
CHAPTER 1 MOTIVATION AND EXAMPLES.
COMPUTATIONAL CONSIDERATIONS

1.1 MOTIVATION AND OUTLINE. This course is intended as a first introduction to the methods of
numerical linear algebra. Students are assumed to be already familiar with the basics of linear algebra,
although some facts and properties are recalled here in an effort to make this document self-contained.
Solution methods for solving (often very large) systems of linear equations are esential components
of scientific computation in many areas, including model-based simulation of the response of physical
systems, optimization, data analysis and statistics. Even though many readers will not be directly
faced with designing or implementing such methods, understanding their underlying principles and
conditions of applications is a necessary part of the background of anyone involved in mathematical
modelling and scientific computation.

The topics presented in these lecture notes follow a natural order:

• Some general considerations relevant to matrix computation,

• Direct solution methods for linear systems and least-squares problems,

• Iterative solution methods for linear systems,

• Numerical solution of eigenvalue problems,

• Ill-posed linear systems and least-squares problems.

There is of course a huge literature on the topic of computational linear algebra, which is only
very partially reflected by the sample of classical references given in the bibliography of this document
without any claim of completeness or extensivity. In particular, the recent book [14] is recommmended
as a very readable and student-friendly introduction to many of the important topics of computational
linear algebra (including advanced topics such as direct solution methods for large sparse linear sys-
tems). That book moreover provides comprehensive examples of implementation (and implementation
exercises) based on the Julia programming language, which is open-source and freely available.

To help put this course in context, we also mention (and provide references to) courses on related
topics taught at ENSTA Paris.

1.2 EXAMPLES INVOLVING LINEAR SYSTEMS. In this section, we provide a motivation through a
series of examples. Our background and field of activity being primarily concerned with the mathe-
matical and computational modelling of systems arising in mechanics (deformable solids, fluids) and
more generally in physics (e.g. acoustics, electromagnetism), these motivating exemples are certainly
to some extent biased. Mechanics and physics usually rely on known mathematical models describing
the underlying physics, often based on ODEs or PDEs, and in this context numerical linear algebra is
heavily involved in solution methods for those models, based on discretization (finite elements, bound-
ary elements, finite differences, discontinuous Galerkin methods...). Other situations involve models
that are at least partially unknown, the missing knowledge on them being sought from experimen-
tal data: this in particular includes inverse problems and in many forms (e.g. data assimilation for
weather forecast, seismic inversion). Finally, many other applications (e.g. image processing, statisti-
cal and data analysis) do not rely on a priori chosen mathematical models, but rather attempt to find
ad hoc models, often without direct physical meaning, that correlate, explain, or allow predictions
from, available data. All those tasks, and many more, rely on computation, and numerical linear

5

ycq
高亮

6 CHAPTER 1. MOTIVATION AND EXAMPLES. COMPUTATIONAL CONSIDERATIONS

Figure 1.1: Finite element mesh of automotive engine part (from the website of INRIA Gamma 3 team).

algebra is among the key methodological ingredients allowing to achieve those varied goals. Data sets
or physical unknowns often have very high dimension, and tasks such as solving large linear systems
of equations often occur repeatedly in the overall process, hence the importance of computational
efficiency.

1.2.1 Finite element analysis of mechanical structures. This example is both quite classical and very
relevant to many sectors of industry (e.g. aerospace, automotive, energy production, civil engineering,
biomechanics) where very large models may be solved. Upon finite element (FE) approximation [11, 3,
5] of the elastic equilibrium equations in weak form by means of the Galerkin method, and assuming
usual small-strain linearly-elastic constitutive behavior, the unknown kinematic degrees of freedom
gathered in a vector U solve the linear system

KU = F (1.1)

where K is the stiffness matrix K while F is the vector of generalized loads obtained by evaluating
the virtual work of the applied loads for each basis (test) function of the finite element approximation
space.

• Here, the governing matrix K is (i) symmetric, (ii) positive definite1 and (iii) banded. Therefore
K is in particular sparse: for a very large FE model, the nonzero entries of K represent only a
small fraction of its population.

• Well-known energy principles of mechanics show that (1.1) alternatively expresses that U mini-
mizes the (FE-discretized) potential energy

Epot(U) := 1
2U

TKU − UTF, (1.2)

a remark that is strongly connected to certain iterative solvers applicable to the linear sys-
tem (1.1).

1.2.2 Structural dynamics and modal analysis. Eigenvalue problems are another frequent component
of engineering mechanics (in particular). For example, the free vibrations of an undamped elastic solid
verify (using a finite element approximation)

KU − (2πf)2MU = 0

(where M is the mass matrix associated with kinetic energy), which is the generalized eigenvalue
problem of finding frequencies f and nonzero displacements U (called vibration modes) solving the
above equation. Those modes correspond to potential resonances (so need to be avoided under service
loads); moreover they provide convenient basis functions for obtaining low-dimensional models of
dynamic response (modal projections).

1Assuming the problem, or the chosen FE approximation, prevents rigid-body motions, failing which K is positive
but not invertible and additional precautions must be taken to fix the rigid-body motion contribution to the solution.

ycq
高亮

ycq
高亮

ycq
高亮

ycq
高亮

ycq
高亮

ycq
高亮

1.2. EXAMPLES INVOLVING LINEAR SYSTEMS 7

M

3ℓℓ

ℓ/2

ℓ

κ
ℓ/2

G2, ρ2G2, ρ2

G1, ρ1G1, ρ1

G1, ρ1G1, ρ1

-1 0 1 2

k l
1
 / π

0

1

2

3

(
ρ

1
 /

 G
1
)

1
/2

ω

Figure 1.2: Left: Periodicity cell Y for medium made of staggered bricks separated by compliant inter-
faces (in blue). The bricks are bonded by ligaments near the “triple points” such as M. Right:
(wavenumber - frequency) computed dispersion diagram for that cell. Each line plot made of 601
points in wavenumber-frequency space, eachj point requires solving a separate eigenvalue prob-
lem. The FE model has 5690 fourth-order triangular finite elements (46426 nodal unknowns).
Computations done in connection with research work presented in [21].

