# CENG3420 Lecture 03 Review

#### Bei Yu

byu@cse.cuhk.edu.hk

2017 Spring



香港中文大學 The Chinese University of Hong Kong

### CISC vs. RISC

### Complex Instruction Set Computer (CISC)

Lots of instructions of variable size, very memory optimal, typically less registers.

Intel x86

### Reduced Instruction Set Computer (RISC)

Instructions, all of a fixed size, more registers, optimized for speed. Usually called a "Load/Store" architecture.

MIPS, Sun SPARC, HP PA-RISC, IBM PowerPC ...





### The MIPS ISA

### **Instruction Categories**

- ▶ Load/Store
- Computational
- Jump and Branch
- Floating Point
- Memory Management
- Special

#### Registers

R0 - R31

PC HI LO

#### 3 Instruction Formats: all 32 bits wide

| R Format | OP | rs          | rt | rd        | shamt | funct |
|----------|----|-------------|----|-----------|-------|-------|
| I Format | OP | rs          | rt | immediate |       |       |
| J Format | OP | jump target |    |           |       |       |





## Aside: MIPS Register Convention

| Name        | Register<br>Number | Usage                  | Preserve on call? |
|-------------|--------------------|------------------------|-------------------|
| \$zero      | 0                  | constant 0 (hardware)  | n.a.              |
| \$at        | 1                  | reserved for assembler | no                |
| \$v0 - \$v1 | 2-3                | returned values        | no                |
| \$a0 - \$a3 | 4-7                | arguments              | no                |
| \$t0 - \$t7 | 8-15               | temporaries            | no                |
| \$s0 - \$s7 | 16-23              | saved values           | yes               |
| \$t8 - \$t9 | 24-25              | temporaries            | no                |
| \$gp        | 28                 | global pointer         | yes               |
| \$sp        | 29                 | stack pointer          | yes               |
| \$fp        | 30                 | frame pointer          | yes               |
| \$ra        | 31                 | return addr (hardware) | yes               |



## MIPS Arithmetic Instructions

MIPS assembly language arithmetic statement

```
add $t0, $s1, $s2
sub $t0, $s1, $s2
```

- Each arithmetic instruction performs one operation
- Each specifies exactly three operands that are all contained in the datapath's register file (\$t0, \$s1, \$s2)

```
destination = source1 op source2
```

Instruction Format (R format)

| 0 | 17 | 18 | 8 | 0 | 0x22 |
|---|----|----|---|---|------|





### MIPS Immediate Instructions

Small constants are used often in typical code

### Possible approaches?

- put "typical constants" in memory and load them
- create hard-wired registers (like \$zero) for constants like 1
- have special instructions that contain constants

```
addi $sp, $sp, 4  #$sp = $sp + 4

slti $t0, $s2, 15  #$t0 = 1 if $s2<15
```





### MIPS Immediate Instructions

Small constants are used often in typical code

### Possible approaches?

- put "typical constants" in memory and load them
- create hard-wired registers (like \$zero) for constants like 1
- have special instructions that contain constants

```
addi $sp, $sp, 4  #$sp = $sp + 4

slti $t0, $s2, 15  #$t0 = 1 if $s2<15
```

- Machine format (I format)
- The constant is kept inside the instruction itself!
- ▶ Immediate format limits values to the range  $-2^{15}$  to  $+2^{15}-1$





- We'd also like to be able to load a 32 bit constant into a register
- For this we must use two instructions





- We'd also like to be able to load a 32 bit constant into a register
- For this we must use two instructions
- 1. A new "load upper immediate" instruction

```
lui $t0, 1010101010101010
```





- We'd also like to be able to load a 32 bit constant into a register
- For this we must use two instructions
- 1. A new "load upper immediate" instruction

```
lui $t0, 1010101010101010
```

2. Then must get the lower order bits right, use

```
ori $t0, $t0, 1010101010101010
```





- We'd also like to be able to load a 32 bit constant into a register
- For this we must use two instructions
- 1. A new "load upper immediate" instruction

**lui** \$t0, 1010101010101010

Then must get the lower order bits right, use

ori \$t0, \$t0, 1010101010101010

| 1010101010101010 | 0000000000000000 |
|------------------|------------------|
| 0000000000000000 | 1010101010101010 |





## MIPS Shift Operations

- Need operations to pack and unpack 8-bit characters into 32-bit words
- Shifts move all the bits in a word left or right

```
sl1 $t2, $s0, 8  #$t2 = $s0 << 8 bits

sr1 $t2, $s0, 8  #$t2 = $s0 >> 8 bits
```

