

(Ak). (4.2)

Theorem 4.5 defines Lk. The kth row subtree, denoted T k, is the subtree of T
induced by the nodes in Lk. The 11 row subtrees T 1, . . . , T 11 of the matrix shown
in Figure 4.2 are shown in Figure 4.4. Each row subtree is characterized by its
leaves, which correspond to entries in A. This fact is summarized by the following
theorem.D
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4.1. Elimination tree 41

Theorem 4.6 (Liu [148]). Node j is a leaf of T k if and only if both ajk �= 0 and
aik = 0 for every descendant i of j in the elimination tree T .

A corollary to Theorem 4.4 fully characterizes the elimination tree T .

Corollary 4.7 (Liu [148]). For a Cholesky factorization LLT = A, and neglecting
numerical cancellation, aki �= 0 and k > i imply that i is a descendant of k in the
elimination tree T ; equivalently, i � k is a path in T .

Theorem 4.4 and Corollary 4.7 lead to an algorithm that computes the elimi-
nation tree T in almost O(|A|) time. Suppose Tk−1 is known. This tree is a subset
of Tk. To compute Tk from Tk−1, the children of k (which are root nodes in Tk−1)
must be found. Since aki �= 0 implies the path i � k exists in T , this path can be
traversed in Tk−1 until reaching a root node. This node must be a child of k, since
the path i � k must exist.

To speed up the traversal of the partially constructed elimination tree Tk−1,
a set of ancestors is kept. The ancestor of i, ideally, would simply be the root r
of the partially constructed tree Tk−1 that contains i. Traversing the path i � r
would take O(1) time, simply by finding the ancestor r of i. This goal can nearly be
met by a disjoint-set-union data structure. An optimal one would result in a total
time complexity of O(|A|α(|A|, n)) for the |A| path traversals that need to be made,
where α(|A|, n) is the inverse Ackermann function, a very slowly growing function.
However, a simpler method is used that leads to an O(|A| log n) time algorithm. The
log n upper bound is never reached in practice, however, and the resulting algorithm
takes practically O(|A|) time and is faster (in practice, not asymptotically) than the
O(|A|α(|A|, n))-time disjoint-set-union algorithm. The time complexity of cs etree

is called nearly O(|A|) time.
The cs etree function computes the elimination tree of the Cholesky factor-

ization of A (assuming ata is false), using just A and returning the int array parent,
of size n. It iterates over each column k and considers every entry aik in the upper
triangular part of A. It updates the tree, following the path from i to the root of
the tree. Rather than following the path via the parent array, an array ancestor

is kept, where ancestor[i] is the highest known ancestor of i, not necessarily the
root of the tree in Tk−1 containing i. If r is a root, it has no ancestor (ancestor[r]
is -1). Since the path is guaranteed to lead to node k in Tk, the ancestors of all
nodes along this path are set to k (path compression). If a root node is reached in
Tk−1 that is not k, it must be a child of k in Tk; parent is updated to reflect this.

If the input parameter ata is true, cs etree computes the elimination tree
of ATA without forming ATA. This is the column elimination tree. It will be
used in the QR and LU factorization algorithms in Chapters 5 and 6. Row i of A
creates a dense submatrix, or clique, in the graph of ATA. Rather than using the
graph of ATA (with one node corresponding to each column of A), a new graph
is constructed dynamically (also with one node per column of A). If the nonzero
pattern of row i contains column indices j1, j2, j3, j4, . . ., the new graph is given
edges (j1, j2), (j2, j3), (j3, j4), and so on. Each row i creates a path in this new
graph. In the tree, these edges ensure j1 � j2 � j3 � j4 . . . is a path in T .D
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42 Chapter 4. Cholesky factorization

The clique in ATA has edges between all nodes j1, j2, j3, j4, . . . and will have the
same ancestor/descendant relationship. Thus, the elimination tree of ATA and this
new graph will be the same. The path is constructed dynamically as the algorithm
progresses, using the prev array. prev[i] starts out equal to -1 for all i. Let
Ak be the nonzero pattern of A(:,k). When column k is considered, the edge
(prev[i],k) is created for each i ∈ Ak. This edge is used to update the elimination
tree, traversing from prev[i] up to k in the tree. After this traversal, prev[i] is
set to k, to prepare for the next edge in this row i, for a subsequent column in the
outer for k loop.

int *cs_etree (const cs *A, int ata)

{

int i, k, p, m, n, inext, *Ap, *Ai, *w, *parent, *ancestor, *prev ;

if (!CS_CSC (A)) return (NULL) ; /* check inputs */

m = A->m ; n = A->n ; Ap = A->p ; Ai = A->i ;

parent = cs_malloc (n, sizeof (int)) ; /* allocate result */

w = cs_malloc (n + (ata ? m : 0), sizeof (int)) ; /* get workspace */

if (!w || !parent) return (cs_idone (parent, NULL, w, 0)) ;

ancestor = w ; prev = w + n ;

if (ata) for (i = 0 ; i < m ; i++) prev [i] = -1 ;

for (k = 0 ; k < n ; k++)

{

parent [k] = -1 ; /* node k has no parent yet */

ancestor [k] = -1 ; /* nor does k have an ancestor */

for (p = Ap [k] ; p < Ap [k+1] ; p++)

{

i = ata ? (prev [Ai [p]]) : (Ai [p]) ;

for ( ; i != -1 && i < k ; i = inext) /* traverse from i to k */

{

inext = ancestor [i] ; /* inext = ancestor of i */

ancestor [i] = k ; /* path compression */

if (inext == -1) parent [i] = k ; /* no anc., parent is k */

}

if (ata) prev [Ai [p]] = k ;

}

}

return (cs_idone (parent, NULL, w, 1)) ;

}

The cs idone function used by cs etree returns an int array and frees any
workspace.

int *cs_idone (int *p, cs *C, void *w, int ok)

{

cs_spfree (C) ; /* free temporary matrix */

cs_free (w) ; /* free workspace */

return (ok ? p : cs_free (p)) ; /* return result if OK, else free it */

}

The MATLAB statement parent=etree(A) computes the elimination tree
of a symmetric matrix A, represented as a size-n array; parent(i)=k if k is the
parent of i. To compute the column elimination tree, a second parameter is added:
parent=etree(A,’col’). Both algorithms in MATLAB use the same method as
in cs etree (using cholmod etree).D
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4.2 Sparse triangular solve
Solving Lx = b when L, x, and b are sparse has already been discussed in the general
case in Section 3.2. Here, L is a more specific lower triangular matrix, arising from a
Cholesky factorization. The set ReachL(i) for a Cholesky factor L can be computed
in time proportional to the size of the set via a simple tree traversal that starts at
node i and traverses the path to the root of the elimination tree. This is much less
than the time to compute Reach(i) in the general case.

The cs ereach function computes the nonzero pattern of the kth row of L,
Lk = Reachk−1(Ak), where Reachk−1 denotes the graph of L(1:k-1,1:k-1). It
uses the elimination tree T of L to traverse the kth row subtree, T k. The set Ak

denotes the nonzero pattern of the kth column of the upper triangular part of A.
This is the same as the kth row of the lower triangular part of A, which is how
the kth row subtree T k is traversed. The first part of the code iterates for each
i in this set Ak. Next, the path from i towards the root of the tree is traversed.
The traversal marks the nodes and stops if it encounters a marked node. Nodes are
marked using the w array of size n; all entries in w must be greater than or equal
to zero on input, and the contents of w are restored on output. This subpath is
then pushed onto the output stack. On output, the set Lk is contained in s[top]

through s[n-1] (except for the diagonal entry). It is created in topological order.

int cs_ereach (const cs *A, int k, const int *parent, int *s, int *w)

{

int i, p, n, len, top, *Ap, *Ai ;

if (!CS_CSC (A) || !parent || !s || !w) return (-1) ; /* check inputs */

top = n = A->n ; Ap = A->p ; Ai = A->i ;

CS_MARK (w, k) ; /* mark node k as visited */

for (p = Ap [k] ; p < Ap [k+1] ; p++)

{

i = Ai [p] ; /* A(i,k) is nonzero */

if (i > k) continue ; /* only use upper triangular part of A */

for (len = 0 ; !CS_MARKED (w,i) ; i = parent [i]) /* traverse up etree*/

{

s [len++] = i ; /* L(k,i) is nonzero */

CS_MARK (w, i) ; /* mark i as visited */

}

while (len > 0) s [--top] = s [--len] ; /* push path onto stack */

}

for (p = top ; p < n ; p++) CS_MARK (w, s [p]) ; /* unmark all nodes */

CS_MARK (w, k) ; /* unmark node k */

return (top) ; /* s [top..n-1] contains pattern of L(k,:)*/

}

The total time taken by the algorithm is O(|Lk|), the number of nonzeros in
row k of L. This is much faster in general than the cs reach function that computes
ReachL(B) for an arbitrary lower triangular L. Solving Lx = b is an integrated part
of the up-looking Cholesky factorization; a stand-alone Lx = b solver when L is a
Cholesky factor is left as an exercise.