• The mass matrix is a symmetric positive definite band matrix.

The computation of eigenvalues and eigenvectors can more generally have many motivations:

(i) Physical motivations: investigate the stability of dynamical responses under small perturbations
(of systems or excitations), find the dispersion properties of complex materials under wave
propagation (i.e. determine the wavenumber / frequency pairs that allow the propagation of
free waves), predict potential structural instabilities such as buckling.

(ii) Computational and algorithmic motivations: evaluation of singular value decomposition of ar-
bitrary matrices, of their spectral norm or condition number, estimation of convergence rates of
iterative solvers.

To further illustrate (i), the question of whether a certain kind of free wave called Bloch wave, char-
acterized by a vector-valued wavenumber k ∈ R3, can propagate in a given complex (e.g. peri-
odic) medium is answered by solving a generalized eigenvalue problem of the form (1.2) with the
stiffness K replaced by a modified form K̂(k) that depends on the wavenumber. Then, solving
K̂(k)U − (2πf)2MU = 0 for all wavenumbers in a certain region of the k-space (producing eigenfre-
quencies f1(k), f2(k), . . .) yield dispersion diagrams (which plot fi(k) as functions of k) that play an
important role in the physics of wave propagation in complex media. See Fig. 1.2 for an illustration.

1.2.3 Boundary element solution of wave scattering. Wave propagation simulation problems often
assume the idealization of an unbounded propagation medium exterior to the object that radiates or
scatters (e.g. acoustic, electromagnetic or elastic) waves. Applications include noise generation or
furtivity studies in the aerospace industry. Such computations are often performed on the bssis of a
boundary element method (BEM) resulting from the discretization of a boundary integral equation
(BIE) governing the (acoustic, electromagnetic, elastic) wave propagation problem. The latter has
the typical form ∫

S

G(x,y)u(y) dS(y) = f(x) (1.3)

where u is the main unknown on the surface S (e.g. the acoustic pressure field), f is the data (e.g.
related to the normal velocity of a pulsating surface) and G(x,y) is the (known) acoustic Green’s
function. We refer to e.g. the course [2] for a detailed exposition of BIE theory and BEMs.

ycq
高亮

ycq
高亮

ycq
高亮

ycq
高亮

ycq
高亮

ycq
高亮

ycq
高亮

ycq
高亮

ycq
高亮

ycq
高亮

ycq
高亮

ycq
高亮

8 CHAPTER 1. MOTIVATION AND EXAMPLES. COMPUTATIONAL CONSIDERATIONS

• Upon discretization, the BIE (1.3) yields a linear system of the form GU = F where U ∈ Cn

(unknown), F ∈ Cn (data) and G ∈ Cn×n (BEM influence matrix). The matrix G is dense,
and is amenable to block-wise low-rank approximation (for example using the hierarchical matrix
method, as in [9])

Figure 1.3: Scattering of fluid pressure wave by a rigid motionless submarine: total pressure field on the
surface, 5.4 milliseconds after the incident wave first hits the submarine. The boundary element
mesh has about 3 106 pressure unknowns. From [25]

Figure 1.4: Hierarchical matrix blockwise approximation of a BEM matrix. From [9]

1.2.4 Solution of non-linear equations. Many models in mechanics and physics require (after a finite-
dimensional approximation process) to solve non-linear equations of the general form:

Find U ∈Rn, F(U) = 0

where (usually) F(U) is a Rn → Rn mapping2. If F is differentiable, many solution algorithms follow
the iterative Newton-Raphson approach whereby a first-order Taylor expansion of F about the current
iterate Uk allows to define the next iterate Uk+1 from setting to zero the linearized approximation of
F(Uk+1):

F(Uk+1) ≈ F(Uk) +Kk(Uk+1−Uk) =⇒ find Uk+1, KkUk+1 = KkUk −F(Uk). (1.4)

where Kk := ∇F(Uk) is often called the tangent matrix (or, in solid mechanics, the tangent stiffness).
The above process is started from some initial guess U0. Each iteration entails solving a linear system of
equations governed by the tangent matrix Kk. For instance, with reference to (1.2), nonlinearly-elastic
materials may be described by a non-quadratic potentiel energy of the form Epot(U) = Φ(U)−UTF ,

2For example, we simply have F(U) = KU − F in the linear elastic FE case.

ycq
高亮

ycq
高亮

ycq
高亮

ycq
高亮

ycq
高亮

ycq
高亮

ycq
高亮

1.2. EXAMPLES INVOLVING LINEAR SYSTEMS 9

whose stationarity equation for a given load level E has the form F(U) := ∇UΦ(U) − F = 0 and is
no longer linear in U .

• The structure and main characteristics of the tangent matrix Kk are problem-dependent. For
many non-linear models arising from mechanical FE models, Kk can be considered as being
the stiffness of a fictitious heterogeneous linear-elastic material whose local material parameters
depend on the current solution iterate, so shares many of the properties (SPD mand matrix) of
standard stiffness matrices.