- Instruction Format (R format)
- Such shifts are called logical because they fill with zeros
- Notice that a 5-bit shamt field is enough to shift a 32-bit value  $2^5-1$  or 31 bit positions





## MIPS Logical Operations

### There are a number of bit-wise logical operations in the MIPS ISA

#### R Format

```
and $t0, $t1, $t2  #$t0 = $t1 & $t2
or $t0, $t1, $t2  #$t0 = $t1 | $t2
nor $t0, $t1, $t2  #$t0 = not($t1 | $t2)
```

#### I Format

```
andi $t0, $t1, 0xFF00 #$t0 = $t1 & ff00

ori $t0, $t1, 0xFF00 #$t0 = $t1 | ff00
```





## MIPS Memory Access Instructions

Two basic data transfer instructions for accessing memory

```
lw $t0, 4($s3) #load word from memory
sw $t0, 8($s3) #store word to memory
```

- ► The data is loaded into (1w) or stored from (sw) a register in the register file – a 5 bit address
- ► The memory address a 32 bit address is formed by adding the contents of the base address register to the offset value
- ▶ A 16-bit field meaning access is limited to memory locations within a region of  $\pm 2^{13}$  or 8,192 words ( $\pm 2^{15}$  or 32,768 bytes) of the address in the base register

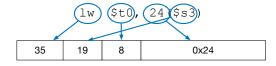




## Machine Language – Load Instruction

### Load/Store Instruction Format (I format):

lw \$t0, 24(\$s3)

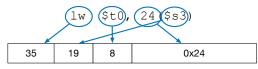

| 35 19 8 | 0x24 |
|---------|------|
|---------|------|

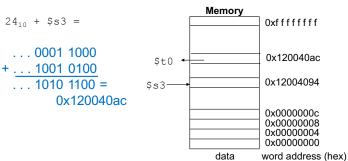




## Machine Language – Load Instruction

### Load/Store Instruction Format (I format):






## Machine Language – Load Instruction

#### Load/Store Instruction Format (I format):









## Byte Addresses

- Since 8-bit bytes are so useful, most architectures address individual bytes in memory
- Alignment restriction the memory address of a word must be on natural word boundaries (a multiple of 4 in MIPS-32)
- Big Endian: leftmost byte is word address
  - ► IBM 360/370, Motorola 68k, MIPS, Sparc, HP PA
- Little Endian: rightmost byte is word address
  - Intel 80x86, DEC Vax, DEC Alpha (Windows NT)



big endian byte 0





## Aside: Loading and Storing Bytes

### MIPS provides special instructions to move bytes

```
1b $t0, 1($s3) #load byte from memory
sb $t0, 6($s3) #store byte to memory
```

- What 8 bits get loaded and stored?
- Load byte places the byte from memory in the rightmost 8 bits of the destination register
- Store byte takes the byte from the rightmost 8 bits of a register and writes it to a byte in memory





Given following code sequence and memory state:

| add | \$s3, | \$zero, | \$zero |
|-----|-------|---------|--------|
| 1b  | \$t0, | 1(\$s3) |        |
| sb  | \$t0, | 6(\$s3) |        |

| Memory             |            |
|--------------------|------------|
| 0x 0 0 0 0 0 0 0 0 | 24         |
| 0x 0 0 0 0 0 0 0 0 | 20         |
| 0x 0 0 0 0 0 0 0 0 | 16         |
| 0x 1 0 0 0 0 0 1 0 | 12         |
| 0x 0 1 0 0 0 4 0 2 | 8          |
| 0xFFFFFFF          | 4          |
| 0x009012A0         | 0          |
|                    | rd Address |

- 1. What value is left in \$t0?
- 2. What word is changed in Memory and to what?
- 3. What if the machine was little Endian?

#### Solution:





Given following code sequence and memory state:

| add | \$s3, | \$zero, | \$zero |
|-----|-------|---------|--------|
| 1b  | \$t0, | 1(\$s3) |        |
| sb  | \$t0, | 6(\$s3) |        |

| Memory             |            |
|--------------------|------------|
| 0x 0 0 0 0 0 0 0 0 | 24         |
| 0x 0 0 0 0 0 0 0 0 | 20         |
| 0x 0 0 0 0 0 0 0 0 | 16         |
| 0x 1 0 0 0 0 0 1 0 | 12         |
| 0x 0 1 0 0 0 4 0 2 | 8          |
| 0x FFFFFFF         | 4          |
| 0x 0 0 9 0 1 2 A 0 | 0          |
|                    | rd Address |

- 1. What value is left in \$t0?
- 2. What word is changed in Memory and to what?
- 3. What if the machine was little Endian?

