
Solution to MATH5011 homework 3

Standard notations are in force.

(1) Prove the conclusion of Lebsegue’s dominated convergence theorem still holds

when the condition “{fk} converges to f a.e.” is replaced by the condition “

{fk} converges to f in measure”.

Solution. Suppose on the contrary that
∫

|fk − f |dµ does not tend to zero.

By considering the limit supremum of the sequence, we can find a positive

constant M and a subsequence {fnj
} such that

∫
|fnj

− f |dµ ≥ M

for all j. By Prop 1.17, a subsequence {gk} of {fnj
} converges to f a.e.. By

Lebsegue’s dominated convergence theorem, we have

0 = lim
k→∞

∫
|gk − f |dµ ≥ M > 0,

contradiction holds.

(2) Find an example in each of the following cases.

(a) A sequence which converges in measure but not at every point.

(b) A sequence which converges pointwisely but not in measure.

(c) A sequence which converges in measure but not in L1.

Solution.

(a) Take X = [0, 1] and the Lebesgue measure. Basically, let f1 = χ[0,1/2], f2 =

χ[1/2,1], f3 = χ[0,1/22], f4 = χ[1/22,1/2], f5 = χ[1/2,3/22], f6 = χ[3/22,1], · · · .
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(b) According to Proposition 1.18, the measure cannot be finite. Take X =

R and the Lebesgue measure. Consider gn = χ[n,n+1]. We have gn(x) →

0 for all x but not in measure.

(c) Take X = R and the Lebesgue measure. Consider hn = n2χ[0,1/n]. Then

hn → 0 in measure but not in L1.

(3) Let fn, n ≥ 1, and f be real-valued measurable functions in a finite mea-

sure space. Show that {fn} converges to f in measure if and only if each

subsequence of {fn} has a subsubsequence that converges to f a.e..

Solution. Let µ be the measure in a finite measure space. If {fn} converges

to f in measure, then every subsequence {fnk
} also converges to f in measure.

By Prop 1.17, the subsequence {fnk
} has a sub-subsequence converging to f

a.e..

Now suppose that each subsequence of {fn} has a sub-subsequence that con-

verges to f a.e.. Assume that fn does not converge to f in measure. By

considering the limit supremum, there are positive ρ , M and subsequence

{fnj
} such that, µ({x : |fnj

(x)− f(x)| ≥ ρ}) ≥ M , for all j. However, a sub-

sequence {gk} of {fnj
} converges to f a.e. and by Prop 1.18, {gk} converges

to f in measure and

0 = lim
k→∞

µ({x : |gk(x)− f(x)| ≥ ρ}) ≥ M > 0,

which is impossible. Hence {fn} converges to f in measure.

(4) Let (X,M, µ) be a measure space. Let M̃ contain all sets E such that there

exist A,B ∈ M, A ⊂ E ⊂ B, µ(B\A) = 0. Show that M̃ is a σ-algebra

containing M and if we set µ̃(E) = µ(A), then (X,M̃, µ̃) is a complete

measure space.

Solution. We see that M̃ contains M by taking E = A = B for any E ∈

M. Suppose Ei ∈ M̃, Bi ⊆ Ei ⊆ Ai where Bi, Ai ∈ M and µ(Ai\Bi) = 0,
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then
∞∩
i=1

Bi ⊆
∞∩
i=1

Ei ⊆
∞∩
i=1

Ai

and

µ(
∞∩
i=1

Ai\
∞∩
i=1

Bi) ≤ µ(
∞∪
i=1

Ai\Bi) ≤
∞∑
i=1

µ(Ai\Bi) = 0.

We have
∞∩
i=1

Ei is in M̃. If A ⊇ E ⊇ B, then

X\A ⊆ X\E ⊆ X\B

and

µ((X\B)\(X\A)) = µ(A\B).

Hence X\E is in M̃ and M̃ is a σ algebra. We check that µ̃ is a measure

on M̃ . Obviously µ̃(ϕ) = 0. Let Ei be mutually disjoint µ̃ measurable set,

∃Bi, Ai µ measurable s.t

Ai ⊆ Ei ⊆ Bi

and

µ(Bi \ Ai) = 0.

Using above argument, we have µ(
∞∪
i=1

Bi \
∞∪
i=1

Ai) = 0, And Ai are mutually

disjoint,

µ̃(
∞∪
i=1

Ei) = µ(
∞∪
i=1

Ai) =
∞∑
i=1

µ(Ai) =
∞∑
i=1

µ̃(Ei).