Nonlinear solution algorithms based on Newton-Raphson iterations of the general form (1.4) are
widely implemented in industry engineering mechanics FE codes (such as Abaqus or code aster)
for performing a wide variety of non-linear analyses involving material plasticity, frictional contact3,
buckling and many other phenomena.

1.2.5 Identification, inverse problems. Inverse problems are “indirect measurement” situations where
quantitative information about some hidden physical variable is sought by exploiting measurements
of other, related, physical variables. Classical examples include imaging subterranean media from
surface accelerometry data and tumor detection by elastography.

By way of illustration, we briefly consider temperature reconstruction problems that are relevant in
space industry: knowing the distribution of temperature on a vehicle after landing, infer temperatures
of outer skin during atmospheric reentry phase. This is an instance of the backwards heat conduction
problem (BHCP): knowing the temperature distribution x 7→ θ(x, T) in a conducting body at time
T > 0, can we infer the distribution x 7→ θ(x, 0) at an earlier time (say t = 0)? The measurement
θ(·, T) and the unknown θ(·, 0) can be shown to obey a linear relationship of the form

θ(·, T) = A(T)θ(·, 0) =⇒ (discretization) Θ(T) = A(T)Θ(0) (1.5)

where the linear operator A(T) results from the chosen linear heat diffusion physical model. Upon
discretization, one obtains a linear system, where the matrix A(T) is dense. The BHCP is known to
be ill-posed [8], making its discretized counterpart ill-conditioned: temperature reconstructions with
acceptable accuracy are very hard to obtain using “naive” linear algebra methods as soon as the data
is even slightly noisy, as illustrated in Fig. 1.5 on a simple spatially 1D configuration. Less-naive
approaches designed for ill-conditioned linear systems such as (1.5) will be presented in Chap. 6.

1.2.6 Image processing. A frequent issue in image processing is to “restore”, or otherwise improve,
images of insufficient quality. For instance, Earth-based telescopes take astronomical images of celestial
objects which may be blurred by atmospheric turbulence (through which light propagates before
reaching the telescope mirror) or local light pollution. Such problems can often be mathematically

formulated as deconvolution problems, the imperfect image f̂ being related to the perfect image f by

f̂(x) =

∫
Y

k(x− y)f(y) dy x∈ Y

(Y being the set of all pixels and the function y 7→ f(y) representing for example a gray or color level at
pixel y), where the convolution kernel k models measurement imperfections (due to e.g. the apparatus
or environmental conditions). For instance, Gaussian kernels k(z) = A exp(−z2/2b) are used to model
atmospheric blurring (b is tuned according to the blur severity, and C is a normalization constant).
It is well known that k converges (in the distributional limit sense) to the Dirac mass δ as b → 0 (the

no-blur limit), in which case the above convolution yields f̂ = f .
Upon discretization, deblurring a measured image translates into solving the system

F̂ = KF F = {f(y1), . . . , f(yn)}T, F̂ = {f̂(y1), . . . , f̂(yn)}T, Kij = ∆Sjk(xi − yj)

where ∆Sj is the (small) surface area of the j-th pixel. It turns out that such linear systems are highly

sensitive to small perturbations in the data F̂ , which makes image deblurring a difficult computational
problem (and a subject of intense current research). See Figure 1.6 for an illustrative example.

3where complications appear due to the non-smooth character of unilateral contact conditions.

ycq
高亮

ycq
高亮

ycq
高亮

ycq
高亮

ycq
高亮

ycq
高亮

ycq
高亮

ycq
高亮

ycq
高亮

ycq
高亮

ycq
高亮

ycq
高亮

ycq
高亮

ycq
高亮

ycq
高亮

ycq
高亮

ycq
高亮

10 CHAPTER 1. MOTIVATION AND EXAMPLES. COMPUTATIONAL CONSIDERATIONS

0 0,2 0,4 0,6 0,8 1

x

0

0,05

0,1

0,15

0,2

θ
0

true
reconstructed, noise = 0

reconstructed, noise = 1e-10

numerical solution of 1D BHCP

Figure 1.5: 1D reconstruction of initial temperature (at time t = 0) from noise-free or slightly noisy data.
Observe the quite noticeable degradation in identification caused on the reconstruction by a very
slight (simulated) data noise. Observation equation (1.5) solving by (unsuitably) naive methods.
Data is temperature at times t = O(5 103)s assuming material diffusivity is that of steel.

Figure 1.6: Example of image deblurring: image before degradation (left), degraded image (middle), de-
blurred image (right)

• The matrix K is fully-populated but has a low numerical rank (it can be well approximated by
a low-rank matrix). It is strictly speaking invertible, but very ill-conditioned. This topic will be
revisited in Chap. 6

1.2.7 Correlation analysis. Consider a data set D =
{
yi, xi1, . . . , xin

}m

i=1
(where each of the m

individuals, numbered i = 1 to i = m, is described by a set of explanatory variables, or predictors,
x1, . . . , xn and a dependent variable y). Assume that it is desired to find a simple (linear) mathematical
relation allowing to predict, on the basis of this data, the value of the dependent variable y for any
other individual knowing its predictors x1, . . . , xn. Hence, we want to find the “best” model of the
form

ŷ = aTx+ b,

which requires finding optimal values for the parameters a∈Rn and b∈R of the linear approximation.
A common approach is to seek a, b such that the model prediction ŷ is closest to y in an average sense
for the data set D, with the average taken as the quadratic mean. In other words:

Find a∈Rn, b∈R such that

n∑
i=1

|yi − xT

i a− b|2 → minimum

ycq
高亮

ycq
高亮

ycq
高亮

ycq
高亮

ycq
高亮

1.3. FINITE-PRECISION COMPUTATION 11

Setting X = [xij] (1≤ i≤m, 1≤ j ≤n), this can be recast in matrix terms as a least squares problem:

Find a∈Rn, b∈R such that ∥Xa− (y−b)∥22 → minimum

Solving this type of problem also rests on numerical linear algebra methods, as we will see.