The cs ereach function can be used to construct the elimination tree itself
by extending the tree one node at a time. The time taken would be O(|L|). As a
by-product, the entries in L are created one at a time. They can be kept to obtainD
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44 Chapter 4. Cholesky factorization

the nonzero pattern of L, or they can be counted and discarded to obtain a count of
nonzeros in each row and column of L. The latter function is done more efficiently
with cs post and cs counts, discussed in the next three sections.

MATLAB uses a code similar to cs ereach in its sparse Cholesky factoriza-
tion methods (an up-looking sparse Cholesky cholmod rowfac and a supernodal
symbolic factorization, cholmod super symbolic). However, it cannot use the tree
when computing x=L\b, for several reasons. The elimination tree is discarded after
L is computed. MATLAB does not keep track of how L was computed, and L may
be modified prior to using it in x=L\b. It may be an arbitrary sparse lower trian-
gular system, whose nonzero pattern is not governed by the tree. Numerically zero
entries are dropped from L, so even if L is not modified by the application, the tree
cannot be determined from the first off-diagonal entry in each column of L. For
these reasons, the MATLAB statement x=L\b determines only that L is sparse and
lower triangular (see Section 8.5) and uses an algorithm much like cs lsolve.

4.3 Postordering a tree
Once the elimination tree is found, its postordering can be found. A postorder of
the tree is required for computing the number of nonzeros in each column of L in
the algorithm presented in the next section. It is also useful in its own right. If
A is permuted according to the postordering P (C=A(p,p) in MATLAB notation),
then the number of nonzeros in LLT = C is unchanged, but the nonzero pattern of
L will be more structured and the numerical factorization will often be faster as a
result, even with no change to the factorization code.

Theorem 4.8 (Liu [150]). The filled graphs of A and PAPT are isomorphic if P
is a postordering of the elimination tree of A. Likewise, the elimination trees of A
and PAPT are isomorphic.

In a postordered tree, the d proper descendants of any node k are numbered
k − d through k − 1. If post represents the postordering permutation, post[k]=i
means node i of the original tree is node k of the postordered tree. The most natural
postordering preserves the relative ordering of the children of each node; if nodes
c1 < c2 < · · · < ct are the t children of node k, then post[c1] < post[c2] < · · · <
post[ct]. A recursive depth-first search of the tree can compute the postordering:

function postorder (T )
k = 0
for each root node j of T do

dfstree (j)

function dfstree (j)
for each child i of j do

dfstree (i)
post[k] = j
k = k + 1D
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However, the depth of the elimination tree can easily be O(n), causing stack overflow
for large matrices. A nonrecursive implementation is better, as shown in the cs post

function below.

int *cs_post (const int *parent, int n)

{

int j, k = 0, *post, *w, *head, *next, *stack ;

if (!parent) return (NULL) ; /* check inputs */

post = cs_malloc (n, sizeof (int)) ; /* allocate result */

w = cs_malloc (3*n, sizeof (int)) ; /* get workspace */

if (!w || !post) return (cs_idone (post, NULL, w, 0)) ;

head = w ; next = w + n ; stack = w + 2*n ;

for (j = 0 ; j < n ; j++) head [j] = -1 ; /* empty linked lists */

for (j = n-1 ; j >= 0 ; j--) /* traverse nodes in reverse order*/

{

if (parent [j] == -1) continue ; /* j is a root */

next [j] = head [parent [j]] ; /* add j to list of its parent */

head [parent [j]] = j ;

}

for (j = 0 ; j < n ; j++)

{

if (parent [j] != -1) continue ; /* skip j if it is not a root */

k = cs_tdfs (j, k, head, next, post, stack) ;

}

return (cs_idone (post, NULL, w, 1)) ; /* success; free w, return post */

}

int cs_tdfs (int j, int k, int *head, const int *next, int *post, int *stack)

{

int i, p, top = 0 ;

if (!head || !next || !post || !stack) return (-1) ; /* check inputs */

stack [0] = j ; /* place j on the stack */

while (top >= 0) /* while (stack is not empty) */

{

p = stack [top] ; /* p = top of stack */

i = head [p] ; /* i = youngest child of p */

if (i == -1)

{

top-- ; /* p has no unordered children left */

post [k++] = p ; /* node p is the kth postordered node */

}

else

{

head [p] = next [i] ; /* remove i from children of p */

stack [++top] = i ; /* start dfs on child node i */

}

}

return (k) ;

}

First, workspace is allocated, and a set of n linked lists is initialized. The jth linked
list contains a list of all the children of node j in ascending order. Next, nodes j

from 0 to n-1 are traversed, corresponding to the for j loop in the postorder pseudo-
code. If j is a root, a depth-first search of the tree is performed, using cs tdfs.
The cs tdfs function places the root j on a stack. Each iteration of the while

loop considers the node p at the top of the stack. If it has no unordered childrenD
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Figure 4.5. After elimination tree postordering

left, it is removed from the stack and ordered as the kth node in the postordering.
Otherwise, its youngest unordered child i is removed from the head of the pth linked
list and placed on the stack. The next iteration of the while loop will commence
the depth-first search at this node i.

The cs post function takes as input the elimination tree T represented as the
parent array of size n. The parent array is not modified. The function returns
a pointer to an integer vector post, of size n, that contains the postordering. The
total time taken by the postordering is O(n).

Figure 4.5 illustrates the matrix PAPT , its Cholesky factor, and its elimina-
tion tree, where P is the postordering of the elimination tree in Figure 4.2.

The MATLAB statement [parent,post] = etree(A) computes the elimi-
nation tree and its postordering, using the same algorithms (cholmod etree and
cholmod postorder). Node i is the kth node in the postordered tree if post(k)=i.
A matrix can be permuted with this postordering via C=A(post,post); the number
of nonzeros in chol(A) and chol(C) will be the same. Looking ahead, Chap-
ter 7 discusses how to find a fill-reducing ordering, p, where the permuted matrix
is A(p,p). This permutation vector p can be combined with the postordering of
A(p,p), using the following MATLAB code:

[parent, post] = etree (A (p,p)) ;

p = p (post) ;

4.4 Row counts
The row counts of a Cholesky factorization are the numbers of nonzeros in each
row of L. The numeric factorization presented in Section 4.7 requires the column
counts (the number of nonzeros in each column of L), not the row counts. However,
the row count algorithm is simpler, and many of the ideas and theorems needed to
understand the simpler row count algorithm are used in the column count algorithm.

A simple (yet nonoptimal) method of computing both the row and column
counts is to traverse each row subtree. For each row i, consider each nonzero aij .
Traverse up the tree from node j marking each node and stop if node i or a marked
node is found (the marks must be cleared for each row i). The row count forD
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row i is the number of nodes in the row subtree T i, and the column counts can
be accumulated while traversing each node of the ith row subtree. The number
of nonzeros in column j of L is the number of row subtrees that contain node
j. However, this method requires O(|L|) time. The goal of this section and the
following one is to show how to compute the row and column counts in nearly
O(|A|) time.

To reduce the time complexity to nearly O(|A|), five concepts must be intro-
duced: (1) the least common ancestor of two nodes, (2) path decomposition, (3) the
first descendant of each node, (4) the level of a node in the elimination tree, and (5)
the skeleton matrix. The basic idea is to decompose each row subtree into a set of
disjoint paths, each starting with a leaf node and terminating at the least common
ancestor of the current leaf and the prior leaf node. The paths are not traversed
one node at a time. Instead, the length of these paths are found via the difference
in the levels of their starting and ending nodes, where the level of a node is its
distance from the root. The row count algorithm exploits the fact that all subtrees
are related to each other; they are all subtrees of the elimination tree.

The first step in the row count algorithm is to find the level and first descendant
of each node of the elimination tree. The first descendant of a node j is the smallest
postordering of any descendant of j. The first descendant and level of each node of
the tree can be easily computed in O(n) time by the firstdesc function below.

void firstdesc (int n, int *parent, int *post, int *first, int *level)

{

int len, i, k, r, s ;

for (i = 0 ; i < n ; i++) first [i] = -1 ;

for (k = 0 ; k < n ; k++)

{

i = post [k] ; /* node i of etree is kth postordered node */

len = 0 ; /* traverse from i towards the root */

for (r = i ; r != -1 && first [r] == -1 ; r = parent [r], len++)

first [r] = k ;

len += (r == -1) ? (-1) : level [r] ; /* root node or end of path */

for (s = i ; s != r ; s = parent [s]) level [s] = len-- ;

}

}

A node i whose first descendant has not yet been computed has first[i]

equal to -1. The function starts at the first node (k=0) in the postordered elimina-
tion tree and traverses up towards the root. All nodes r along this path from node
zero to the root have a first descendant of zero, and first[r]=k is set accordingly.
For k>0, the traversal can also terminate at a node r whose first[r] and level[r]

have already been determined. Once the path has been found, it is retraversed to
set the levels of each node along this path.