So µ̃ is a measure on M̃ .

Finally, we check that µ̃ is a complete measure, let E be a µ̃ measurable and

null set, for all subset C ⊆ E, we have ∃A,B ∈ M s.t.A ⊆ E ⊆ B and
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µ(A) = µ(B) = 0. Therefore

ϕ ⊆ C ⊆ B

and

µ(B) = 0.

We have C ∈ M̃.

(5) Show that M̃ in the previous problem is the σ-algebra generated by M and

all subsets of measure zero sets in M.

Solution. Let M1 be the σ-algebra generated by M and all subsets of

measure zeros sets in M.

By definition, M̃ contains all the sets in M and all subsets of measure zero

sets in M. Since M1 is the smallest such σ-algebra, we have M1 ⊂ M.

To prove that M̃ ⊂ N , we let E ∈ M̃. Then there exist A,B ∈ M such that

A ⊂ E ⊂ B and µ(B \A) = 0. Then E \A ⊂ B \A is a subset of a measure

zero set. Now E = A ∪ (E \ A) is a union of a set in M and a subset of a

measure zero set. Hence, E ∈ M1.

(6) Here we consider an application of Caratheodory’s construction. An algebra

A on a set X is a subset of PX that contains the empty set and is closed under

taking complement and finite union. A premeasure µ : A → [0,∞] is a finitely

additive function which satisfies: µ(ϕ) = 0 and µ(
∪∞

k=1Ek) =
∑∞

k=1 µ(Ek)

whenever Ek are disjoint and
∪∞

k=1Ek ∈ A. Show that the premeasure µ can

be extended to a measure on the σ-algebra generated by A. Hint: Define the

outer measure

µ(E) = inf
{∑

k

µ(Ek) : E ⊂
∪
k

Ek, Ek ∈ A
}
.
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This is called Hahn-Kolmogorov theorem.

Solution. We follow the proof from Terence Tao’s book “Introduction To

Measure Theory”. Define µ as above and obviously µ is an outer measure on

power set of X. By Caratheodory’s construction, we get a measure defined

on a σ- algebra M . We claim that A ⊆ M , let E ∈ A and C ⊆ X such that

µ(C) < ∞, for all ε > 0, there is {Ei}∞i=1 ⊆ A covering C such that

µ(C) + ε >
∞∑
i=1

µ(Ei).

As {Ei ∩E}∞i=1 and {Ei \E}∞i=1 are subset of A and cover C ∩E and C \E

respectively, we have,

µ(C ∩ E) ≤
∞∑
i=1

µ(Ei ∩ E),

and

µ(C \ E) ≤
∞∑
i=1

µ(Ei \ E).

Using the fact that µ is a premeasure, µ(Ei ∩E) + µ(Ei \E) = µ(Ei). Sum-

ming over i, we know that E is in M and M contains the σ algebra generated

by A. Now we try to show that the measure induced extends µ, obviously

by definition µ(E) ≤ µ(E). Let {Ei}∞i=1 ⊆ A covering E. Without affect-

ing the countable union, we may make {Ei}∞i=1 disjoint and obtain {Bi}∞i=1.

Furthermore, by taking intersection with E, we have

∞∪
i=1

Bi ∩ E = E

and
∞∑
i=1

µ(Ei) ≥
∞∑
i=1

µ(Bi) ≥
∞∑
i=1

µ(Bi ∩ E) = µ(E),

where the last equality follows from the condition of µ. Hence µ(E) ≥ µ(E)
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and the measure extends µ.

The following problems are concerned with the Lebesgue measure. Let R =

I1×I2×· · ·×In, Ij bounded intervals (open, closed or neither), be a rectangle

in Rn. More properties of the Lebesgue measure can be found in Exercise 4.

(7) For a rectangle R in Rn, define its “volume” to be

|R| = (b1 − a1)× (b2 − a2)× · · · × (bn − an)

where bi, ai are the right and left endpoints of Ij. Show that

(a) if R =
N∪
k=1

Rk where Rk are almost disjoint, then

|R| =
N∑
k=1

|Rk|.

(b) If R ⊂
N∪
k=1

Rk, then

|R| ≤
N∑
k=1

|Rk|.

Solution.