1.2.8 Learning. Learning methods aim in particular at defining learning functions F(x) that evaluate
a classification y = F(x) associated with some “raw data” x. For example, x is a numerical vector
encoding an image, and y is a classification output (e.g. y = F(x) encodes whether the image x shows
a house, a boat, something else?). Such learning functions are for example constructed by composing
affine maps Lx := x 7→ Ax + b and nonlinear functions N , with those steps applied several times
(known as layers): F(x) = N

(
L
(
N(L(. . . Lx))

))
. Part of the available data (e.g. a set of images) is

used as training data: A, b (and possibly other parameters) are tuned using optimization methods so
that F computes on the training data the correct (known) classification output; this is the “learning”
part. Then, F can be applied to new data to do actual classification.

Numerical linear algebra is involved in both the definition of the layers of the learning function
and the computational methods (in particular optimization methods, which themselves rely heavily
on linear algebra) used for tuning weights such as A, b. See [33] (and the references therein) for an
introductory exposition together with the accompanying background on linear algebra, optimization,
statistics.

1.3 FINITE-PRECISION COMPUTATION. Despite its paramount importance, we will only briefly ad-
dress the topic of finite-precision computation, as it is treated in much more detail in the companion
course [24]. Numerical computing is based on the well-known floating-point representation of numbers,
of the form

x = sm be

where s is the sign of x, m its mantissa, b the basis (normally b = 2) and e the exponent. Double-
precision real numbers occupy 64 bits (1 for the sign of x, 52 for the mantissa, 11 for |e|). The mantissa
is such that 1≤m< 2 (it has a leading implicit bit set to 1). A few observations immediately come
to mind:

• Numbers are in general subject to roundoff error ;

• Roundoff errors are relative to orders of magnitude; in particular, the numbers described by the
floating point representation are not spaced evenly.

• For this reason, estimating relative errors on evaluations and algorithms makes more sense than
estimating absolute errors.

The widely-used IEEE 754 norm for representing floating point numbers and computing with them
ensures that

for all x∈R, there exists ε, |ε|<εmach such that fl(x) = x(1+ε)

where x 7→ fl(x) is the operator converting a number to its floating point representation and εmach,
often called the “machine epsilon”, is the maximum modulus of relative round-off error (εmach ≈ 10−16

for double-precision floating-point reals). That norm also guarantees that

for all x, y ∈F, x⊛ y = fl(x ⋆ y),

where ⋆ is one of the operations +,−,×, /,
√
, ⊛ is the floating-point implementation of that operation

and F is the set of all floating-point numbers, as well as

for all x, y ∈F, there exists ε, |ε|<εmach such that x⊛ y = (x ⋆ y)(1+ε) (1.6)

Error analysis of computational algorithms (regarding round-off errors) basically consists in expressing
each floating-point operation using (1.6) and keeping track of the effect of roundoff errors ε on the
algorithm.

ycq
高亮

ycq
高亮

ycq
高亮

ycq
高亮

ycq
高亮

ycq
高亮

ycq
高亮

ycq
高亮

ycq
高亮

ycq
高亮

ycq
高亮

ycq
打字机
"Big-endian" and "Little-endian"

ycq
高亮

ycq
高亮

ycq
高亮

ycq
高亮

12 CHAPTER 1. MOTIVATION AND EXAMPLES. COMPUTATIONAL CONSIDERATIONS

1.4 VECTORS, MATRICES, NORMS.

1.4.1 Matrices. Matrices are arrays of (real or complex) numbers that allow to express linear rela-
tionships between elements of finite-dimensional vector spaces.

Vector space. We begin by briefly recalling that vector spaces are sets of objects (called vectors)
for which certain operations are defined, namely the addition of vectors and the multiplication of a
vector by a scalar (i.e. a number). For all usual applications of numerical linear algebra, those scalars
are either real or complex numbers, and we will use generically the notation K to refer to the set of
scalars (with either K=R or K=C). A set E is a vector space (also called a linear space) provided
the following axioms are verified:

1. Addition of vectors is commutative: x+ y = y + x

2. Addition of vectors is associative: x+ (y + z) = (x+ y) + z

3. There exists a zero vector: x+ 0 = x

4. Each vector has an opposite vector: x+ (−x) = 0

5. Multiplication of scalars and with a vector are compatible: (αβ)x = α(βx)

6. Scalar multiplication has a unit element: 1x = x

7. Scalar multiplication is distributive w.r.t. scalar addition: (α+β)x = αx+ βx

8. Scalar multiplication is distributive w.r.t. vector addition: α(x+ y) = αx+ αy

To repeat, in this course we will only consider finite-dimensional vector spaces with K=R or K=C.
We will usually denote a n-dimensional vector space E on the scalars K by Kn; this means that a
basis of E is (perhaps implicitly) chosen, so that any vector x of E is given as n-uple of numbers: x =
(x1, . . . , xn) ∈ Kn. In this representation, each basis vector ek is the n-uple ek = (0, . . . , 0, 1, 0, . . . , 0)
(with the unit coordinate at the k-th position), and any vector of E is given by

x = x1e1 + . . .+ xnen, (x1, . . . , xn) ∈ Kn

Matrices. A matrix A ∈ Km×n is a rectangular array of numbers aij (1 ≤ i ≤m, 1 ≤ j ≤ n), which
in particular serves to represent the action of a linear mapping A : Kn → Km (after having chosen a
basis in both spaces). Letting x = (x1, . . . , xn) ∈ Kn, its image Ax = y = (y1, . . . , ym) ∈ Km under A
is given by

yi =

n∑
i=1

aijxj , or


y1
...
ym

 =

a11 . . . a1n
...