Once the first descendant and level of each node are found, the row subtree
is decomposed into disjoint paths. To do this, the leaves of the row subtrees must
be found. The entries corresponding to these leaves form the skeleton matrix Â; an
entry aij is defined to be in the skeleton matrix Â of A if node j is a leaf of the
ith row subtree. The nonzero patterns of the Cholesky factorization of the skeleton
matrix of A and the original matrix A are identical. If node j is a leaf of the ith rowD
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t j t

j

Case 2: t a descendant of jCase 1: t not a descendant of j

Figure 4.6. Descendants in a postordered tree

subtree, aij must be nonzero, but the converse is not true. For example, consider
row 11 of the matrix A in Figure 4.2 and its corresponding row subtree T 11 in
Figure 4.4. The nonzero entries in row 11 of A are in columns 3, 5, 7, 8, 10, and
11, but only the first three are leaves of the 11th row subtree.

Suppose the matrix and the elimination tree are postordered. The first de-
scendant of each node determines the leaves of the row subtrees, using the following
skeleton function.

function skeleton
maxfirst[0 . . . n− 1] = −1
for j = 0 to n− 1 do

for each i > j for which aij �= 0
if first[j] > maxfirst[i]

node j is a leaf in the ith subtree
maxfirst[i] = first[j]

The algorithm considers node j in all row subtrees i that contain node j, where j it-
erates from 0 to n−1. Let first[j] be the first descendant of node j in the elimina-
tion tree. Let maxfirst[i] be the largest first[j] seen so far for any nonzero aij in
the ith subtree. If first[j] is less than or equal to maxfirst[i], then node j must
have a descendant d < j in the ith row subtree, for which first[d]=maxfirst[i]

will equal or exceed first[j]. Node j is thus not a leaf of the ith row subtree.
If first[j] exceeds maxfirst[i], then node j has no descendant in the ith row
subtree, and node j is a leaf. The correctness of skeleton depends on Corollary 4.11
below.

Lemma 4.9. Let fj ≤ j denote the first descendant of j in a postordered tree. The
descendants of j are all nodes fj , fj + 1, . . . , j − 1, j.

Theorem 4.10. Consider two nodes t < j in a postordered tree. Then either (1)
ft ≤ t < fj ≤ j and t is not a descendant of j, or (2) fj ≤ ft ≤ t < j and t is a
descendant of j.

Proof. The two cases of Theorem 4.10 are illustrated in Figure 4.6. A triangle
represents the subtree rooted at a node j, and a small circle represents fj . CaseD
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Figure 4.7. Postordered skeleton matrix, its factor, and its elimination tree
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Figure 4.8. Postordered row subtrees

(1): Node t is not a descendant of j if and only if t < fj , because of Lemma 4.9.
Case (2): If t is a descendant of j, then ft is also a descendant of j, and thus fj ≤ ft.
If fj ≤ ft, then all nodes ft through t must be descendants of j (Lemma 4.9).

Corollary 4.11. Consider a node j in a postordered tree and any set of nodes S
where all nodes s ∈ S are numbered less than j. Let t be the node in S with the
largest first descendant ft. Node j has a descendant in S if and only if ft ≥ fj.

Figure 4.7 shows the postordered skeleton matrix of A, denoted Â, its factor L,
and its elimination tree (compare with Figure 4.5). Figure 4.8 shows the postordered
row subtrees (compare with Figure 4.4). Entry aij (where i > j) is present in the
skeleton matrix if and only if j is a leaf of the (postordered) ith subtree; they are
shown as dark circles (the entry aji is also shown in the upper triangular part of

Â). A white circle denotes an entry in A that is not in the skeleton matrix Â.
The leaves of the row subtree can be used to decompose the row subtree into

a set of disjoint paths in a process called path decomposition. Consider the first
(least numbered) leaf of a row subtree. The first disjoint path starts at this node
and leads all the way to the root. Consider two consecutive leaves of a row subtree,
jprev < j. The next disjoint path starts at j and ends at the child of the leastD
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Figure 4.9. Path decomposition of T 11 from Figure 4.4

common ancestor of jprev and j. The least common ancestor of two nodes a and b
is the least numbered node that is an ancestor of both a and b and is denoted as
q = lca(a, b). In T 11, shown in Figure 4.9, the first path is from node 3 (the 2nd
node in the postordered tree) to the root node 11. The next path starts at node
5 (the 3rd node in the postordered tree) and terminates at node 5 (node 8 is the
least common ancestor of the two leaves 3 and 5). The third and last path starts at
node 7 and terminates at the child node 9 of the least common ancestor (node 10)
of nodes 5 and 7. Figure 4.9 shows the path decomposition of T 11 into these three
disjoint paths. Each node is labeled with its corresponding column index in A and
its postordering (node 8 is the 4th node in the postordered tree, for example).

Once the kth row subtree is decomposed into its disjoint paths, the kth row
count is computed as the sum of the lengths of these paths. An efficient method
for finding the least common ancestors of consecutive leaves jprev and j of the row
subtree is needed. Given the least common ancestor q of these two leaves, the length
of the path from j to q can be added to the row count (excluding q itself). The
lengths of the paths can be found by taking the difference of the starting and ending
nodes of each path.

Theorem 4.12. Assume that the elimination tree T is postordered. The least
common ancestor of two nodes a and b, where a < b, can be found by traversing the
path from a towards the root. The first node q ≥ b found along this path is the least
common ancestor of a and b.

The rowcnt function takes as input the matrix A, its elimination tree, and a
postordering of the elimination tree. It uses a disjoint-set-union data structure to
efficiently compute the least common ancestors of successive pairs of leaves of the
row subtrees. Since it is not actually part of CSparse, it does not check any out-of-
memory error conditions. Unlike cs etree, the function uses the lower triangular
part of A only and omits an option for computing the row counts of the Cholesky
factor of ATA. The cs leaf function determines if j is a leaf of the ith row subtree,
T i. If it is, it computes the lca of jprev (the previous leaf found in T i) and node j.

To compute q = lca(jprev, j) efficiently in cs leaf, an ancestor of each node
is maintained, using a disjoint-set-union data structure. Initially, each node is inD
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its own set, and ancestor[i] = i for all nodes i. If a node i is the root of a set, it is
its own ancestor. For all other nodes i, traversing the ancestor tree and hitting a
root q determines the representative (q) of the set containing node i.

int *rowcnt (cs *A, int *parent, int *post) /* return rowcount [0..n-1] */

{

int i, j, k, len, s, p, jprev, q, n, sparent, jleaf, *Ap, *Ai, *maxfirst,

*ancestor, *prevleaf, *w, *first, *level, *rowcount ;

n = A->n ; Ap = A->p ; Ai = A->i ; /* get A */

w = cs_malloc (5*n, sizeof (int)) ; /* get workspace */

ancestor = w ; maxfirst = w+n ; prevleaf = w+2*n ; first = w+3*n ;

level = w+4*n ;

rowcount = cs_malloc (n, sizeof (int)) ; /* allocate result */

firstdesc (n, parent, post, first, level) ; /* find first and level */

for (i = 0 ; i < n ; i++)

{

rowcount [i] = 1 ; /* count the diagonal of L */

prevleaf [i] = -1 ; /* no previous leaf of the ith row subtree */

maxfirst [i] = -1 ; /* max first[j] for node j in ith subtree */

ancestor [i] = i ; /* every node is in its own set, by itself */

}

for (k = 0 ; k < n ; k++)

{

j = post [k] ; /* j is the kth node in the postordered etree */

for (p = Ap [j] ; p < Ap [j+1] ; p++)

{

i = Ai [p] ;

q = cs_leaf (i, j, first, maxfirst, prevleaf, ancestor, &jleaf) ;

if (jleaf) rowcount [i] += (level [j] - level [q]) ;

}

if (parent [j] != -1) ancestor [j] = parent [j] ;

}

cs_free (w) ;

return (rowcount) ;

}

int cs_leaf (int i, int j, const int *first, int *maxfirst, int *prevleaf,

int *ancestor, int *jleaf)

{

int q, s, sparent, jprev ;

if (!first || !maxfirst || !prevleaf || !ancestor || !jleaf) return (-1) ;

*jleaf = 0 ;

if (i <= j || first [j] <= maxfirst [i]) return (-1) ; /* j not a leaf */

maxfirst [i] = first [j] ; /* update max first[j] seen so far */

jprev = prevleaf [i] ; /* jprev = previous leaf of ith subtree */

prevleaf [i] = j ;

*jleaf = (jprev == -1) ? 1: 2 ; /* j is first or subsequent leaf */

if (*jleaf == 1) return (i) ; /* if 1st leaf, q = root of ith subtree */

for (q = jprev ; q != ancestor [q] ; q = ancestor [q]) ;

for (s = jprev ; s != q ; s = sparent)

{

sparent = ancestor [s] ; /* path compression */

ancestor [s] = q ;

}

return (q) ; /* q = least common ancester (jprev,j) */

}

Assuming the matrix is already postordered, rowcnt considers each node jD
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52 Chapter 4. Cholesky factorization

one at a time, where j iterates from 0 to n− 1. For each node j, all row subtrees i
that contain it are considered (all row indices i corresponding to nonzero entries aij ,
where i > j). Since jprev and j are leaves of the same row subtree, they will have a
least common ancestor q that is greater than j and which will be the representative
of the set containing jprev. Traversing from node jprev towards the root determines
node q. After this path is traversed, it is compressed to speed up any remaining path
traversals. After all row subtrees containing node j are considered, it is merged into
the set corresponding to its parent. Assuming the elimination tree is connected, no
nodes 0 to j are now root nodes of any set. This ensures that traversing a path in
the ancestor tree will find the least common ancestor for subsequent nodes j (see
Theorem 4.12).