#### Solution:

1. \$t0 = 0x00000090





Given following code sequence and memory state:

| add | \$s3, | \$zero, | \$zero |
|-----|-------|---------|--------|
| 1b  | \$t0, | 1(\$s3) |        |
| sb  | \$t0, | 6(\$s3) |        |

| Memory             |            |
|--------------------|------------|
| 0x 0 0 0 0 0 0 0 0 | 24         |
| 0x 0 0 0 0 0 0 0 0 | 20         |
| 0x 0 0 0 0 0 0 0 0 | 16         |
| 0x 1 0 0 0 0 0 1 0 | 12         |
| 0x 0 1 0 0 0 4 0 2 | 8          |
| 0x F F F F F F F F | 4          |
| 0x009012A0         | 0          |
|                    | rd Address |

- 1. What value is left in \$t0?
- 2. What word is changed in Memory and to what?
- 3. What if the machine was little Endian?

#### Solution:

- 1. \$t0 = 0x00000090
- 2. mem(4) = 0xFFFF90FF





Given following code sequence and memory state:

| add | \$s3, | \$zero, | \$zero |
|-----|-------|---------|--------|
| 1b  | \$t0, | 1(\$s3) |        |
| sb  | \$t0, | 6(\$s3) |        |

| Memory             |            |
|--------------------|------------|
| 0x 0 0 0 0 0 0 0 0 | 24         |
| 0x 0 0 0 0 0 0 0 0 | 20         |
| 0x 0 0 0 0 0 0 0 0 | 16         |
| 0x 1 0 0 0 0 0 1 0 | 12         |
| 0x 0 1 0 0 0 4 0 2 | 8          |
| 0x F F F F F F F F | 4          |
| 0x 0 0 9 0 1 2 A 0 | 0          |
|                    | rd Address |

- 1. What value is left in \$t0?
- 2. What word is changed in Memory and to what?
- 3. What if the machine was little Endian?

#### Solution:

- 1. \$t0 = 0x00000090
- 2. mem(4) = 0xFFFF90FF
- 3. \$t0 = 0x00000012; mem(4) = 0xFF12FFFF





### MIPS Control Flow Instructions

#### MIPS conditional branch instructions:

```
bne $s0, $s1, Lb1 #go to Lb1 if $s0!=$s1
beq $s0, $s1, Lb1 #go to Lb1 if $s0=$s1
```

### Example

```
if (i==j) h = i + j;

bne $s0, $s1, Lb11
   add $s3, $s0, $s1
Lb11: ...
```

- Instruction Format (I format)
- How is the branch destination address specified ?





## **Specifying Branch Destinations**

- ► Use a register (like in lw and sw) added to the 16-bit offset
- which register? Instruction Address Register (the PC)
- its use is automatically implied by instruction
- PC gets updated (PC+4) during the fetch cycle so that it holds the address of the next instruction
- ▶ limits the branch distance to  $-2^{15}$  to  $+2^{15}-1$  (word) instructions from the (instruction after the) branch instruction, but most branches are local anyway

from the low order 16 bits of the branch instruction

16

offset

sign-extend

PC

32

Add

32

Add

32

Add

32

7



## In Support of Branch Instructions

- We have beq, bne, but what about other kinds of branches (e.g., branch-if-less-than)?
- ▶ For this, we need yet another instruction, slt

#### Set on less than instruction:

```
slt $t0, $s0, $s1  # if $s0 < $s1 then # $t0 = 1 else # $t0 = 0
```

Instruction format (R format)

#### Alternate versions of slt.

```
slti $t0, $s0, 25  # if $s0 < 25 then $t0=1 ... 

sltu $t0, $s0, $s1  # if $s0 < $s1 then $t0=1 ... 

sltiu $t0, $s0, 25  # if $s0 < 25 then $t0=1 ...
```





## Aside: More Branch Instructions

Can use slt, beq, bne, and the fixed value of 0 in register \$zero to create other conditions

▶ less than: blt \$s1, \$s2, Label

```
      slt
      $at, $s1, $s2
      #$at set to 1 if

      bne
      $at, $zero, Label
      #$s1 < $s2</td>
```

- ▶ less than or equal to: ble \$s1, \$s2, Label
- greater than: bgt \$s1, \$s2, Label
- ▶ great than or equal to: bge \$s1, \$s2, Label





## Aside: More Branch Instructions

Can use slt, beq, bne, and the fixed value of 0 in register \$zero to create other conditions

▶ less than: blt \$s1, \$s2, Label

```
      slt
      $at, $s1, $s2
      #$at set to 1 if

      bne
      $at, $zero, Label
      #$s1 < $s2</td>
```