...
am1 . . . amn



x1

...
xn

 i.e. y = Ax in matrix notation (1.7)

Some terminology and notation. We recall and list the definition of some important types of matrices,
and the associated terminology:

• Matrices A ∈ Kn×n, having the same number n of rows and columns, are said to be square.
Non-square matrices A ∈ Km×n (m ̸=n) are said to be rectangular.

• A matrix A ∈ Km×n with most of its entries equal to zero is said to be sparse4. A non-sparse
matrix is called dense.

• The transpose AT of a matrix A ∈ Km×n is such that (AT)ij = Aji.

• The conjugate transpose AH of a complex matrix A ∈ Cm×n is such that (AH)ij = Aji, that is,
AH = AT. If A is real, AT = AH, of course.

• Square real matrices A ∈ Rn×n that are equal to their transpose, i.e. verify AT = A, aji = aij ,
are said to be symmetric.

4There is no precise definition of “most”. A frequent expectation is that the number of nonzero entries is at most
of the same order as the number of rows or columns.

ycq
高亮

ycq
高亮

ycq
高亮

ycq
高亮

ycq
高亮

1.4. VECTORS, MATRICES, NORMS 13

• Square complex matrices A ∈ Cn×n that are equal to their conjugate transpose, i.e. verify
AH = A, aji = aij , are said to be Hermitian. Of course, Hermitian real matrices are simply
symmetric matrices.

• Square matrices A∈Kn×n are symmetric positive definite (SPD) if (i) AH = A, (ii) xHAx> 0 for
all x∈Kn, x ̸=0 (Hermitian symmetry implies that xHAx ∈ R for any x∈Kn).

• Square matrices A ∈ Kn×n such that AHA = I are unitary (or orthogonal in A ∈ Rn×n). They
verify A−1 = AH and (AH)−1 = A.

We also list here a few notation conventions that will be used throughout without much further
warning:

• We adopt the usual convention that vectors are column vectors, their (conjugate) transpose being
row vectors; this is consistent with the usual rules of matrix algebra such as the matrix-vector
product y = Ax appearing in (1.7), and also with conventions used in e.g. Matlab. Scalar
products, for example, are hence written as

(x, y) = xTy (for real vectors), (x, y) = xHy (for complex vectors).

while, if x∈Km, y ∈Kn, xyH ∈ Km×n is a rank-1 matrix.

• Vectors are denoted with lowercase letters, e.g. x, and (in context) xi is the i-th entry of x.

• Matrices are denoted with uppercase letters, e.g. A, and (in context) aij is the (i, j)-th entry of
A.

• A Matlab-like colon “:” serves to define submatrices by their index ranges. For example, we
write

Ak:ℓ,p:q := [aij]k≤i≤ℓ, p≤j≤q (rectangular submatrix of A),

Ak:ℓ,p := [aip]k≤i≤ℓ (part of the p-th row of A)

1.4.2 Vector norms.. In numerical linear algebra, as in many other areas, it is essential to measure the
“magnitude” (and “smallness”, “largeness”. . .) of objects such as vectors or matrices (for instance, the
convergence of an algorithm may be defined in terms of errors on the solution becoming “increasingly
small”). Such magnitudes are measured using (vector, matrix) norms. Regarding (for now) vectors,
any vector norm ∥ · ∥ must satisfy the usual defining properties of a norm, namely:

zero norm: ∥x∥=0 if and only if x=0,

positive homogeneity: ∥λx∥ = |λ|∥x∥ for any λ ∈ K
triangle inequality: ∥x+y∥ ≤ ∥x∥+∥y∥

for all x∈Kn (1.8)

Common vector norms include

∥x∥1 :=

n∑
i=1

|xi|, ∥x∥2 :=
(n∑

i=1

|xi|2
)1/2

, ∥x∥p :=
(n∑

i=1

|xi|p
)1/p

, ∥x∥∞ := max
1≤i≤n

|xi|

in particular, ∥·∥2 is the usual Euclidean norm. All vector norms are equivalent: for any pair ∥·∥α, ∥·∥β
of norms equipping Kn, there exist constants C1 ≤C2 (depending only on the choice of norms and on
the dimension n) such that

C1∥x∥α ≤ ∥x∥β ≤ C2∥x∥α for all x∈Kn, (1.9)

and, in particular, we have

∥x∥2 ≤ ∥x∥1 ≤ √
n∥x∥2

∥x∥∞ ≤ ∥x∥2 ≤ √
n∥x∥∞

∥x∥∞ ≤ ∥x∥1 ≤ n∥x∥∞
for all x∈Kn.