4.5 Column counts
Computing the number of nonzeros in each column of L can be done in nearly
O(|A|) time, similar to the row counts. A characterization of the nonzero pattern of
each column of L is required. Let Aj denote the nonzero pattern of the jth column

of the strictly lower triangular part of A, and let Âj denote entries in the same part

of the skeleton matrix Â. Let Lj denote the nonzero pattern of column j of L, and
let cj = |Lj | denote the number of entries in that column (including the diagonal).

Theorem 4.13 and its corollary show how to compute the nonzero pattern of L
in a left-looking manner. It states that the nonzero pattern of L(:,j) is the union
of the nonzero patterns of the children of j in the elimination tree and the nonzero
pattern of A(:,j).

Theorem 4.13 (George and Liu [89]). If Lj denotes the nonzero pattern of the
jth column of L, and Aj denotes the nonzero pattern of the strictly lower triangular
part of the jth column of A, then

Lj = Aj ∪ {j} ∪

⎛⎝ ⋃
j=parent(s)

Ls \ {s}

⎞⎠ . (4.3)

Proof. Refer to Figure 4.10. Consider any descendant d of j and any row i ∈ Ld.
That is, lid �= 0 and the path d � j exists in T . Theorem 4.5 states that the nonzero
pattern of row i is given by the ith row subtree, T i. Thus, the path d � s → j
exists in T i for some s, and row index i is present in Lj and in Ls of the child s of
j (also true if d = s). To construct the nonzero pattern of column j (Lj), only Ls

of the children s of j need to be considered. Likewise, there can be no i ∈ Lj not
accounted for by (4.3). If i ∈ Lj , then j must be in T i. Either j is a leaf (and thus

i ∈ Âj ⊆ Aj), or it is not a leaf (and thus j has a child s in T i, and i ∈ Ls).

Corollary 4.14 (Schreiber [181]). The nonzero pattern of the jth column of L is
a subset of the path j � r from j to the root of the elimination tree T .D
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j

s, a child of j

lislid lij

i

d, descendant of s

Figure 4.10. The nonzero pattern of L(:,j) is the union of its children

Computing the column counts cj = |Lj | can be done in O(|L|) time by using
Theorem 4.13 or by traversing each row subtree explicitly and keeping track of how
many times j appears in any row subtree. Using the least common ancestors of
successive pairs of leaves of the row subtree reduces the time to nearly O(|A|).

Consider the case where j is a leaf of the elimination tree T . The column
count cj is simply cj = |Aj | + 1 = |Âj | + 1, since j has no children and each entry

in column j of A is also in the skeleton matrix Â. Consider the case where j is not
a leaf of the elimination tree. Theorem 4.13 states that Lj is the union of Aj ∪ {j}
and the nonzero patterns of its children, Ls \ {s}. Since Âj is disjoint from each
child Ls, and since s ∈ Ls,

cj = |Âj | +

∣∣∣∣∣∣
⋃

j=parent(s)

Ls \ {s}

∣∣∣∣∣∣ = |Âj | − ej +

∣∣∣∣∣∣
⋃

j=parent(s)

Ls

∣∣∣∣∣∣ ,
where ej is the number of children of j in the elimination tree T . Suppose there
was an efficient method for computing the overlap between the nonzero patterns of
the children of j. That is, let oj be the term required so that

cj = |Âj | − ej − oj +
∑

j=parent(s)

cs. (4.4)

As an example, consider column j = 4 of Figure 4.7. Its two children are L2 =
{2, 4, 10, 11} and L3 = {3, 4, 11}. The skeleton matrix is empty in this column, so

L4 = Â4 ∪ L2 \ {2} ∪ L3 \ {3} = ∅ ∪ {4, 10, 11} ∪ {4, 11} = {4, 10, 11}.

The overlap o4 = 2, because rows 4 and 11 each appear twice in the children. The
number of children is e4 = 2. Thus, c4 = 0 − 2 − 2 + 4 + 3 = 3. If the overlap
and the skeleton matrix are known for each column j, (4.4) can be used to compute

the column counts. Note that the diagonal entry j = 4 does not appear in Â4.
Instead, 4 ∈ L4 appears in each child, and the overlap accounts for all but one of
these entries.

The overlap can be computed by considering the row subtrees. There are
three cases to consider. Recall that the ith row subtree T i determines the nonzero
pattern of the ith row of L. Node j is present in the ith subtree if and only if i ∈ Lj .
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54 Chapter 4. Cholesky factorization

1. If j /∈ T i, then i /∈ Lj and row i does not contribute to the overlap oj .

2. If j is a leaf of T i, then by definition aij is in the skeleton matrix. Row i does
not contribute to the overlap oj , because it appears in none of the children of

j. Row i contributes exactly one to cj , since i ∈ Âj .

3. If j is not a leaf of T i, let dij denote the number of children of j that are in
T i. These children are a subset of the children of j in the elimination tree
T . Row i is present in the nonzero patterns of each of these dij children.
Thus, row i contributes dij − 1 to the overlap oj . If j has just one child, row
i appears only in that one child and there is no overlap.

Case 3, above, is the only place where the overlap needs to be considered:
nodes in the row subtrees with more than one child. Refer to Figure 4.8, and
consider column 4. Node 4 has two children in subtrees T 4 and T 11.

The key observation is to see that if j has d children in a row subtree, then
it will be the least common ancestor of exactly d − 1 successive pairs of leaves in
that row subtree. For example, node 4 is the least common ancestor of leaves 1 and
3 in T 4 and the least common ancestor of leaves 2 and 3 in T 11. Thus, each time
column j becomes a least common ancestor of any successive pair of leaves in the
row count algorithm, the overlap oj can be incremented.

These modifications can be folded into a single correction term, Δj . If j is a

leaf of the elimination tree, cj = Δj = |Âj | + 1. Otherwise, Δj = |Âj | − ej − oj .
Equation (4.4) becomes

cj = Δj +
∑

j=parent(s)

cs (4.5)

for both cases. The term Δj is initialized as 1 if j is a leaf or 0 otherwise. It
is incremented once for each entry aij in the skeleton matrix, decremented once
for each child of j, and decremented once each time j becomes the least common
ancestor of a successive pair of leaves in a row subtree. Once Δj is computed, (4.5)
can be used to compute the column counts.

The column count algorithm cs counts is given below. It takes as input the
matrix A, the elimination tree (parent), and its postordering (post). It also takes
a parameter ata that determines whether the Cholesky factor of A or ATA is to
be computed. If ata is nonzero, the column counts of the Cholesky factor of ATA
are computed. To compute the column counts for the Cholesky factorization of A,
ata is zero, the init ata function is not used, and the for J loop iterates just once
with J = j.

Unlike rowcnt, the cs counts function uses the upper triangular part of A
to compute the column counts; it transposes A internally. None of the inputs are
modified. The function returns an array of size n of the column counts or NULL on
error. Compare cs counts with rowcnt. It is quite simple to combine these two
functions into a single function that computes both the row and column counts.
They are split into two functions here, to introduce the concepts more gradually
and because CSparse does not require the row counts.

#define HEAD(k,j) (ata ? head [k] : j)

#define NEXT(J) (ata ? next [J] : -1)
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static void init_ata (cs *AT, const int *post, int *w, int **head, int **next)

{

int i, k, p, m = AT->n, n = AT->m, *ATp = AT->p, *ATi = AT->i ;

*head = w+4*n, *next = w+5*n+1 ;

for (k = 0 ; k < n ; k++) w [post [k]] = k ; /* invert post */

for (i = 0 ; i < m ; i++)

{

for (k = n, p = ATp[i] ; p < ATp[i+1] ; p++) k = CS_MIN (k, w [ATi[p]]);

(*next) [i] = (*head) [k] ; /* place row i in linked list k */

(*head) [k] = i ;

}

}

int *cs_counts (const cs *A, const int *parent, const int *post, int ata)

{

int i, j, k, n, m, J, s, p, q, jleaf, *ATp, *ATi, *maxfirst, *prevleaf,

*ancestor, *head = NULL, *next = NULL, *colcount, *w, *first, *delta ;

cs *AT ;

if (!CS_CSC (A) || !parent || !post) return (NULL) ; /* check inputs */

m = A->m ; n = A->n ;

s = 4*n + (ata ? (n+m+1) : 0) ;

delta = colcount = cs_malloc (n, sizeof (int)) ; /* allocate result */

w = cs_malloc (s, sizeof (int)) ; /* get workspace */

AT = cs_transpose (A, 0) ; /* AT = A’ */

if (!AT || !colcount || !w) return (cs_idone (colcount, AT, w, 0)) ;

ancestor = w ; maxfirst = w+n ; prevleaf = w+2*n ; first = w+3*n ;

for (k = 0 ; k < s ; k++) w [k] = -1 ; /* clear workspace w [0..s-1] */

for (k = 0 ; k < n ; k++) /* find first [j] */

{

j = post [k] ;

delta [j] = (first [j] == -1) ? 1 : 0 ; /* delta[j]=1 if j is a leaf */

for ( ; j != -1 && first [j] == -1 ; j = parent [j]) first [j] = k ;

