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Chapter 3

Solving triangular systems

Solving a triangular system, Lx = b, where L is square and lower triangular, is a
key mathematical kernel. It will be used in Chapter 4 as part of a sparse Cholesky
factorization algorithm and in Chapter 6 as part of a sparse LU factorization algo-
rithm. The nonzero pattern of x will be used to construct the nonzero pattern of
a column of R for the QR factorization presented in Chapter 5. Solving Lx = b is
also essential for solving Ax = b after either a Cholesky or LU factorization of A.

3.1 A dense right-hand side
There are many ways of solving Lx = b (a forward solve), but if L is stored as
a compressed-column sparse matrix, accessing L by columns is the most natural.
Consider the 2-by-2 block decomposition,[

l11 0
l21 L22

] [
x1

x2

]
=

[
b1
b2

]
, (3.1)

where L22 is the lower right (n − 1)-by-(n − 1) submatrix of L; l21, x2, and b2 are
column vectors of length n − 1; and l11, x1, and b1 are scalars. This leads to two
equations, l11x1 = b1 and l21x1 + L22x2 = b2. To solve Lx = b, the first can be
solved (x1 = b1/l11) to obtain the first entry in x. The second equation is a lower
triangular system of the form L22x2 = b2 − l21x1 that can be solved recursively for
x2. Unwinding the tail recursion leads naturally to an algorithm that iterates over
the columns of L. Note that b1 and b2 are used just once; this allows x to overwrite
b in the implementation:

x = b
for j = 0 to n− 1 do

xj = xj/ljj
for each i > j for which lij �= 0 do

xi = xi − lijxj

If x is a dense vector but L is sparse, the algorithm and code are very similar to the
matrix-vector multiplication, cs gaxpy. On input, x contains the right-hand side
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28 Chapter 3. Solving triangular systems

b; on output it contains the solution to Lx = b. The cs lsolve function assumes
that the diagonal entry of L is always present and is the first entry in each column.
Otherwise, the row indices in each column of L can appear in any order.

int cs_lsolve (const cs *L, double *x)

{

int p, j, n, *Lp, *Li ;

double *Lx ;

if (!CS_CSC (L) || !x) return (0) ; /* check inputs */

n = L->n ; Lp = L->p ; Li = L->i ; Lx = L->x ;

for (j = 0 ; j < n ; j++)

{

x [j] /= Lx [Lp [j]] ;

for (p = Lp [j]+1 ; p < Lp [j+1] ; p++)

{

x [Li [p]] -= Lx [p] * x [j] ;

}

}

return (1) ;

}

Solving LTx = b (a backsolve) is best done by accessing LT by rows, since L
is stored by column. The 2-by-2 block decomposition becomes[

l11 lT21
0 LT

22

] [
x1

x2

]
=

[
b1
b2

]
,

where each entry in L has the same size as in (3.1).

int cs_ltsolve (const cs *L, double *x)

{

int p, j, n, *Lp, *Li ;

double *Lx ;

if (!CS_CSC (L) || !x) return (0) ; /* check inputs */

n = L->n ; Lp = L->p ; Li = L->i ; Lx = L->x ;

for (j = n-1 ; j >= 0 ; j--)

{

for (p = Lp [j]+1 ; p < Lp [j+1] ; p++)

{

x [j] -= Lx [p] * x [Li [p]] ;

}

x [j] /= Lx [Lp [j]] ;

}

return (1) ;

}

To solve Ux = b, where U is stored by column, yet another 2-by-2 decompo-
sition is used: [

U11 u12

0 u22

] [
x1

x2

]
=

[
b1
b2

]
,

where U11 is (n−1)-by-(n−1). This results in the two equations U11x1+u12x2 = b1
and u22x2 = b2. The second equation can be solved for x2 = b2/u22, and the first
becomes U11x1 = b1 − u12x2. These equations are encapsulated in the function
cs usolve. It assumes the diagonal entry is always present and appears as the lastD
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3.2. A sparse right-hand side 29

entry in each column. Row indices in the columns of U can otherwise be in any
order.