- ▶ less than or equal to: ble \$s1, \$s2, Label
- greater than: bgt \$s1, \$s2, Label
- ▶ great than or equal to: bge \$s1, \$s2, Label
- Such branches are included in the instruction set as pseudo instructions – recognized (and expanded) by the assembler
- It's why the assembler needs a reserved register (\$at)



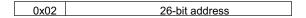


## **Bounds Check Shortcut**

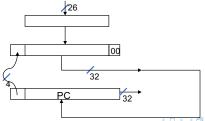
► Treating signed numbers as if they were unsigned gives a low cost way of checking if  $0 \le x < y$  (index out of bounds for arrays)

- The key is that negative integers in two's complement look like large numbers in unsigned notation.
- Thus, an unsigned comparison of x < y also checks if x is negative as well as if x is less than y.






### Other Control Flow Instructions


MIPS also has an unconditional branch instruction or jump instruction:

**j** label #go to label

Instruction Format (J Format)



from the low order 26 bits of the jump instruction





### EX-2: Branching Far Away

What if the branch destination is further away than can be captured in 16 bits? Re-write the following codes.

Solution:





### EX-2: Branching Far Away

What if the branch destination is further away than can be captured in 16 bits? Re-write the following codes.

#### Solution:

```
bne $s0, $s1, L2
j L1
L2: ...
```





## Six Steps in Execution of a Procedure

- 1. Main routine (caller) places parameters in a place where the procedure (callee) can access them
  - ▶ \$a0 \$a3: four argument registers
- Caller transfers control to the callee
- Callee acquires the storage resources needed
- 4. Callee performs the desired task
- Callee places the result value in a place where the caller can access it
  - \$v0-\$v1: two value registers for result values
- 6. Callee returns control to the caller
  - \$ra: one return address register to return to the point of origin





## Instructions for Accessing Procedures

MIPS procedure call instruction:

jal ProcedureAddress #jump and link

- Saves PC+4 in register \$ra to have a link to the next instruction for the procedure return
- Machine format (J format):
- Then can do procedure return with a

**jr** \$ra #return

Instruction format (R format)



## **Example of Accessing Procedures**

- For a procedure that computes the GCD of two values i (in \$t0) and j (in \$t1): gcd(i, j);
- ► The caller puts the i and j (the parameters values) in \$a0 and \$a1 and issues a

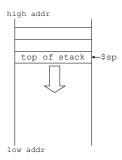
```
jal gcd #jump to routine gcd
```

► The callee computes the GCD, puts the result in \$v0, and returns control to the caller using

```
gcd: . . . #code to compute gcd
jr $ra #return
```





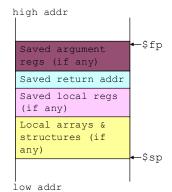

# What if the callee needs to use more registers than allocated to argument and return values?

- Use a stack: a last-in-first-out queue
- One of the general registers, \$sp (\$29), is used to address the stack
- "grows" from high address to low address
- push: add data onto the stack, data on stack at new \$sp

$$$sp = $sp - 4$$

pop: remove data from the stack, data from stack at \$sp

$$$sp = $sp + 4$$

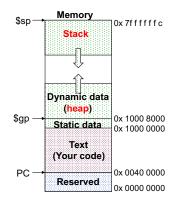







## Allocating Space on the Stack

- The segment of the stack containing a procedure's saved registers and local variables is its procedure frame (aka activation record)
- The frame pointer (\$fp) points to the first word of the frame of a procedure – providing a stable "base" register for the procedure
- \$fp is initialized using \$sp on a call and \$sp is restored using \$fp on a return








## Allocating Space on the Heap

- Static data segment for constants and other static variables (e.g., arrays)
- Dynamic data segment (aka heap) for structures that grow and shrink (e.g., linked lists)
- Allocate space on the heap with malloc() and free it with free() in C







### EX-3: Compiling a C Leaf Procedure

Leaf procedures are ones that do not call other procedures. Given the MIPS assembler code for the follows.

```
int leaf_ex (int g, int h, int i, int j)
{
    int f;
    f = (g+h) - (i+j);
    return f;
}
```

Solution:





#### EX-3: Compiling a C Leaf Procedure

Leaf procedures are ones that do not call other procedures. Given the MIPS assembler code for the follows.

```
int leaf_ex (int g, int h, int i, int j)
{
    int f;
    f = (g+h) - (i+j);
    return f;
}
```

#### Solution:

### Suppose g, h, i, and j are in a0, a1, a2, a3



### **Nested Procedures**

- Nested Procedure: call other procedures
- What happens to return addresses with nested procedures?

```
int rt_1 (int i)
{
    if (i == 0) return 0;
    else return rt_2(i-1);
}
```





### Nested procedures (cont.)

```
caller: jal rt 1
next: . . .
rt_1: bne $a0, $zero, to_2
       add $v0, $zero, $zero
       jr $ra
to 2: addi $a0, $a0, -1
       jal rt 2
       jr $ra
rt 2: . . .
```

- ➤ On the call to rt\_1, the return address (next in the caller routine) gets stored in \$ra.
- What happens to the value in \$ra (when \$a0!=0) when rt\_1 makes a call to rt 2?