}

ATp = AT->p ; ATi = AT->i ;

if (ata) init_ata (AT, post, w, &head, &next) ;

for (i = 0 ; i < n ; i++) ancestor [i] = i ; /* each node in its own set */

for (k = 0 ; k < n ; k++)

{

j = post [k] ; /* j is the kth node in postordered etree */

if (parent [j] != -1) delta [parent [j]]-- ; /* j is not a root */

for (J = HEAD (k,j) ; J != -1 ; J = NEXT (J)) /* J=j for LL’=A case */

{

for (p = ATp [J] ; p < ATp [J+1] ; p++)

{

i = ATi [p] ;

q = cs_leaf (i, j, first, maxfirst, prevleaf, ancestor, &jleaf);

if (jleaf >= 1) delta [j]++ ; /* A(i,j) is in skeleton */

if (jleaf == 2) delta [q]-- ; /* account for overlap in q */

}

}

if (parent [j] != -1) ancestor [j] = parent [j] ;

}

for (j = 0 ; j < n ; j++) /* sum up delta’s of each child */

{

if (parent [j] != -1) colcount [parent [j]] += colcount [j] ;

}

return (cs_idone (colcount, AT, w, 1)) ; /* success: free workspace */
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56 Chapter 4. Cholesky factorization

The column count algorithm presented here can also be used for the QR and
LU factorization of a square or rectangular matrix A. For QR factorization, the
nonzero pattern of R is identical to LT in the Cholesky factorization LLT = ATA
(assuming no numerical cancellation and mild assumptions discussed in Chapter 5).
This same matrix R provides an upper bound on the nonzero pattern of U for an
LU factorization of A. Details are presented in Chapters 5 and 6.

One method for finding the row counts of R is to compute ATA explicitly and
then find the column counts of its Cholesky factorization. This can be expensive
both in time and memory. A better method taking nearly O(|A|+n+m) time is to
find a symmetric matrix with fewer nonzeros than ATA but whose Cholesky factor
has the same nonzero pattern as ATA. One matrix that satisfies this property is the
star matrix. It has O(|A|) entries and can be found in O(|A| + n + m) time. Each
row of A defines a clique in the graph of ATA. Let Ai denote the nonzero pattern
of the ith row of A. Consider the lowest numbered column index k of nonzeros
in row i of A; that is, k = minAi. The clique in ATA corresponding to row i of
A is the set of entries Ai × Ai. Consider an entry (ATA)ab, where a ∈ Ai and
b ∈ Ai. If both a > k and b > k, then this entry is not needed. It can be removed
without changing the nonzero pattern of the Cholesky factor of ATA. Without
loss of generality, assume a > b. The entries (ATA)bk and (ATA)ak will both be
nonzero. Theorems 4.2 and 4.3 imply that lab is nonzero, regardless of whether or
not (ATA)ab is nonzero.

The nonzero pattern of the kth row and column of the star matrix is thus
the union of all Ai, where k = minAi. Fortunately, this union need not be formed
explicitly, since the row and column count algorithms (and specifically the skele-
ton function) implicitly ignore duplicate entries. To traverse all entries in the kth
column of the star matrix, all rows Ai, where k = minAi, are considered. In
cs counts, this is implemented by placing each row in a linked list corresponding
to its least numbered nonzero column index (using a head array of size n+1 and a
next array of size n).

In MATLAB, c = symbfact(A) uses the same algorithms given here, return-
ing the column counts of the Cholesky factorization of A. The column counts of the
Cholesky factorization of ATA are given by c = symbfact(A,’col’). Both forms
use the CHOLMOD function cholmod rowcolcounts.

4.6 Symbolic analysis
The symbolic analysis of a matrix is a precursor to its numerical factorization.
It includes computations that typically depend only on the nonzero pattern, not
the numerical values. This allows the numerical factorization to be repeated for a
sequence of matrices with identical nonzero pattern (a situation that often arises
when solving nonlinear equations). Symbolic factorization includes the computation
of an explicit representation of the nonzero pattern of the factorization; some sparse
Cholesky algorithms require this. Permuting a matrix has a large impact on the
amount of fill-in. Typically a fill-reducing permutation P is found so that the
factorization of PAPT is sparser than that of A. The cs schol function performsD
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the symbolic analysis for the up-looking sparse Cholesky factorization presented in
the next section.

typedef struct cs_symbolic /* symbolic Cholesky, LU, or QR analysis */

{

int *pinv ; /* inverse row perm. for QR, fill red. perm for Chol */

int *q ; /* fill-reducing column permutation for LU and QR */

int *parent ; /* elimination tree for Cholesky and QR */

int *cp ; /* column pointers for Cholesky, row counts for QR */

int *leftmost ; /* leftmost[i] = min(find(A(i,:))), for QR */

int m2 ; /* # of rows for QR, after adding fictitious rows */

double lnz ; /* # entries in L for LU or Cholesky; in V for QR */

double unz ; /* # entries in U for LU; in R for QR */

} css ;

css *cs_schol (int order, const cs *A)

{

int n, *c, *post, *P ;

cs *C ;

css *S ;

if (!CS_CSC (A)) return (NULL) ; /* check inputs */

n = A->n ;

S = cs_calloc (1, sizeof (css)) ; /* allocate result S */

if (!S) return (NULL) ; /* out of memory */

P = cs_amd (order, A) ; /* P = amd(A+A’), or natural */

S->pinv = cs_pinv (P, n) ; /* find inverse permutation */

cs_free (P) ;

if (order && !S->pinv) return (cs_sfree (S)) ;

C = cs_symperm (A, S->pinv, 0) ; /* C = spones(triu(A(P,P))) */

S->parent = cs_etree (C, 0) ; /* find etree of C */

post = cs_post (S->parent, n) ; /* postorder the etree */

c = cs_counts (C, S->parent, post, 0) ; /* find column counts of chol(C) */

cs_free (post) ;

cs_spfree (C) ;

S->cp = cs_malloc (n+1, sizeof (int)) ; /* allocate result S->cp */

S->unz = S->lnz = cs_cumsum (S->cp, c, n) ; /* find column pointers for L */

cs_free (c) ;

return ((S->lnz >= 0) ? S : cs_sfree (S)) ;

}

css *cs_sfree (css *S)

{

if (!S) return (NULL) ; /* do nothing if S already NULL */

cs_free (S->pinv) ;

cs_free (S->q) ;

cs_free (S->parent) ;

cs_free (S->cp) ;

cs_free (S->leftmost) ;

return (cs_free (S)) ; /* free the css struct and return NULL */

}

cs schol does not compute the nonzero pattern of L. First, a css structure S
is allocated. For a sparse Cholesky factorization, S->pinv is the fill-reducing permu-
tation (stored as an inverse permutation vector), S->parent is the elimination tree,
S->cp is the column pointer of L, and S->lnz = |L|. This symbolic structure will
also be used for sparse LU and QR factorizations. Next, p is found via a minimumD
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58 Chapter 4. Cholesky factorization

degree ordering of A+AT (see Chapter 7) if order is 1. No permutation is used if
order is 0 (p is NULL to denote the identity permutation). This vector is inverted
to obtain pinv. The upper triangular part of A is permuted to obtain C (C=A(p,p)
in MATLAB notation). The elimination tree of C is found and postordered, and
the column counts of L are found. A cumulative sum of the column counts gives
both S->cp, the column pointers of L, and S->lnz= |L|. cs free frees a symbolic
analysis.

4.7 Up-looking Cholesky
A great deal of theory and algorithms have been covered to reach this point: a
simple, concise sparse Cholesky factorization algorithm. The cs chol function pre-
sented below implements the up-looking algorithm described in the preface to this
chapter. To clarify the discussion, the bold paragraph headings are tied to com-
ments in the code starting with ---. This style is also used elsewhere in this book.

cs chol computes the Cholesky factorization of C=A(p,p). The input matrix A

is assumed to be symmetric; only the upper triangular part is accessed. The function
requires the symbolic analysis from cs schol. It returns a numeric factorization,
consisting of just the N->L matrix. First, workspace is allocated, the contents of
the symbolic analysis are retrieved, L is allocated, and A is permuted (E is A(p,p)

if A is permuted, or NULL otherwise, so that A(p,p) can be freed by cs ndone).
Nonzero pattern of L(k,:): The kth iteration of the for loop computes

the kth row of L. It starts by computing the nonzero pattern of this kth row, placing
the result in s[top] through s[n-1] in topological order. The entry x[k] is cleared
to ensure that x[0] through x[k] are all zero. The kth column of C is scattered
into the dense vector x. The diagonal entry of C is retrieved from x, and x[k] is
cleared to prepare for iteration k+1 of the outer loop.

Triangular solve: The numerical solution to L0...k−1,0...k−1x = C0...k−1,k is
found, which defines the numerical values in the row k of L. As each entry lki is
computed, the workspace x[i] is cleared, the numerical value lki and row index k

are placed in column i of L, and the dot product Lk,0...k−1L
T
k,0...k−1 is added to d.

Compute L(k,k): The kth diagonal entry of L is computed. The function
frees N and returns if the matrix A is not positive definite. When the factorization
finishes successfully, the workspace is freed and N is returned.