int cs_usolve (const cs *U, double *x)

{

int p, j, n, *Up, *Ui ;

double *Ux ;

if (!CS_CSC (U) || !x) return (0) ; /* check inputs */

n = U->n ; Up = U->p ; Ui = U->i ; Ux = U->x ;

for (j = n-1 ; j >= 0 ; j--)

{

x [j] /= Ux [Up [j+1]-1] ;

for (p = Up [j] ; p < Up [j+1]-1 ; p++)

{

x [Ui [p]] -= Ux [p] * x [j] ;

}

}

return (1) ;

}

The cs utsolve function solves UTx = b, where U is upper triangular. Its
derivation is left as an exercise.

int cs_utsolve (const cs *U, double *x)

{

int p, j, n, *Up, *Ui ;

double *Ux ;

if (!CS_CSC (U) || !x) return (0) ; /* check inputs */

n = U->n ; Up = U->p ; Ui = U->i ; Ux = U->x ;

for (j = 0 ; j < n ; j++)

{

for (p = Up [j] ; p < Up [j+1]-1 ; p++)

{

x [j] -= Ux [p] * x [Ui [p]] ;

}

x [j] /= Ux [Up [j+1]-1] ;

}

return (1) ;

}

cs lsolve(L,x), cs ltsolve(L,x), cs usolve(U,x), and cs utsolve(U,x)

correspond to x=L\x, x=L’\x, x=U\x, and x=U’\x in MATLAB, except that the
transposed solvers cs ltsolve and cs ltsolve do not transpose their inputs.

3.2 A sparse right-hand side
The Cholesky and LU factorization algorithms presented in Chapters 4 and 6 rely
on the solution to Lx = b to compute one row or column of the factors, where L, x,
and b are all sparse. The QR factorization algorithm presented in Chapter 5 uses
the nonzero pattern of x to construct one column of R. This small change, from a
dense right-hand side in cs lsolve to a sparse right-hand side, has a large impact
on the algorithm and its underlying theory.

To simplify the discussion, assume that L has a unit diagonal (this will be the
case for its use in LU factorization). The algorithm for solving Lx = b becomesD
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30 Chapter 3. Solving triangular systems

x = b
for j = 0 to n− 1 do

if xj �= 0
for each i > j for which lij �= 0 do

xi = xi − lijxj

The sparse vector x can be temporarily stored in a dense vector of size n, assumed
to be initially zero. Thus, the two statements x = b and xi = xi− lijxj can be done
efficiently. If this algorithm is implemented as in the above pseudocode, the time
taken would be O(n + |b| + f), where f is the number of floating-point operations
performed and |b| is the number of nonzeros in b. Normally, |b| < f , so the time
is O(n + f). This looks efficient, but it is not. The floating-point operation count
can easily be dominated by n. If b is all zero except for bn, f is O(1), but the total
work is O(n). Basing an LU factorization algorithm on this method for solving
Lx = b would lead to an Ω(n2)-time factorization, which is clearly unacceptable.
Factorizing a tridiagonal matrix should take O(n) time, not O(n2) time.

The problem is the for j loop. A better method would assume that the algo-
rithm starts with a list of indices j for which xj will be nonzero, X = {j |xj �= 0},
sorted in ascending order. The algorithm would then be

x = b
for each j ∈ X do

for each i > j for which lij �= 0 do
xi = xi − lijxj

Assuming X is already given, the run time drops to O(|b|+ f), which is essentially
O(f), an ideal target.

The problem now becomes how to determine X and how to sort it. Entries in
x become nonzero in two places, the first and last lines of the above pseudocode.
If numerical cancellation is neglected, these two statements can be written as two
logical implications:

1. bi �= 0 ⇒ xi �= 0.

2. xj �= 0 ∧ ∃i(lij �= 0) ⇒ xi �= 0.

