
Solution to MATH5011 homework 5

1. We summarize the properties of the Lebesgue measure on Rn. For E ⊂ Rn, let

Ln(E) = inf

{∑
k

|Ck| : E ⊂
∪
k

Ck, Ck closed cubes
}

.

We have

(a) Ln(C) = 1 for every unit cube C (open or closed).

(b) Ln is a σ-finite Borel measure.

(c) Ln is finite on bounded sets.

(d) For every measurable E,

Ln(E) = inf {Ln(G) : E ⊂ G, G open} ;

Ln(E) = sup {Ln(K) : K ⊂ E, K compact} .

(e) Let T be a linear transformation from Rn to itself. For each measurable E, T (E) is also

measurable and there is some constant CT such that

Ln(T (E)) = CTLn(E) .

(a)-(d) were covered in previous exercises. Prove (e).

Solution. You are referred Proposition 3.2 in my notes or Theorem 2.20 (e) in [R].

2. Let Φ be a Lipschitz continuous map on Rn to Rn, that is, for some L > 0,

|Φ(x)− Φ(y)| ≤ L|x− y| , ∀x, y ∈ Rn .

Show that Φ(E) is measurable if E is (Lebesgue) measurable.

Solution. Assume that E is compact first. As the image of a compact set under a continuous

map is again compact and so is Borel, we see that Ln(E) is also compact, hence measurable. Next,

let E be a bounded measurable set. By inner regularity we can find a set F ⊂ E which is the

countable union of compact sets satisfying Ln(E \ F ) = 0. Hence the set N = E \ F is null and

Φ(E) = Φ(F ) ∪ Φ(N). We have Φ(F ) =
∪

j Φ(Kj) where Kj are compact, so Φ(F ) is Borel (hence
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measurable). Therefore, things boil down to show that the image of a null set under a Lipschitz

map is a null set. This is the key point, and the proof is not difficult. Finally, we can write a

measurable set as the countable union of bounded, measurable sets.

3. This problem is related to the σ-finiteness condition in Proposition 2.10. Define the distance between

points (x1, y1) and (x2, y2) in the plane to be

|y1 − y2| if x1 = x2, 1 + |y1 − y2| if x1 ̸= x2.

Show that this is indeed a metric, and that the resulting metric space X is locally compact.

If f ∈ Cc(X), let x1, . . . , xn be those values of x for which f(x, y) ̸= 0 for at least one y (there are

only finitely many such x!), and define

Λf =

n∑
j=1

∫ ∞

−∞
f(xj , y) dy.

Let µ be the measure associated with this Λ by the representation theorem. If E is the x-axis, show

that µ(E) = ∞ although µ(K) = 0 for every compact K ⊂ E.

Solution. Write pi = (xi, yi), i = 1, 2. Denote

d(p1, p2) =

 |y1 − y2|, x1 = x2,

1 + |y1 − y2|, x1 ̸= x2.

We prove that d is a metric.

• d(p1, p2) ≥ 0 and d(p1, p2) = 0 if and only if p1 = p2.

• d(p1, p2) = d(p2, p1).

• d(p1, p2) ≤ d(p1, p3) + d(p3, p2) holds because |y1 − y2| ≤ |y1 − y3|+ |y3 − y2|.

Now we claim that (X, τ) is a locally compact Hausdorff space. Let τ1 be the discrete topology

on R, so every singleton {x} is an open set. Then every point x ∈ R has the compact set {x}

as a neighborhood, so that (R, τ1) is a locally compact Hausdorff space. Note that (X, τ) =

(R, τ1)× (R, τ2), where τ2 is the usual topology of R. The claim follows.

If K is compact in X, the first projection pr1(K) is compact in (R, τ1). Hence it is a finite set.

Therefore K is a finite union

{x1} ×K1 ∪ · · · ∪ {xn} ×Kn,
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where each Ki, i = 1, 2, . . . , n, is a compact set in (R, τ2).

If f : X → R has compact support, then spt f ⊂ {x1, . . . , xn} × R. Thus,

Λf =

n∑
j=1

∫ ∞

−∞
f(xj , y) dy

defines a positive linear functional on Cc(X).

By the proof of Riesz’s representation theorem, the measure µ defined by the equalities

µ(V ) = sup
K⊂V compact

µ(K) = sup
f≺V

Λf,

µ(E) = inf
V⊃E open

µ(V )

is a representing measure for Λ. Using the second equality with the Lebesgue measure m on R, we

observe that

µ({x} ×K) = m(K).

Thus µ is characterized by the identity

µ({x} × [a, b]) = b− a, x ∈ R.

Let V be an open set containing R×{0}. Then for x ∈ R, (x, 0) ∈ V , so that there exists an εx > 0

with

{x} × [−εx, εx] ⊂ V.

This implies that there must be an n with uncountably many εx ≥ 1/n. (Otherwise, εx ≥ 1/n for

at most countably many x, contradicting the fact that R is uncountable.)

Let

Kx = {x} ×
[
−εx

2
,
εx
2

]
, εx ≥ 1

n
.

For K =
m∪
j=1

Kxj , we have µ(K) ≥ m

n
. Hence, if V ⊃ R × {0} is open, then µ(V ) ≥ sup

m∈N

m

n
= ∞.

This implies µ(R× {0}) = ∞.

Now if K is a compact subset of R× {0}, then K = {x1, . . . , xn} × {0}, which implies µ(K) = 0.

Therefore for E = R× {0}, µ(E) = ∞ while sup
K⊂E compact

µ(K) = 0. This means that µ is not inner

regular.

4. Let λ be a Borel measure and µ a Riesz measure on Rn such that λ(G) = µ(G) for all open sets G.
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Show that λ coincides with µ on B.

Solution: Let E ∈ B. For ε > 0, by Proposition 2.10, there exists an open set E and a closed set

F with F ⊂ E ⊂ G such that µ(G\F ) < ε. Since G and G\F are open, λ and µ coincide on them,

and one has

µ(E) = µ(G)− µ(G \ E) ≥ µ(G)− µ(G \ F ) = λ(G)− λ(G \ F )

≥ λ(E)− ε.

By changing the position of µ and λ, one has

λ(E)− ε ≤ µ(E) ≤ λ(E) + ε.

Since this holds for any ε > 0, one has µ(E) = λ(E).

5. Let µ be a Borel measure on Rn such that µ(K) < ∞ for all compact K. Show that µ is the

restriction of some Riesz measure on B.

Solution. It suffices to show both measures coincide on open sets because then we can apply the

previous problem. For f ∈ Cc, define the linear functional by

Λf =

∫
fdµ .

As µ is finite on compact sets, this is a well-defined and obviously a positive functional. By the

representation theorem there is a Riesz measure µΛ such that

∫
fdµ =

∫
fµΛ , ∀f ∈ Cc(Rn) .

For any open set G, we can find an ascending sequence of compact sets {Kn} such that G =
∪

nKn.

Let fn satisfy Kn < fn < G so that fn increases to χG pointwisely. By Lebesgue monotone

convergence we get

µ(G) = lim
n→∞

∫
G
fndµ = lim

n→∞

∫
G
fndµΛ = µΛ(G) .

4