Notice that the upper equivalence constant blows up in all three cases as n → ∞, reminding us that
equivalence no longer holds in the infinite-dimensional limit (of e.g. linear spaces of sequences [7]).

ycq
高亮

ycq
高亮

ycq
高亮

ycq
高亮

ycq
高亮

ycq
高亮

ycq
高亮

ycq
高亮

14 CHAPTER 1. MOTIVATION AND EXAMPLES. COMPUTATIONAL CONSIDERATIONS

Norms are often used to evaluate estimates (usually upper bounds), for example to show that a
vector is “small”, or remains bounded, under some computational process. Such uses often rely on
classical inequalityes, chiefly the Cauchy-Schwarz inequality

|xHy| ≤ ∥x∥2∥y∥2,

which is a special case of the more-general Hölder inequality

|xHy| ≤ ∥x∥p∥y∥q with
1

p
+

1

q
= 1, 1<p, q <∞.

1.4.3 Matrix norms. Matrix norms may be defined as norms induced by vector norms5: for any p> 0,
the p norm ∥A∥p of A∈Km×n is defined by

∥A∥p := max
x∈Kn,x ̸=0

∥Ax∥p
∥x∥p

= max
∥x∥p=1

∥Ax∥p, (1.10)

and thus provides the best upper bound on matrix-vector products: for any matrix A and vector x,
we have

∥Ax∥p ≤ ∥A∥p∥x∥p,
with at least one vector x achieving equality in the above inequality6. In fact, one may equally well
define the q-norm of a matrix induced by the vector p-norm:

∥A∥p,q := max
x∈Kn,x ̸=0

∥Ax∥q
∥x∥p

= max
∥x∥p=1

∥Ax∥q,

Another frequently used norm is the Frobenius norm ∥ · ∥F defined by

∥A∥F :=
(∑

i,j

|aij |2
)1/2

=
√
Tr(AAH) (1.11)

(where AH is the Hermitian transpose of A). The Frobenius norm extends to matrices the Euclidean
norm of vectors7; it is not an induced norm.

The Frobenius norm (1.11) and all induced matrix p-norms (1.10) are sub-multiplicative: they all
satisfy

∥AB∥ ≤ ∥A∥ ∥B∥ (1.12)

The terminology “matrix norm” is sometimes restricted to norms of matrices that do verify the
sub-multiplicativity requirement (1.12). While not part of the basic defining properties (1.8) of a
norm, sub-multiplicativity is very useful as it permits to derive estimates (upper bounds) of quantities
involving matrix multiplications.

Matrix norms are all equivalent, i.e. obey inequalities of the form (1.9); in particular we have8

1√
m
∥A∥1 ≤ ∥A∥2 ≤ √

n∥A∥1
1√
n
∥A∥∞ ≤ ∥A∥2 ≤ √

m∥A∥∞
1√

min(m,n)
∥A∥F ≤ ∥A∥2 ≤ ∥A∥F

for all A∈Km×n

Notation convention for norms. The generic norm symbol ∥ · ∥ will stand for any unspecified vector
norm, and indicate the induced matrix norm if evaluated on a matrix (e.g. ∥Ax∥ ≤ ∥A∥ ∥x∥); in
particular, a Frobenius norm will always be indicated explicitly (e.g. ∥A∥F).

5In infinite-dimensional linear spaces, induced norms are usually called operator norms, see e.g. [7]
6This is true because the range of A, as a finite-dimensional subspace of Km, is closed, implying the existence of

x maximizing ∥Ax∥p. If the matrix A is normal, i.e. satisfies AAH = AHA, such x is in fact any eigenvector for the
eigenvalue of A having largest modulus, see Sec. 5.

7Its infinite-dimensional counterpart in Hilbert spaces is known as the Hilbert-Schmidt norm
8noticing again the loss of equivalence in the infinite-dimensional limit

ycq
高亮

ycq
高亮

ycq
高亮

ycq
高亮

ycq
高亮

ycq
高亮

ycq
高亮

ycq
高亮

ycq
高亮

ycq
高亮

ycq
高亮

ycq
高亮

ycq
高亮

ycq
打字机
Why？

1.5. ACCURACY AND STABILITY 15

1.5 ACCURACY AND STABILITY. Generally speaking, many scientific computing tasks may be
viewed as evaluating a function F on a given datum x ∈ X to obtain a desired result y = F(x),
y ∈ Y. The data space X and the solution space Y may be very diverse and complex (for instance,
function spaces for which some partial differential equation is well-posed, see [7, 6]). The function
F , which we may call the solution operator, may itself be complicated (with nonlinear components,
tests...) and defined only implicitly as a sequence of simpler operations (an algorithm).

In this course, we limit ourselves to the case where the data and solution spaces are finite-
dimensional, and F may symbolize diverse computational tasks such as solving the linear system
Ay = b (A, b being the data and y the sought solution) or diagonalizing a symmetric matrix A (A
being the data, and x = (λi, xi) the sought eigenvalue-eigenvector pairs). We will see for example
(Sec. 5) that the latter problem cannot be solved by applying a predefined function to the data, and
instead requires an iterative algorithm.

We assume that there is an exact problem to be solved (for example, find the solution of Ay = b
with A, b known exactly, i.e. without errors induced by e.g. finite machine precision). Exactness
here does not pertain to a possible prior approximation methodology leading to the finite-dimensional
problem being solved (for example, we treat the finite element approximation of a PDE as exact if the
stiffness matrix A and load vector b are exact by virtue of prior computation not suffering from any
numerical errors), and y=F(x) symbolizes this exact problem, where an “exact” solution y is found
by applying an “exact” method F to an exact datum x.

In practice, only an imperfect version of the solution operator F can be achieved9, whereas the
data x is approximated by floating-point numbers and incurs roundoff errors in the process. We let
x 7→ F̃(x) denote the process of rounding off the data x, then applying to it the (imperfect) numerical

solution method. To assess the reliability of the algorithm F̃ available in practice, it is natural to
consider questions such as

How close to y = F(x) is the approximation ỹ := F̃(x) ?