These two rules can be expressed as a graph traversal problem. Consider a directed
graph GL = (V,E), where V = {1 . . . n} and E = {(j, i) | lij �= 0} (note that this is
actually the graph of LT ). The graph is acyclic. If marked nodes in GL correspond
to nonzero entries in x, rule one translates into marking all those nodes i ∈ B, where
B = {i | bi �= 0}. Rule two states that if node j is marked, and there is an edge from
node j to node i, then node i must be marked. The set X becomes the set of all
nodes in GL that can be reached via a path from one or more nodes in B. These
rules are illustrated in Figure 3.1. In graph terminology, X = ReachGL

(B), or more
simply X = ReachL(B), to avoid double subscripts. This gives a formal proof of
the following theorem.

Theorem 3.1 (Gilbert and Peierls [109]). Define the directed graph GL = (V,E)
with nodes V = {1 . . . n} and edges E = {(j, i) | lij �= 0}. Let ReachL(i) denoteD
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3.2. A sparse right-hand side 31

bj �= 0 ⇒ xj �= 0

xj �= 0 ∧ ∃i(lij �= 0) ⇒ xi �= 0

xj

xi

L

lij

Figure 3.1. Sparse triangular solve

the set of nodes reachable from node i via paths in GL, and let Reach(B), for a
set B, be the set of all nodes reachable from any node in B. The nonzero pattern
X = {j |xj �= 0} of the solution x to the sparse linear system Lx = b is given by
X = ReachL(B), where B = {i | bi �= 0}, assuming no numerical cancellation.

The set X can be computed by a depth-first search of the directed graph GL,
starting at nodes in B. The time taken by a depth-first search is proportional to
the number of edges traversed, plus the number of initial nodes in B. Each edge
reflects exactly two floating-point operations in the numerical solution to Lx = b,
so the total time is thus O(|b| + f). A depth-first search does not sort the set X ,
however. Fortunately, the update xi = xi − lijxj can be computed as soon as xj

is known. This update translates into two nodes j and i in X with an edge from
j to i in the directed graph GL. An ordering of X that preserves this precedence
is called a topological order, and a depth-first search can compute X in topological
order (a breadth-first search cannot).

A depth-first search is most easily written as a recursive algorithm, stated
in pseudocode below. The reach function computes X = ReachL(B) by starting a
depth-first search at each node i ∈ B.

function X = reach (L, B)
assume all nodes are unmarked
for each i for which bi �= 0 do

if node i is unmarked
dfs (i)

function dfs (j)
mark node j
for each i for which lij �= 0 do

if node i is unmarked
dfs (i)

push j onto stack for X

These two pseudocodes can be implemented with reachr and dfsr below.D
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32 Chapter 3. Solving triangular systems

int reachr (const cs *L, const cs *B, int *xi, int *w)

{

int p, n = L->n ;

int top = n ; /* stack is empty */

for (p = B->p [0] ; p < B->p [1] ; p++) /* for each i in pattern of b */

{

if (w [B->i [p]] != 1) /* if i is unmarked */

{

dfsr (B->i [p], L, &top, xi, w) ; /* start a dfs at i */

}

}

return (top) ; /* return top of stack */

}

void dfsr (int j, const cs *L, int *top, int *xi, int *w)

{

int p ;

w [j] = 1 ; /* mark node j */

for (p = L->p [j] ; p < L->p [j+1] ; p++) /* for each i in L(:,j) */

{

if (w [L->i [p]] != 1) /* if i is unmarked */

{

dfsr (L->i [p], L, top, xi, w) ; /* start a dfs at i */

}

}

xi [--(*top)] = j ; /* push j onto the stack */

}

The reachr function computes X = ReachL(B), where B is the nonzero pattern
of the n-by-1 sparse column vector b. The function returns X in the xi array, in
locations top to n-1, in topological order. The array w is of size n and must be all
zero on input. In reachr, a depth-first search is started at each node in B, unless
that node is already marked. The dfsr function starts a depth-first search at node
j. It simply marks node j and then starts a depth-first search at any unmarked
neighbors. When it finishes, it pushes j onto a stack containing X on output,
topologically sorted.