The time taken by cs chol to compute the Cholesky factorization of a sym-
metric positive definite matrix is O(f), the number of floating-point operations per-
formed; f =

∑
|L(:, k)|2. To perform a complete sparse Cholesky factorization, in-

cluding a fill-reducing preordering and symbolic analysis, use S=cs schol(order,A)

followed by N=cs chol(A,S), where order is 0 to use the natural ordering or 1 to
use a fill-reducing minimum degree ordering of A + AT .

In MATLAB, the sparse Cholesky factorization R=chol(A) returns R=L’. If A is
very sparse, it uses an up-looking algorithm (cholmod rowfac, much like [29]). Oth-
erwise, it uses a left-looking supernodal factorization (cholmod super numeric),
discussed in the next section.

csn *cs_chol (const cs *A, const css *S)
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{

double d, lki, *Lx, *x, *Cx ;

int top, i, p, k, n, *Li, *Lp, *cp, *pinv, *s, *c, *parent, *Cp, *Ci ;

cs *L, *C, *E ;

csn *N ;

if (!CS_CSC (A) || !S || !S->cp || !S->parent) return (NULL) ;

n = A->n ;

N = cs_calloc (1, sizeof (csn)) ; /* allocate result */

c = cs_malloc (2*n, sizeof (int)) ; /* get int workspace */

x = cs_malloc (n, sizeof (double)) ; /* get double workspace */

cp = S->cp ; pinv = S->pinv ; parent = S->parent ;

C = pinv ? cs_symperm (A, pinv, 1) : ((cs *) A) ;

E = pinv ? C : NULL ; /* E is alias for A, or a copy E=A(p,p) */

if (!N || !c || !x || !C) return (cs_ndone (N, E, c, x, 0)) ;

s = c + n ;

Cp = C->p ; Ci = C->i ; Cx = C->x ;

N->L = L = cs_spalloc (n, n, cp [n], 1, 0) ; /* allocate result */

if (!L) return (cs_ndone (N, E, c, x, 0)) ;

Lp = L->p ; Li = L->i ; Lx = L->x ;

for (k = 0 ; k < n ; k++) Lp [k] = c [k] = cp [k] ;

for (k = 0 ; k < n ; k++) /* compute L(:,k) for L*L’ = C */

{

/* --- Nonzero pattern of L(k,:) ------------------------------------ */

top = cs_ereach (C, k, parent, s, c) ; /* find pattern of L(k,:) */

x [k] = 0 ; /* x (0:k) is now zero */

for (p = Cp [k] ; p < Cp [k+1] ; p++) /* x = full(triu(C(:,k))) */

{

if (Ci [p] <= k) x [Ci [p]] = Cx [p] ;

}

d = x [k] ; /* d = C(k,k) */

x [k] = 0 ; /* clear x for k+1st iteration */

/* --- Triangular solve --------------------------------------------- */

for ( ; top < n ; top++) /* solve L(0:k-1,0:k-1) * x = C(:,k) */

{

i = s [top] ; /* s [top..n-1] is pattern of L(k,:) */

lki = x [i] / Lx [Lp [i]] ; /* L(k,i) = x (i) / L(i,i) */

x [i] = 0 ; /* clear x for k+1st iteration */

for (p = Lp [i] + 1 ; p < c [i] ; p++)

{

x [Li [p]] -= Lx [p] * lki ;

}

d -= lki * lki ; /* d = d - L(k,i)*L(k,i) */

p = c [i]++ ;

Li [p] = k ; /* store L(k,i) in column i */

Lx [p] = lki ;

}

/* --- Compute L(k,k) ----------------------------------------------- */

if (d <= 0) return (cs_ndone (N, E, c, x, 0)) ; /* not pos def */

p = c [k]++ ;

Li [p] = k ; /* store L(k,k) = sqrt (d) in column k */

Lx [p] = sqrt (d) ;

}

Lp [n] = cp [n] ; /* finalize L */

return (cs_ndone (N, E, c, x, 1)) ; /* success: free E,s,x; return N */

}

The csn structure contains a numeric Cholesky, LU, or QR factorization.D
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60 Chapter 4. Cholesky factorization

For a sparse Cholesky factorization, only N->L is used. cs nfree frees a numeric
factorization. cs ndone frees any workspace and returns a numeric factorization.

typedef struct cs_numeric /* numeric Cholesky, LU, or QR factorization */

{

cs *L ; /* L for LU and Cholesky, V for QR */

cs *U ; /* U for LU, R for QR, not used for Cholesky */

int *pinv ; /* partial pivoting for LU */

double *B ; /* beta [0..n-1] for QR */

} csn ;

csn *cs_nfree (csn *N)

{

if (!N) return (NULL) ; /* do nothing if N already NULL */

cs_spfree (N->L) ;

cs_spfree (N->U) ;

cs_free (N->pinv) ;

cs_free (N->B) ;

return (cs_free (N)) ; /* free the csn struct and return NULL */

}

csn *cs_ndone (csn *N, cs *C, void *w, void *x, int ok)

{

cs_spfree (C) ; /* free temporary matrix */

cs_free (w) ; /* free workspace */

cs_free (x) ;

return (ok ? N : cs_nfree (N)) ; /* return result if OK, else free it */

}

4.8 Left-looking and supernodal Cholesky
The left-looking Cholesky factorization algorithm is more commonly used than the
up-looking algorithm. The MATLAB function chol left implements this algo-
rithm.

function L = chol_left (A)

n = size (A,1) ;

L = zeros (n) ;

for k = 1:n

L (k,k) = sqrt (A (k,k) - L (k,1:k-1) * L (k,1:k-1)’) ;

L (k+1:n,k) = (A (k+1:n,k) - L (k+1:n,1:k-1) * L (k,1:k-1)’) / L (k,k) ;

end

It computes L one column at a time and can be derived from the expression⎡⎣ L11

lT12 l22
L31 l32 L33

⎤⎦⎡⎣ LT
11 l12 LT

31

l22 lT32
LT

33

⎤⎦ =

⎡⎣ A11 a12 AT
31

aT12 a22 aT32
A31 a32 A33

⎤⎦ , (4.6)

where the middle row and column of each matrix are the kth row and column
of L, LT , and A, respectively. If the first k − 1 columns of L are known, l22 =√
a22 − lT12l12 can be computed first, followed by l32 = (a32 − L31l12)/l22. For the

sparse case, an amplified version is given below.D
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function L = chol_left (A)

n = size (A,1) ;

L = sparse (n,n) ;

a = sparse (n,1) ;

for k = 1:n

a (k:n) = A (k:n,k) ;

for j = find (L (k,:))

a (k:n) = a (k:n) - L (k:n,j) * L (k,j) ;

end

L (k,k) = sqrt (a (k)) ;

L (k+1:n,k) = a (k+1:n) / L (k,k) ;

end

This method requires the nonzero pattern of the columns of L to be com-
puted (in sorted order) prior to numerical factorization. In contrast, the up-looking
method requires only the cumulative sum of the column counts (Lp) prior to numer-
ical factorization and computes both the pattern (in sorted order) and numerical
values in a single pass. Computing the pattern of L can be done in O(|L|) time,
using cs ereach (see Problem 4.10).

The left-looking numerical factorization needs access to row k of L. The nonzero
pattern of L(k,:) is given by the kth row subtree (4.2), T k. This is enough infor-
mation for the up-looking method, but the left-looking method also needs access to
the numerical values of L(k,:) and the submatrix L(k:n,1:k-1). To access the
numerical values of the kth row, an array c of size n is maintained in the same way
as the c array in the up-looking algorithm cs chol. The row indices and numeri-
cal values in L(k:n,j) are given by Li[c[j] ... Lp[j+1]-1] and Lx[c[j] ...

Lp[j+1]-1], respectively. A left-looking sparse Cholesky factorization is left as an
exercise (see Problem 4.11).

The left-looking algorithm forms the basis for the supernodal method. The
chol super function is a working prototype for a supernodal left-looking Cholesky
factorization.

function L = chol_super (A,s)

n = size (A) ;

L = zeros (n) ;

ss = cumsum ([1 s]) ;

for j = 1:length (s)

k1 = ss (j) ;

k2 = ss (j+1) ;

k = k1:(k2-1) ;

L (k,k) = chol (A (k,k) - L (k,1:k1-1) * L (k,1:k1-1)’)’ ;

L (k2:n,k) = (A (k2:n,k) - L (k2:n,1:k1-1) * L (k,1:k1-1)’) / L (k,k)’ ;

end

Consider (4.6), and let the middle row and column of the three matrices
represent a block of sj ≥ 1 rows and columns. This block of columns is selected
so that the nonzero patterns of these sj columns are all identical, except for the
diagonal block L22, which is dense. In MATLAB notation, s is an integer vector
where all(s>0) is true, and sum(s)=n. The jth supernode consists of s(j) columns
of L which can be stored as a dense matrix of dimension |Lf | by sj , where f is the
column of L represented as the leftmost column in the jth supernode. chol super

relies on four key operations, all of which can exploit dense matrix kernels:D
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62 Chapter 4. Cholesky factorization

1. A symmetric update, A(k,k)-L(k,1:k1-1)*L(k,1:k1-1)’. In the sparse
case, A(k,k) is a dense matrix. L(k,1:k1-1) represents the rows in a subset
of the descendants of the jth supernode. The update from each descendant
can be done with a single dense matrix multiplication.