Accuracy. Since a good algorithm must approximate the exact problem well, one may for example
consider the relative solution accuracy

erel =
∥F̃(x)−F(x)∥

∥F(x)∥ . (1.13)

Under optimal conditions, the best possible accuracy is erel ≈ εmach. Individual floating-point arith-
metic operations do meet this goal.

Stability. To achieve erel ≈ εmach in (1.13) is however unrealistically demanding for most algorithms
due to factors like large-scale computations or ill-conditioned problems. For these reasons, it is more
appropriate to aim for stability : the algorithm F̃ for a problem F is deemed stable if

for each x∈X ,
∥F̃(x)−F(x̃)∥

∥F(x̃)∥ = O(εmach) for some x̃ such that
∥x− x̃∥
∥x∥ = O(εmach). (1.14)

This can be stated informally as: a stable algorithm must yield nearly the right answer if given a
nearly correct data (with “nearly” meant in the relative sense). It turns out that many algorithms of
numerical linear algebra satisfy a stability condition that is stronger than (1.14), known as backward
stability :

for each x∈X , F̃(x) = F(x̃) for some x̃ such that
∥x− x̃∥
∥x∥ = O(εmach). (1.15)

Definition (1.15) is stronger than (1.14) in that the first O(εmach) is replaced by zero. Stated informally,
(1.15) says that a backward stable algorithm must yield exactly the right answer for some nearly

9For instance, F̃ is a finite-precision method for solving Ay = b, yielding an approximate solution y even for exact
data A, b.

ycq
高亮

ycq
高亮

ycq
高亮

ycq
高亮

ycq
高亮

ycq
高亮

ycq
高亮

ycq
高亮

ycq
高亮

ycq
高亮

ycq
高亮

ycq
高亮

ycq
高亮

16 CHAPTER 1. MOTIVATION AND EXAMPLES. COMPUTATIONAL CONSIDERATIONS

correct data. As we will see, algorithms of numerical linear algebra are often assessed in terms of their
backward stability.

The notation O(εmach) in (1.14) and (1.15) (and similarly in the remainder of these course notes)
means that the quantity on the left-hand side is less than Cεmach, for some fixed constant C > 0,
whenever εmach is small enough. A given machine has a fixed (small) value for εmach while the O(·)
notation is mathematically defined with reference to a limiting process. The two aspects can be
reconciled by envisioning a (virtual) family of computers with smaller and smaller εmach.

1.6 CONDITIONING, CONDITION NUMBER. The forward and backward errors may be connected by
considering the relative sensitivity ϱ(F ;x, x̃), which is the ratio of forward and backward errors:

ϱ(F ;x, x̃) :=
∥F̃(x)−F(x)∥

∥F(x)∥
(∥x̃−x∥

∥x∥
)−1

=
∥F(x̃)−F(x)∥

∥F(x)∥
∥x∥

∥x̃−x∥

(note that we have used the defining equality F̃(x) = F(x̃) of backward stability, see (1.15)). The
condition number κ = κ(F ;x) of F at x ∈ X is then defined as the limiting value of the relative
sensitivity ϱ(F ;x, x̃) in the limit of vanishing data perturbations:

κ(F ;x) := lim
δ→0

sup
∥x̃−x∥≤δ

∥F(x̃)−F(x)∥
∥F(x)∥

∥x∥
∥x̃−x∥ . (1.16)

If the solution operator F is regular enough, the condition number (1.16) is given by the more-explicit
formula

κ(F , x) =
∥F ′(x)∥ ∥x∥

∥F(x)∥ ,

where F ′(x) is the Fréchet derivative10 of F at x (which is assumed to exist). Most often no ambiguity
arises as to the solution operator F and data point x being considered, and we will for short write κ
rather than κ(F , x).

Interpretation. As said before, κ is the (limit for small data perturbations of the) ratio between
relative solution errors (a.k.a. forward errors) and relative data errors (a.k.a. backward errors).
Notice in particular that, by construction, κ is a dimensionless number (i.e. it has no physical units,
even though the data or solution, or both, may have physical units); this implies that κ is deemed
small (resp. large) if κ ≪ 1 (resp. κ ≫ 1). A solution process F is said to be well-conditioned
if κ = O(1) (relative solution error of the same order as relative data error), and ill-conditioned if
κ(F) ≫ 1 (relative solution error much larger than relative data error). To be sound and reliable,
computational methods must therefore be well-conditioned.

1.7 CONDITION NUMBER OF LINEAR SYSTEMS. We now derive and illustrate the condition number
of the computational task of fundamental interest for this course, namely solving a linear system of
equations. We focus on the sensitivity of the solution to data errors, the exposition of solution methods
being deferred to Chapter 2 and 4. Accordingly, consider the linear system

Ay = b, (1.17)

with data x = (A, b) and (unique) solution y, A being assumed to be a square invertible matrix.
Consider also a perturbed version

(A+E)(y+z) = b+f (1.18)

10A function F : X → R is differentiable at x ∈ X if there exists a continuous linear functional F ′(x) ∈ X ′, called
the Fréchet derivative of F at x, such that F(x̃) − F(x) =