(a) Take n = 2 for simplicity. Each rectangle is of the form [a, b]× [c, d]. We

order the endpoints of the x-coordinates of all rectangles R1, · · · , RN into

a1 < a2 < · · · < an and y-coordinates into b1 < b2 < · · · < bm. This division

breaks R into an almost disjoint union of subrectangles Rj,k = [aj, aj+1] ×

[bk, bk+1]. Note that each Rj,k is contained in exactly one Rl and each Rl is

6



an almost disjoint union of subrectangles from this division. We have

|R| = (an − a1)(bm − b1)

= (an − an−1 + an−1 − an−2 + · · ·+ a2 − a1)(bm − bm−1 + bm−1 + · · ·+ b2 − b1)

=
∑
j,k

|Rj,k|

=
∑
l

∑
Rj,k⊆Rl

|Rj,k|

=
∑
l

|Rl|,

(b) The proof is similar to that of (a), but now we need to subdivide Rj

and R together. Now, R ⊆
N∪
j=1

Rj. We order all x-coordinates of Rj, R into

a1 < a2 < · · · < aN and and y-coordinates into b1 < b2 < · · · < bM . Then R

is the union of parts of Rk,j

|R| =
∑

Rj,k⊆R

|Rj,k|

≤
∑
j,k

|Rj,k|

≤
∑
j

|Rj|,

where the last inequality follows from the fact that each Rk,j is contained in

some Rj.

(8) Let R be the collection of all closed cubes in Rn. A closed cube is of the form

I × · · · × I where I is a closed, bounded interval.

(a) Show that (R, | · |) forms a gauge, and thus it determines a complete

measure Ln on Rn called the Lebesgue measure.

(b) Ln(R) = |R| where R is a cube, closed or open.
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(c) For any set E and x ∈ Rn, Ln(E + x) = Ln(E). Thus the Lebsegue

measure is translational invariant.

Solution.

(a) We clearly have

inf
R∈R

|R| = 0 and
∪
R∈R

R = Rn.

Hence, R forms a gauge.

Define µ by

µ(A) = inf

{
∞∑
j=1

|Gj| : Gj ∈ R

}
.

We check that µ is an outer measure.

• Clearly, µ(ϕ) = 0.

• Suppose {Ej : j ∈ N} are given and write E =
∪

j∈NEj. Let ε > 0.

Choose Gjk ∈ R such that

µ(Ej) + 2−jε >
∑
k∈N

|Gjk|.

Then {Gjk : j, k ∈ N} is a countable cover for E. We have

µ(E) ≤
∑
j,k∈N

|Gjk| <
∑
j∈N

(
µ(Ej) + 2−jε

)
=

∑
j∈N

µ(Ej) + ε.

Taking ε → 0, we have

µ(E) ≤
∑
j∈N

µ(Ej).

Following the Carathéodory’s construction, we obtain a complete mea-

sure.
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(b) By (9)(b), it suffices to show that R ⊆
∞∪

Rj ⇒ |R| ≤
∞∑

|Rj|. We

replace Rj = [aj, bj]× [cj, dj] by Ŕj = (aj − ε
2j
, bj +

ε
2j
)× (cj − ε

2
, dj +

ε
2
).

Since {Ŕj} is an open cover of R and R is compact, there exists a finite

subcover Ŕj1 , · · · , ŔjM . By (9)(b)

|R| ≤
M∑
k=1

|Ŕjk | ≤
∑
j,k

|Rj,k| ≤
∑
j

|Rj|+ Cε,

C depends on n only. Let ε → 0,

|R| ≤
∑
j

|Rj|,

which shows that

|R| = inf{
∞∑
1

|Rj| : R ⊆
∞∪
j=1

Rj, Rj closed cube}.

Therefore,

Ln(R) = |R|

where R is a closed cube.

In order to show it also holds for any cube, it suffices to show Ln(F ) = 0

whenever F is a face of R. First, Ln(F ) ≤ Ln(R) < ∞. Let N be

any number> 1 and x1 = (a1, 0), · · · , xN = (aN , 0) be distinct point.

Consider F +xj. For small aj, F +xj can be chosen to sit inside R, then∪
(F + xj) ⊂ R. By (c), NLn(F ) =

∑
Ln(F + xj) = Ln(

∪
(F + xj)) ≤

Ln(R) ⇒ Ln(F ) ≤ Ln(R)

N
→ 0 as N → ∞.

(c) Result follows directly from definition.
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(9) This problem is optional. Use Hahn-Kolmogorov theorem to construct the

Lebesgue measure instead of Problems 7 and 8.

Solution. Look up Wiki.
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