2. A dense Cholesky factorization, chol.

3. A sparse matrix product, A(k2:n,k)-L(k2:n,1:k1-1)*L(k,1:k1-1)’, where
the two L terms come from the descendants of the jth supernode.

4. A dense triangular solve (...)/L(k,k)’ using the kth diagonal block of L.

A supernodal Cholesky factorization based on dense matrix kernels (the BLAS)
can achieve a substantial fraction of a computer’s theoretical peak performance.
MATLAB uses this method (cholmod super numeric) for a sparse symmetric pos-
itive definite A, except when A is very sparse, in which case it uses the up-looking
algorithm described in Section 4.7.

4.9 Right-looking and multifrontal Cholesky
The right-looking Cholesky factorization is based on the following matrix expression,
where l11 is a scalar:[

l11
l21 L22

] [
l11 lT21

LT
22

]
=

[
a11 aT21
a21 A22

]
. (4.7)

The first equation, l211 = a11, is solved for l11, followed by l21 = a21/l11. Next,
the Cholesky factorization L22L

T
22 = A22 − l21l

T
21 is computed. The chol right

function is the MATLAB expression of this algorithm.

function L = chol_right (A)

n = size (A) ;

L = zeros (n) ;

for k = 1:n

L (k,k) = sqrt (A (k,k)) ;

L (k+1:n,k) = A (k+1:n,k) / L (k,k) ;

A (k+1:n,k+1:n) = A (k+1:n,k+1:n) - L (k+1:n,k) * L (k+1:n,k)’ ;

end

It forms the basis for the multifrontal method, which is similar to chol right,
except that the summation of the outer product l21l

T
21 is postponed. Only a brief

overview of the multifrontal method is given here. See Section 6.3 for more details.
Just as in the supernodal method, the columns of L are grouped together; each
group is represented by a dense frontal matrix. Let Lf be the nonzero pattern of
the first column in a frontal matrix. The frontal matrix has dimension |Lf |-by-|Lf |.
Within this frontal matrix, k ≥ 1 steps of factorization are computed, and a rank-k
outer product is computed. These steps can use the dense matrix BLAS, and thus
they too can obtain very high performance.D
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4.10. Modifying a Cholesky factorization 63

Unlike chol right, the outer product computed in the frontal matrix is not
immediately added into the sparse matrix A. Let column e be the last pivot column
of L represented by a frontal matrix (e = k2-1 in chol super). Its contribution is
held in the frontal matrix until its parent is factorized. Its parent is that frontal
matrix whose first column is the parent of e in the elimination tree of L. When a
frontal matrix is factorized, the contribution blocks of its children are first added
together.

MATLAB does not use a multifrontal sparse Cholesky method. It does use
the multifrontal method for its sparse LU factorization (see Section 6.3).

4.10 Modifying a Cholesky factorization
Given the sparse Cholesky factorization LLT = A, some applications require the
factorization of A after a low-rank change, A ± WWT , where W is n-by-k with

k � n. Computing the factorization LL
T

= A + WWT is a rank-k update, and

computing LL
T

= A − WWT is a rank-k downdate. If A is positive definite,
A + WWT is always positive definite, but A−WWT may not be.

Only the rank-1 case is considered here. There are many methods for comput-
ing L from L and w. The chol update function below performs a rank-1 update
and is used as the basis for the sparse rank-1 update. For details of its derivation,
see the references discussed in Section 4.11. The function returns a modified L that
is the Cholesky factor of the matrix L*L’+w*w’. It also computes one additional
result, w=L\w, which reveals a key feature exploited in the sparse case.

function [L, w] = chol_update (L, w)

beta = 1 ;

n = size (L,1) ;

for j = 1:n

alpha = w (j) / L (j,j) ;

beta2 = sqrt (beta^2 + alpha^2) ;

gamma = alpha / (beta2 * beta) ;

delta = beta / beta2 ;

L (j,j) = delta * L (j,j) + gamma * w (j) ;

w (j) = alpha ;

beta = beta2 ;

if (j == n) return, end

w1 = w (j+1:n) ;

w (j+1:n) = w (j+1:n) - alpha * L (j+1:n,j) ;

L (j+1:n,j) = delta * L (j+1:n,j) + gamma * w1 ;

end

Consider the sparse case. A key observation is to note that the columns of L
that are modified correspond to the nonzero pattern of the solution to the triangular
system Lx = w. At the jth step, the variable alpha is equal to xj . This can be
seen by removing everything from the algorithm except the modifications to w; all
that is left is just a lower triangular solve. If alpha is zero, beta2 and beta are
identical, gamma is zero, and delta is one. No change is made to the jth column of
L in this case. Thus, the jth step can be skipped if xj = 0.D
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A = A + wwT L

A L

w

T

T

Figure 4.11. Rank-1 update

Let X be the nonzero pattern of the solution to Lx = w. Let f = minW,
where W = {i |, wi �= 0} is the set of row indices of nonzero entries in w. Applying
Theorem 4.5 to the system Lx = w reveals that X = ReachT (W). That is, X is
a set of paths in the elimination tree, starting at nodes i ∈ W and walking up the
tree to the root.

Assume that numerical cancellation is ignored. If the nonzero pattern of L
changes as a result of an update or downdate, the set X becomes a single path in
the elimination tree T of L. This is because the first nontrivial step f = minW
adds the nonzero pattern of W to the nonzero pattern of column f of L, and thus
W ⊆ Lf . Corollary 4.14 states that Lf is a subset of the path from f to the root r
in the elimination tree of L. Thus, W is a subset of this path f � r, and computing
a rank-1 update requires the traversal of a single path f � r in the elimination tree
T of L. An example rank-1 update is shown in Figure 4.11, where W = {4, 6, 8}.
Entries in A = A + wwT that differ from A are circled x’s or circled numbers on
the diagonal, as are entries in L. The columns that are modified in L correspond
to the path {4, 6, 7, 8}; these nodes are highlighted in both elimination trees.

Modifying the nonzero pattern of L is not trivial, since adding entries to
individual columns of the cs data structure requires all subsequent columns to
be shifted. Modifying both the pattern and the values of L can be done in time
proportional to the number of entries in L that change, but the full algorithm is
beyond the concise scope of this book. The simpler case assumes the pattern of
L does not change. This case occurs if and only if W ⊆ Lf , in which case the
elimination tree of L and L are the same, and a rank-1 update traverses the path
f � r in T .

The MATLAB chol downdate function below performs the rank-1 downdate,
returning a new L that is the Cholesky factor of L*L’-w*w’.D
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4.10. Modifying a Cholesky factorization 65

function [L, w] = chol_downdate (L, w)

beta = 1 ;

n = size (L,1) ;

for j = 1:n

alpha = w (j) / L (j,j) ;

beta2 = sqrt (beta^2 - alpha^2) ;

if (~isreal (beta2)) error (’not positive definite’) , end

gamma = alpha / (beta2 * beta) ;

delta = beta2 / beta ;

L (j,j) = delta * L (j,j) ;

w (j) = alpha ;

beta = beta2 ;

if (j == n) return, end

w (j+1:n) = w (j+1:n) - alpha * L (j+1:n,j) ;

L (j+1:n,j) = delta * L (j+1:n,j) - gamma * w (j+1:n) ;

end

The cs updown function computes a rank-1 update if sigma=1 or a rank-1
downdate if sigma=-1. It assumes that W is a subset of the first column to be
modified, Lf ; it does not modify the nonzero pattern of L. The sparse column w is
passed in as the first column of the C matrix. The elimination tree, parent, is also
required on input.

int cs_updown (cs *L, int sigma, const cs *C, const int *parent)

{

int p, f, j, *Lp, *Li, *Cp, *Ci ;

double *Lx, *Cx, alpha, beta = 1, delta, gamma, w1, w2, *w, n, beta2 = 1 ;

if (!CS_CSC (L) || !CS_CSC (C) || !parent) return (0) ; /* check inputs */

Lp = L->p ; Li = L->i ; Lx = L->x ; n = L->n ;

Cp = C->p ; Ci = C->i ; Cx = C->x ;

if ((p = Cp [0]) >= Cp [1]) return (1) ; /* return if C empty */

w = cs_malloc (n, sizeof (double)) ; /* get workspace */

if (!w) return (0) ; /* out of memory */

f = Ci [p] ;

for ( ; p < Cp [1] ; p++) f = CS_MIN (f, Ci [p]) ; /* f = min (find (C)) */

for (j = f ; j != -1 ; j = parent [j]) w [j] = 0 ; /* clear workspace w */

for (p = Cp [0] ; p < Cp [1] ; p++) w [Ci [p]] = Cx [p] ; /* w = C */

for (j = f ; j != -1 ; j = parent [j]) /* walk path f up to root */

{

p = Lp [j] ;

alpha = w [j] / Lx [p] ; /* alpha = w(j) / L(j,j) */

beta2 = beta*beta + sigma*alpha*alpha ;

if (beta2 <= 0) break ; /* not positive definite */

beta2 = sqrt (beta2) ;

delta = (sigma > 0) ? (beta / beta2) : (beta2 / beta) ;

gamma = sigma * alpha / (beta2 * beta) ;