〈
F ′(x), x̃−x

〉
+ o(∥x̃−x∥) for any x̃ in a neighborhood of

x in X ; X may be any normed vector space (with X ′ its topological dual). In the case of present interest where X is
finite-dimensional, the Fréchet derivative can be represented as a vector (the gradient ∇F(x) of F at x) and we have
F(x̃)−F(x) = [∇F(x)]T(x̃−x) + o(∥x̃−x∥))

ycq
高亮

ycq
高亮

ycq
高亮

1.7. CONDITION NUMBER OF LINEAR SYSTEMS 17

of system (1.17), where E, f are perturbations of the matrix and right-hand side (i.e. the absolute
backward errors) and z is the induced perturbation on the solution (i.e. the absolute forward error).
To examine how z is linked to (E, f), we use (1.17) and (1.18) and find that z solves the system

(A+E)z = f − Ey with y = A−1b

We assume the matrix perturbation to be small enough to have ∥A−1∥∥E∥ < 1; by a Neumann
series argument, this guarantees in particular that A+E is invertible, and we moreover have

(A+E)−1 = A−1(I + EA−1)−1, ∥(A+E)−1∥ ≤ ∥A−1∥
1− ∥EA−1∥ ≤ ∥A−1∥

1− ∥E∥∥A−1∥ ,

so that the solution error may be estimated as

∥z∥ = ∥(A+E)−1(f−Ey)∥ ≤ ∥A−1∥
1− ∥E∥∥A−1∥

(
∥f∥+ ∥E∥∥y∥

)
.

We reformulate the above estimate in terms of the forward relative error ∥z∥/∥y∥ and the backward
relative errors ∥E∥/∥A∥, ∥f∥/∥b∥, to obtain

∥z∥
∥y∥ ≤ ∥A−1∥∥A∥

1− ∥E∥∥A−1∥
(∥f∥
∥b∥

∥b∥
∥A∥∥y∥ +

∥E∥
∥A∥

)
≤ ∥A−1∥∥A∥

1− ∥E∥∥A−1∥
(∥f∥
∥b∥ +

∥E∥
∥A∥

)
,

the last inequality resulting from ∥b∥ ≤ ∥A∥∥y∥ as a consequence of Ay = b. Upper bounds on the
relative sensitivity and its limiting value for small relative data errors ∥E∥/∥A∥ and ∥f∥/∥b∥ are
therefore obtained as

∥z∥
∥y∥

(∥f∥
∥b∥ +

∥E∥
∥A∥

)−1

≤ κ(A)

1− κ(A)∥E∥
∥A∥

= κ(A) +O
(∥E∥
∥A∥

)
, with κ(A) := ∥A−1∥∥A∥.

Recalling the definition (1.16) of the condition number, κ(A) = ∥A−1∥∥A∥ is an upper bound of the
condition number associated with solving Ay = b; it is called the condition number of the matrix A.
Loosely speaking, κ(A) is the multiplicative coefficient which, applied to the relative matrix error or
the relative right-hand side error (or both), estimates the induced relative solution error. This concept
is, obviously, absolutely essential in numerical linear algebra.

Properties. The following properties of κ(A) and remarks must be kept in mind:

• We always have κ(A)≥ 1 (because ∥A−1∥∥A∥ ≥ ∥∥A−1A∥ = ∥I∥ = 1 for any induced norm).

• The value of κ(A) depends on the choice of (matrix) norm; if defined for the induced p-norm, we
sometimes write it κp(A).

• If the matrix A is normal (i.e. verifies AAH = AHA), it is unitarily diagonalizable (i.e. A = QΛQH

for some unitary matrix Q). In this case, and for the choice ∥ · ∥ = ∥ · ∥2 of norm, we have
∥A∥2 = |λmax| and ∥A−1∥2 =1/|λmin|, and hence

κ2(A) = |λmax|/|λmin|,

where λmax and λmin are the eigenvalues of A with largest and smallest modulus (noting that
invertibility of A requires |λmin|> 0). For instance, for the 2×2 (normal) matrix A = diag(1, ε),
we have κ(A) = 1/|ε| and A is ill-conditioned for small ε.

• For any orthogonal or unitary matrix Q, we have ∥Qx∥2 = ∥x∥2 for all x ∈ Kn, implying that
∥Q∥2 = 1. Similarly, ∥Q−1∥2 = ∥QH∥2 = 1. Consequently, κ2(Q) = 1.

• The condition number κ2(A) of an arbitrary matrix A ∈ Km×n is given in terms of either its
pseudo-inverse or its singular values, see Secs. 3.4, 3.5 and Theorem 3.6.

18 CHAPTER 1. MOTIVATION AND EXAMPLES. COMPUTATIONAL CONSIDERATIONS

A simple numerical example. Consider the following (symmetric) matrix A, whose inverse (as given
below) is exact:

A =


10 7 8 7
7 5 6 5
8 6 10 9
7 5 9 10

 , A−1 =


25 41 10 −6
−41 68 −17 10
10 −17 5 −3
−6 10 −3 2


We consider perturbations f of b, or E of A, and evaluate the induced perturbations z on the solution
y of Ay = b:

b =


32
23
33
31

 =⇒ y =


1
1
1
1

 ,

f =


0.1
−0.1
0.1
−0.1

 =⇒ z =


8.2

−13.6
3.5
−2.1

 ,
E23 = 0.1

Eij = 0 otherwise
=⇒ z ≈


−5.86
−11.7
−2.43
−3.43


In fact, the eigenvalues of A, numerically computed (see Sec. 5) as listed below in order of decreasing
magnitude, allow (since A is symmetric) to evaluate its condition number:

(λ1, λ2, λ3, λ4) ≈ (30.29, 3.858, 0.8431, 0.01015), , κ2(A) = |λ1|/|λ4| ≈ 2.98 103

This makes A rather ill-conditioned (relative data errors being amplified about 3000-fold), especially
given that its size is only 4.