Recursive algorithms are easy to understand, but they can cause stack overflow
if the recursion goes too deep. The stack depth is up to n, which limits the algorithm
to solving matrices of modest size. Thus, CSparse does not rely on dfrs and reachr

(they are included but only for reference). The cs dfs function below uses its own
recursion stack xi[0] to xi[head] that does not overlap with the output stack in
xi[top] to xi[n-1], since no node can be in both stacks at the same time. The
input matrix is called G, because it need not be lower triangular. Two parameters
are added in anticipation of Chapter 6 (pinv and k). The parameter k specifies
which column of B contains the right-hand side b. For now, assume pinv is NULL.

Initializing the workspace w of size n takes O(n) time. This can be avoided
by marking nodes using the matrix G itself. To denote a marked node j, Gp[j] is
set to CS FLIP(Gp[j]), which exploits the fact that Gp[j] ≥ 0 in an unmodified
matrix G. A marked node j will have Gp[j] < 0. To unmark a node or to obtain
the original value of Gp[j], CS FLIP can be applied again, since the function is its
own inverse. The name “flip” is used because the function “flips” its input about
the integer -1. CS UNFLIP(i) “flips” i if it is negative or returns i otherwise.D
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3.2. A sparse right-hand side 33

#define CS_FLIP(i) (-(i)-2)

#define CS_UNFLIP(i) (((i) < 0) ? CS_FLIP(i) : (i))

#define CS_MARKED(w,j) (w [j] < 0)

#define CS_MARK(w,j) { w [j] = CS_FLIP (w [j]) ; }

int cs_reach (cs *G, const cs *B, int k, int *xi, const int *pinv)

{

int p, n, top, *Bp, *Bi, *Gp ;

if (!CS_CSC (G) || !CS_CSC (B) || !xi) return (-1) ; /* check inputs */

n = G->n ; Bp = B->p ; Bi = B->i ; Gp = G->p ;

top = n ;

for (p = Bp [k] ; p < Bp [k+1] ; p++)

{

if (!CS_MARKED (Gp, Bi [p])) /* start a dfs at unmarked node i */

{

top = cs_dfs (Bi [p], G, top, xi, xi+n, pinv) ;

}

}

for (p = top ; p < n ; p++) CS_MARK (Gp, xi [p]) ; /* restore G */

return (top) ;

}

int cs_dfs (int j, cs *G, int top, int *xi, int *pstack, const int *pinv)

{

int i, p, p2, done, jnew, head = 0, *Gp, *Gi ;

if (!CS_CSC (G) || !xi || !pstack) return (-1) ; /* check inputs */

Gp = G->p ; Gi = G->i ;

xi [0] = j ; /* initialize the recursion stack */

while (head >= 0)

{

j = xi [head] ; /* get j from the top of the recursion stack */

jnew = pinv ? (pinv [j]) : j ;

if (!CS_MARKED (Gp, j))

{

CS_MARK (Gp, j) ; /* mark node j as visited */

pstack [head] = (jnew < 0) ? 0 : CS_UNFLIP (Gp [jnew]) ;

}

done = 1 ; /* node j done if no unvisited neighbors */

p2 = (jnew < 0) ? 0 : CS_UNFLIP (Gp [jnew+1]) ;

for (p = pstack [head] ; p < p2 ; p++) /* examine all neighbors of j */

{

i = Gi [p] ; /* consider neighbor node i */

if (CS_MARKED (Gp, i)) continue ; /* skip visited node i */

pstack [head] = p ; /* pause depth-first search of node j */

xi [++head] = i ; /* start dfs at node i */

done = 0 ; /* node j is not done */

break ; /* break, to start dfs (i) */

}

if (done) /* depth-first search at node j is done */

{

head-- ; /* remove j from the recursion stack */

xi [--top] = j ; /* and place in the output stack */

}

}

return (top) ;

}

The cs dfs function starts by placing j in the recursion stack at xi[0]. EachD
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34 Chapter 3. Solving triangular systems

iteration of the while loop starts, or continues, the jth instance of cs dfs. If j
is on the recursion stack and it is not marked, then this is the first time it has
been visited. In this case, the node is marked, and pstack[head] is set to point to
the first outgoing edge of node j. If an unmarked node i is found, it is placed on
the recursion stack, and the iteration for node j is paused. The next while loop
iteration will then start the depth-first search for node i. When the depth-first
search for node j eventually finishes, it is removed from the recursion stack and
placed in the output stack.