Lx [p] = delta * Lx [p] + ((sigma > 0) ? (gamma * w [j]) : 0) ;

beta = beta2 ;

for (p++ ; p < Lp [j+1] ; p++)

{

w1 = w [Li [p]] ;

w [Li [p]] = w2 = w1 - alpha * Lx [p] ;

Lx [p] = delta * Lx [p] + gamma * ((sigma > 0) ? w1 : w2) ;

}

}

cs_free (w) ;

return (beta2 > 0) ;

}
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66 Chapter 4. Cholesky factorization

cs updown returns 0 if it runs out of memory or if the downdated matrix is not
positive definite, and 1 otherwise. To keep the user interface as simple as possible,
the function allocates its own workspace w of size n. Not all of this will be used, and
care is taken to initialize only the part of the workspace w that will be needed. The
time taken by the function is proportional to the number of entries in L that change;
this can be much less than n (consider the case where f=n, for example). Since all
columns along the path f � r are a subset of this path, only those entries w[i]

where i ∈ {f � r} will be used. An alternative approach (used by CHOLMOD) is
to allocate and initialize w only once and to set it to zero as the path is traversed.
In this case, the traversal of the path to clear w can be skipped.

The update/downdate algorithms in CHOLMOD can modify the nonzero pat-
tern of L, but this requires a more complex data structure than the cs sparse matrix.
CHOLMOD can also perform a multiple-rank update/downdate of a supernodal
Cholesky factorization and can add or delete rows and columns from L.

The MATLAB interface for cs updown adds a substantial amount of overhead,
since a MATLAB mexFunction should not modify its inputs. The interface makes
a copy of L (taking O(n + |L|) time) and then modifies it with a call to cs updown

(taking time proportional to the number of entries in L that change). The latter
can be as small as Ω(1) and as high as O(|L|), so the time to make the copy can be
substantially larger than the time to update L. The cs updown function also requires
a matrix L for which no entries have been dropped due to numerical cancellation.
The MATLAB statement L=chol(A)’ drops zeros due to numerical cancellation, but
L=cs chol(A,0) leaves them in the matrix. The MATLAB function cholupdate

computes a rank-1 update or downdate for full matrices only.

4.11 Further reading
George and Liu [88, 89] cover sparse Cholesky factorization in depth, prior to the de-
velopment of elimination trees, supernodal factorization, or many of the algorithms
in this chapter. They include a full description of SPARSPAK, which includes the
left-looking method described in Section 4.8. SPARSPAK uses linked lists, first used
in YSMP (Eisenstat et al.[73] and Eisenstat, Schultz, and Sherman [76]), rather than
the T k traversal. Gilbert [101] catalogs methods for computing nonzero patterns
in sparse matrix computations. Schreiber [181] provides the first formal definition
of the elimination tree and also introduces the row subtree T k. Liu describes the
many uses of the elimination tree and how to compute it [148, 150], discusses the
row-oriented sparse Cholesky factorization [151], and gives an overview of the multi-
frontal method [152]. Gilbert et al. [102] and Gilbert, Ng, and Peyton [107] discuss
how to compute the row and column counts for Cholesky, QR, and LU factorization
and how to compute the elimination tree of ATA. Davis [29] presents an up-looking
LDLT factorization algorithm with an O(|L|)-time column count algorithm that
traverses each row subtree explicitly.

The row and column count algorithms rowcnt and cs counts are due to
Gilbert, Ng, and Peyton [107], except for a few minor modifications. The algo-
rithms described here use a slightly different method for determining the skeletonD
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matrix. Tarjan [195] discusses how the disjoint-set-union data structure can be used
efficiently to compute a sequence of least common ancestors.

Many software packages are available for factorizing sparse symmetric positive
definite or symmetric indefinite matrices. Details of these packages are summarized
in Section 8.6, including references to papers that discuss the supernodal and mul-
tifrontal methods. Gould, Hu, and Scott [116] compare many of these packages.

The BLAS (Dongarra et al. [46]) and LAPACK (Anderson et al. [8]) are two of
the many software packages that provide dense matrix operations and factorization
methods. Optimized BLAS can obtain near-peak performance on many computers
(Goto and van de Geijn [115]).9

Applications that require the update or downdate of a sparse Cholesky fac-
torization include optimization algorithms, least squares problems in statistics, the
analysis of electrical circuits and power systems, structural mechanics, boundary
condition changes in partial differential equations, domain decomposition meth-
ods, and boundary element methods, as discussed by Hager [124]. Gill et al. [110]
and Stewart [190] provide an extensive summary of update/downdate methods.
Stewart [189] introduced the term downdating and analyzed its error properties.
LINPACK includes a rank-1 dense update/downdate [45]; it is used in the MAT-
LAB cholupdate function. The chol update function above is Carlson’s algo-
rithm [20], and chol downdate is from Pan [163]. The cs updown function is
based on Bischof, Pan, and Tang’s combination of Carlson’s update and Pan’s
downdate [16]. Davis and Hager developed an optimal sparse multiple-rank super-
nodal update/downdate method, including a method to add and delete rows from
A (CHOLMOD [35, 36, 37]).

Exercises
4.1. Use cs ereach to implement an O(|L|)-time algorithm for computing the

elimination tree and the number of entries in each row and column of L. It
should operate using only the matrix A and O(n) additional workspace. The
matrix A should not be modified.

4.2. Compare and contrast cs chol with the LDL package [29] and with
cholmod rowfac. Both can be downloaded from www.siam.org/books/fa02.

4.3. Write a function that solves Lx = b when L, x, and b are sparse and L
comes from a Cholesky factorization, using the elimination tree. Assume the
elimination tree is already available; it can be passed in a parent array, or it
can be found by examining L directly, since L has sorted columns.

4.4. Repeat Problem 4.3, but solve LTx = b instead.

4.5. The cs ereach function can be simplified if A is known to be permuted ac-
cording to a postordering of its elimination tree and if the row indices in each
column of A are known to be sorted. Consider two successive row indices i1
and i2 in a column of A. When traversing up the elimination tree from node

9www.tacc.utexas.edu/resources/software
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68 Chapter 4. Cholesky factorization

i1, the least common ancestor of i1 and i2 is the first node a > i2. Let p be
the next-to-the-last node along the path i1 � a (where p < i2 < a). Include
the path i1 � p in an output queue (not a stack). Continue traversing the
tree, starting at node i2. The resulting queue will be in perfectly sorted order.
The while(len>0) loop in cs ereach can then be removed.

4.6. Compute the height of the elimination tree, which is the length of the longest
path from a root to any leaf. The time taken should be O(n). The result
should be the same as the second output of the MATLAB symbfact function.

4.7. Why is head of size n+1 in cs counts?

4.8. How does the skeleton function implicitly ignore duplicate entries?

4.9. The cs schol function computes a postordering, but does not combine it
with the fill-reducing ordering, because the ordering from cs amd includes an
approximate postordering of the elimination tree. However, cs amd might
not be called. Add an option to cs schol to combine the fill-reducing order
(or the natural ordering) with the postordering.

4.10. Write a function that computes the symbolic Cholesky factorization of A (the
nonzero pattern of L). Hint: start with cs chol and remove any numerical
computations. The algorithm should compute the pattern of L in O(|L|) time
and return a matrix L with sorted columns. The s array can be removed,
since the row indices can be stored immediately into L in any order. It should
allocate both N->L->i and N->L->x for use in Problem 4.11. Allocating
N->L->x can be postponed, but allocating it here makes it simpler to write
a MATLAB mexFunction interface for this problem.

4.11. Write a sparse left-looking Cholesky factorization algorithm with prototype
int cs leftchol(cs *A, css *S, csn *N). It should assume the nonzero
pattern of L has already been computed (see Problem 4.10). Compare its
performance with cs chol and cs rechol in Problem 4.12. The algorithm is
very similar to cs chol. The initializations are identical, except that x should
be created with cs calloc, not cs malloc. The N structure should be passed
in with all of N->L preallocated. The s array is not needed if cs ereach is
merged with cs leftchol (the topological order is not required).

4.12. Write a function with prototype int cs rechol(cs *A, css *S, csn *N)

that computes the Cholesky factorization of A using the up-looking method.
It should assume that the nonzero pattern of L has already been computed
in a prior call to cs chol (or by Problem 4.10). The nonzero pattern of A
should be the same as in the prior call to cs chol.

4.13. An incomplete Cholesky factorization computes an approximation to L with
fewer nonzeros. It is useful as a preconditioner for iterative methods, as
discussed in detail by Saad [178]. One method for computing it is to drop
small entries from L as they are computed. Another is to use a fixed nonzero
pattern (typically the nonzero entries in A) and keep only entries in L within
that pattern. Write an incomplete Cholesky factorization based on cs chol

or cs leftchol (Problem 4.11). See Problem 6.13 for more details. See also
the MATLAB cholinc function.D
ow

nl
oa

de
d 

07
/1

7/
23

 to
 1

37
.1

89
.4

9.
27

 . 
R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y




