
Lecture 21. Pivoting

In the last lecture we saw that Gaussian elimination in its pure form is unsta-
ble. The instability can be controlled by permuting the order of the rows of
the matrix being operated on, an operation called pivoting. Pivoting has been
a standard feature of Gaussian elimination computations since the 1950s.

Pivots
At step k of Gaussian elimination, multiples of row k are subtracted from rows
k + 1 , . . . , m of the working matrix X in order to introduce zeros in entry k
of these rows. In this operation row fc, column &, and especially the entry x^k
play special roles. We call Xkk the pivot. From every entry in the submatrix
Xk-\-i:m,k-.m is subtracted the product of a number in row k and a number in
column fc, divided by Xkk'-

However, there is no reason why the kth row and column must be chosen
for the elimination. For example, we could just as easily introduce zeros in
column k by adding multiples of some row i with k < i < m to the other rows
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156 PART IV. SYSTEMS OF EQUATIONS

ft,..., m. In this case, the entry xn, would be the pivot. Here is an illustration
with k = 2 and i = 4:

Similarly, we could introduce zeros in column j rather than column k. Here
is an illustration with k = 2, i = 4, j = 3:

All in all, we are free to choose any entry of Xk,m^.,m as the pivot, as long
as it is nonzero. The possibility that an entry Xkk — 0 might arise implies
that some flexibility of choice of the pivot may sometimes be necessary, even
from a pure mathematical point of view. For numerical stability, however,
it is desirable to pivot even when Xkk is nonzero if there is a larger element
available. In practice, it is common to pick as pivot the largest number among
a set of entries being considered as candidates.

The structure of the elimination process quickly becomes confusing if zeros
are introduced in arbitrary patterns through the matrix. To see what is going
on, we want to retain the triangular structure described in the last lecture,
and there is an easy way to do this. We shall not think of the pivot Xij
as left in place, as in the illustrations above. Instead, at step k, we shall
imagine that the rows and columns of the working matrix are permuted so
as to move xl} into the (k,k) position. Then, when the elimination is done,
zeros are introduced into entries k + 1 , . . . , m of column k, just as in Gaussian
elimination without pivoting. This interchange of rows and perhaps columns
is what is usually thought of as pivoting.

The idea that rows and columns are interchanged is indispensable con-
ceptually. Whether it is a good idea to interchange them physically on the
computer is less clear. In some implementations, the data in computer mem-
ory are indeed swapped at each pivot step. In others, an equivalent effect is
achieved by indirect addressing with permuted index vectors. Which approach
is best varies from machine to machine and depends on many factors.

Partial Pivoting
If every entry of Xk:m,k\m is considered as a possible pivot at step A, there are
O((rn — k)2) entries to be examined to determine the largest. Summing over
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LECTURE 21. PIVOTING 157

m steps, the total cost of selecting pivots becomes O(m3) operations, adding
significantly to the cost of Gaussian elimination, not to mention the potential
difficulties of global communication in an unpredictable pattern across all the
entries of a matrix. This expensive strategy is called complete pivoting.

In practice, equally good pivots can be found by considering a much smaller
number of entries. The standard method for doing this is partial pivoting.
Here, only rows are interchanged. The pivot at each step is chosen as the
largest of the m — k +1 subdiagonal entries in column &, incurring a total cost
of only O(m ~ k) operations for selecting the pivot at each step, hence O(m2)
operations overall. To bring the kih pivot into the (/c, k} position, no columns
need to be permuted; it is enough to swap row k with the row containing the
pivot.

As usual in numerical linear algebra, this algorithm can be expressed as
a matrix product. We saw in the last lecture that an elimination step cor-
responds to left-multiplication by an elementary lower-triangular matrix L^.
Partial pivoting complicates matters by applying a permutation matrix Pk

on the left of the working matrix before each elimination. (A permutation
matrix is a matrix with 0 everywhere except for a single 1 in each row and
column. That is, it is a matrix obtained from the identity by permuting rows
or columns.) After m — 1 steps, A becomes an upper-triangular matrix U:

Example

To see what is going on, it will be helpful to return to the numerical example
(20.3) of the last lecture,
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158 PART IV. SYSTEMS OF EQUATIONS

With partial pivoting, the first thing we do is interchange the first and third
rows (left-multiplication by PI):

The first elimination step now looks like this (left-multiplication by LI):

Now the second and fourth rows are interchanged (multiplication by F2):

The second elimination step then looks like this (multiplication by LI):

Now the third and fourth rows are interchanged (multiplication by P3):

The final elimination step looks like this (multiplication by l/3):
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LECTURE 21. PIVOTING 159

PA — LU Factorization and a Third Stroke of Luck

Have we just computed an LU factorization of A? Not quite, but almost. In
fact, we have computed an LU factorization of PA, where P is a permutation
matrix. It looks like this:

(21.3)
This formula should be compared with (20.5). The presence of integers there
and fractions here is not a general distinction, but an artifact of our choice of
A. The distinction that matters is that here, all the subdiagonal entries of
L are < 1 in magnitude, a consequence of the property
(20.6) introduced by pivoting.