The cs reach function is nearly identical to reachr. It computes X =
ReachG(Bk), where Bk is the nonzero pattern of column k of B.

With cs reach defined, solving Lx = b, where L, x, and b are all sparse,
becomes a straightforward translation of the pseudocode. The cs spsolve function
computes the solution to Lx = bk (if lo is nonzero), where bk is the kth column of
B. When lo is nonzero, the function assumes G = L is lower triangular with the
diagonal entry as the first entry in each column. It takes an optimal O(|b|+f) time.
Solving an upper triangular system Ux = b is almost identical to solving Lx = b.
Its derivation is left as an exercise. With lo equal to zero, the cs spsolve function
assumes G = U is upper triangular with the diagonal entry as the last entry in each
column.

int cs_spsolve (cs *G, const cs *B, int k, int *xi, double *x, const int *pinv,

int lo)

{

int j, J, p, q, px, top, n, *Gp, *Gi, *Bp, *Bi ;

double *Gx, *Bx ;

if (!CS_CSC (G) || !CS_CSC (B) || !xi || !x) return (-1) ;

Gp = G->p ; Gi = G->i ; Gx = G->x ; n = G->n ;

Bp = B->p ; Bi = B->i ; Bx = B->x ;

top = cs_reach (G, B, k, xi, pinv) ; /* xi[top..n-1]=Reach(B(:,k)) */

for (p = top ; p < n ; p++) x [xi [p]] = 0 ; /* clear x */

for (p = Bp [k] ; p < Bp [k+1] ; p++) x [Bi [p]] = Bx [p] ; /* scatter B */

for (px = top ; px < n ; px++)

{

j = xi [px] ; /* x(j) is nonzero */

J = pinv ? (pinv [j]) : j ; /* j maps to col J of G */

if (J < 0) continue ; /* column J is empty */

x [j] /= Gx [lo ? (Gp [J]) : (Gp [J+1]-1)] ;/* x(j) /= G(j,j) */

p = lo ? (Gp [J]+1) : (Gp [J]) ; /* lo: L(j,j) 1st entry */

q = lo ? (Gp [J+1]) : (Gp [J+1]-1) ; /* up: U(j,j) last entry */

for ( ; p < q ; p++)

{

x [Gi [p]] -= Gx [p] * x [j] ; /* x(i) -= G(i,j) * x(j) */

}

}

return (top) ; /* return top of stack */

}

The function returns the nonzero pattern X in xi[top] through xi[n-1], an array
of size 2*n. The first n entries of xi holds the output stack and the recursion stack
for j. The second n entries holds the stack for p in cs dfs. The numerical values
are in the dense vector x, which need not be initialized on input. To solve Lx = b,
a NULL pointer must be passed for pinv, and lo must be nonzero.D
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Figure 3.2. Solving Lx = b where L, x, and b are sparse

An example is shown in Figure 3.2. Suppose B = {4, 6}. The depth-first
search can start at either node 4 or node 6, and the neighbors of any node can be
searched in any order. If node 4 is searched first and the row indices in each column
of L are sorted, Reach(4) = {4, 9, 12, 13, 14} in order. This list of 5 nodes is placed
on the stack xi, and node 6 is searched next; Reach(6) = {6, 9, 10, 11, 12, 13, 14},
but some of these nodes are already marked. The stack xi will contain the list
{6, 10, 11, 4, 9, 12, 13, 14} in topological order. The forward solve will access the
columns of L in this order. The work done at columns 6, 10, and 11 is not affected
by the work done at columns 4 and 9.