It is not obvious where (21.3) comes from. Our elimination process took
the form

which doesn't look lower-triangular at all. But here, a third stroke of good
fortune has come to our aid. These six elementary operations can be reordered
in the form

where L'k is equal to Lk but with the subdiagonal entries permuted. To be
precise, define

Since each of these definitions applies only permutations Pj with j > k to
Lfc, it is easily verified that L'k has the same structure as Lk. Computing the
product of the matrices L'k reveals

as in (21.4).
In general, for an m x m matrix, the factorization (21.1) provided by

Gaussian elimination with partial pivoting can be written in the form

where L'k is denned by
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160 PART IV. SYSTEMS OF EQUATIONS

The product of the matrices L'k is unit lower-triangular and easily invertible
by negating the subdiagonal entries, just as in Gaussian elimination without
pivoting. Writing L = (L'm_i • • • I^I/j)"1 and P = Pm-i • • • P^Pi, we have

In general, any square matrix A, singular or nonsingular, has a factoriza-
tion (21.7), where P is a permutation matrix, L is unit lower-triangular with
lower-triangular entries < 1 in magnitude, and U is upper-triangular. Partial
pivoting is such a universal practice that this factorization is usually known
simply as an LU factorization of A.

The famous formula (21.7) has a simple interpretation. Gaussian elimina-
tion with partial pivoting is equivalent to the following procedure:

1. Permute the rows of A according to P

2. Apply Gaussian elimination without pivoting to PA.

Partial pivoting is not carried out this way in practice, of course, since P is
not known ahead of time.

Here is a formal statement of the algorithm.

Algorithm 21.1. Gaussian Elimination with Partial Pivoting

U = A, L = I, P = I
for k = 1 to m — 1

Select i > k to maximize \Uik\

Uk,k-.m *-+ Uifr.m (interchange two rows)

*-k,l:k-l *~* f-i,l:k-l

Pk,: «+ Pi,:

for j — k + 1 to m

ijk = Ujk/Ukk

^j,k;m = ^j,k:m £jk'U'k,km

To leading order, this algorithm requires the same number of floating point
operations (20.8) as Gaussian elimination without pivoting, namely, fm3- As
with Algorithm 20.1, the use of computer memory can be minimized if desired
by overwriting U and L into the same array used to store A.

In practice, of course, P is not represented explicitly as a matrix. The rows
are swapped at each step, or an equivalent effect is achieved via a permutation
vector, as indicated earlier.
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LECTURE 21. PIVOTING 161

Complete Pivoting
In complete pivoting, the selection of pivots takes a significant amount of
time. In practice this is rarely done, because the improvement in stability is
marginal. However, we shall outline how the algebra changes in this case.

In matrix form, complete pivoting precedes each elimination step with a
permutation Pk of the rows applied on the left and also a permutation Qk of
the columns applied on the right:

Once again, this is not quite an LU factorization of A, but it is close. If the
L'k are defined as in (21.6) (the column permutations are not involved), then

Setting
we obtain

Exercises

21.1. Let A be the 4 x 4 matrix (20.3) considered in this lecture and the
previous one.

(a) Determine det A from (20.5).

(b) Determine det A from (21.3).

(c) Describe how Gaussian elimination with partial pivoting can be used to
find the determinant of a general square matrix.

21.2. Suppose A 6 Cmxm is banded with bandwidth 2p+l, as in Exercise 20.2,
and a factorization PA — LU is computed by Gaussian elimination with
partial pivoting. What can you say about the sparsity patterns of L and U ?

21.3. Consider Gaussian elimination carried out with pivoting by columns
instead of rows, leading to a factorization AQ = LU, where Q is a permutation
matrix.

(a) Show that if A is nonsingular, such a factorization always exists.

(b) Show that if A is singular, such a factorization does not always exist.

21.4. Gaussian elimination can be used to compute the inverse A'1 of a
nonsingular matrix A G (Dmxra, though it is rarely really necessary to do so.

(a) Describe an algorithm for computing A~l by solving m systems of equa-
tions, and show that its asymptotic operation count is 8m3/3 flops.
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162 PART IV. SYSTEMS OF EQUATIONS

(b) Describe a variant of your algorithm, taking advantage of sparsity, that
reduces the operation count to 2m3 flops.
(c) Suppose one wishes to solve n systems of equations AXJ = bj, or equiv-
alently, a block system AX = B with B € Cmxn. What is the asymptotic
operation count (a function of m and n) for doing this (i) directly from the
LU factorization and (ii) with a preliminary computation of A~ll

21.5. Suppose A   CTOXm is hermitian, or in the real case, symmetric (but
not necessarily positive definite).

(a) Describe a strategy of symmetric pivoting to preserve the hermitian struc-
ture while still leading to a unit lower-triangular matrix with entries \i^\ < 1.

(b) What is the form of the matrix factorization computed by your algorithm?
(c) What is its asymptotic operation count?

21.6. Suppose A G (Cmxm is strictly column diagonally dominant, which
means that for each k,

Show that if Gaussian elimination with partial pivoting is applied to A, no
row interchanges take place.

21.7. In Lecture 20 the "two strokes of luck" were explained by the use of the
vectors &k and 4- Give an explanation based on these vectors for the "third
stroke of luck" in the present lecture.
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