MATLAB does not have an exact equivalent to cs reach or cs spsolve, ex-
cept as used internally in [L,U,P]=lu(A). The MATLAB expression x=L\b takes
O(n + |L|) time to compute a sparse x if L is sparse and b is a sparse vector.

3.3 Further reading
The sparse triangular solve forms the basis of the GPLU algorithm in MATLAB
[105, 109]. All sparse matrix packages with direct methods include forward solvers
and backsolvers. Not all provide transposed solvers such as cs ltsolve or sparse
solvers such as cs spsolve. Cormen, Leiserson, and Rivest [23] present algorithms
for the depth-first search and topological sort of a graph.

Exercises
3.1. Derive the algorithm used by cs utsolve.

3.2. Try to describe an algorithm for solving Lx = b, where L is stored in triplet
form, and x and b are dense vectors. What goes wrong?D
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36 Chapter 3. Solving triangular systems

3.3. The MATLAB statement [L,U]=lu(A) finds a permuted lower triangular
matrix L and an upper triangular matrix U so that L*U=A. The rows of L
have been permuted via partial pivoting, but the permutation itself is not
available. Write a permuted triangular solver that computes x=L\b without
modifying L and with only O(n) extra workspace. Two passes of the matrix L

are required, each taking O(|L|) time. The first pass finds the diagonal entry
in each column. Start at the last column and work backwards, flagging rows
as they are seen. There will be exactly one nonzero entry in an unflagged
row in each column. This is the diagonal entry of the unpermuted lower
triangular matrix. In any given column, if there are no entries in unflagged
rows, or more than one, then the matrix is not a permuted lower triangular
matrix. The second pass then performs the permuted forward solve.

3.4. Repeat Problem 3.3 for a matrix U that is an upper triangular matrix whose
rows have been permuted. The algorithm is almost identical to Problem 3.3.

3.5. Repeat Problem 3.3 for a matrix L that is a lower triangular matrix whose
columns have been permuted. Assume the first entry in each column has the
smallest row index. This problem is simpler than Problem 3.3. Two passes
of L are still required, but the first takes only O(n) time.

3.6. Repeat Problem 3.5 for a matrix U that is an upper triangular matrix whose
columns have been permuted. The solution will be similar to Problem 3.5.

3.7. This problem is a generalization of Problems 3.3 through 3.6 and is the
method used in MATLAB (due to Gilbert). Consider a matrix A that may
be a permuted upper or lower triangular matrix with both rows and columns
permuted by unknown permutations P and Q. Write an algorithm that de-
termines if the matrix is in this form and, if so, solves Ax = b. A single integer
s can represent a set of integers of arbitrary size that supports the following
operations: s=0 clears the set; s=s^j (the exclusive-or) removes j from the
set if j is not in the set or adds it to the set otherwise; j=s gets the member
of the set if the set has size one. Let r[i] be the count of nonzeros in row i

of A. Let z[i] represent the ith set; it starts as the exclusive-or of all column
indices of nonzeros in row i. Create a linked list of all row singletons (rows
with only one entry). For n iterations where A has dimension n, select a row
i from the list. If the list is empty, the matrix is not a permuted triangular
matrix. Otherwise, the corresponding column is j=z[i]. Append i and j

to the permutations p and q. Remove j from the sets z[t] for all t ∈ A∗j
and decrement their row counts by one. Add any new row singletons to the
linked list. If successful, follow this by a permuted triangular solve using the
newly discovered permutations p and q. The permuted matrix A(p,q) need
not be formed explicitly.

3.8. The cs lsolve and cs usolve functions assume that b contains no zero
entries. The time can be reduced if it does. Note that the inner for loop in
the two functions can be skipped if x[j] is zero. Add this test and compare
the run times of the modified and original functions. The modified functions
take O(n + f) time; the original ones take O(|L|) and O(|U |) time.

3.9. Prove that the cs spsolve function solves Ux = b when lo is zero.D
ow
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