## Compiling a Recursive Procedure

#### A procedure for calculating factorial

```
int fact (int n)
{
    if (n < 1) return 1;
    else return (n * fact (n-1));
}</pre>
```

A recursive procedure (one that calls itself!)

```
fact (0) = 1

fact (1) = 1 * 1 = 1

fact (2) = 2 * 1 * 1 = 2

fact (3) = 3 * 2 * 1 * 1 = 6

fact (4) = 4 * 3 * 2 * 1 * 1 = 24
```

Assume n is passed in \$a0; result returned in \$v0



# Compiling a Recursive Procedure (cont.)

```
fact: addi $sp, $sp, -8 #adjust stack pointer
                         #save return address
     sw $ra, 4($sp)
     sw $a0, 0($sp) #save argument n
     slti $t0, $a0, 1 #test for n < 1
     beg $t0, $zero, L1 #if n \ge 1, go to L1
     addi $v0, $zero, 1 #else return 1 in $v0
     addi $sp, $sp, 8 #adjust stack pointer
     jr $ra
                       #return to caller
T.1:
     addi \$a0, \$a0, -1 #n >=1, so decrement n
     jal fact
                         #call fact with (n-1)
                          #this is where fact returns
bk f: lw $a0, 0($sp)
                         #restore argument n
     lw $ra, 4($sp) #restore return address
     addi $sp, $sp, 8 #adjust stack pointer
     mul $v0, $a0, $v0 #$v0 = n * fact(n-1)
     jr $ra
                         #return to caller
```

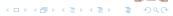




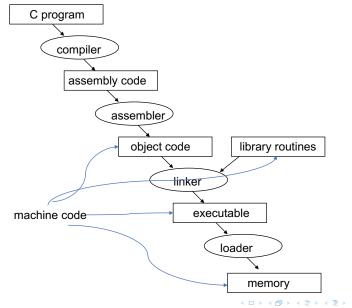
## **Atomic Exchange Support**

- Need hardware support for synchronization mechanisms to avoid data races where the results of the program can change depending on how events happen to occur
- Two memory accesses from different threads to the same location, and at least one is a write
- Atomic exchange (atomic swap): interchanges a value in a register for a value in memory atomically, i.e., as one operation (instruction)
- Implementing an atomic exchange would require both a memory read and a memory write in a single, uninterruptable instruction.
- An alternative is to have a pair of specially configured instructions

```
11 $t1, 0($s1) #load linked
sc $t0, 0($s1) #store conditional
```







### Automic Exchange with 11 and sc

- If the contents of the memory location specified by the 11 are changed before the sc to the same address occurs, the sc fails
- If the value in memory between the 11 and the sc instructions changes, then sc returns a 0 in \$t0 causing the code sequence to try again.

#### Example:



# The C Code Translation Hierarchy





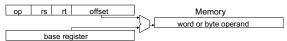
### **Compiler Benefits**

- Comparing performance for bubble (exchange) sort
- To sort 100,000 words with the array initialized to random values on a Pentium 4 with a 3.06 clock rate, a 533 MHz system bus, with 2 GB of DDR SDRAM, using Linux version 2.4.20

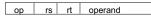
The un-optimized code has the best CPI, the O1 version has the lowest instruction count, but the O3 version is the fastest. Why?

| gcc opt       | Relative<br>performance | Clock cycles<br>(M) | Instr count<br>(M) | СРІ  |
|---------------|-------------------------|---------------------|--------------------|------|
| None          | 1.00                    | 158,615             | 114,938            | 1.38 |
| O1 (medium)   | 2.37                    | 66,990              | 37,470             | 1.79 |
| O2 (full)     | 2.38                    | 66,521              | 39,993             | 1.66 |
| O3 (proc mig) | 2.41                    | 65,747              | 44,993             | 1.46 |

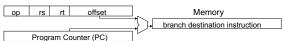




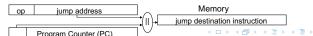

### Addressing Modes Illustrated


Register addressing

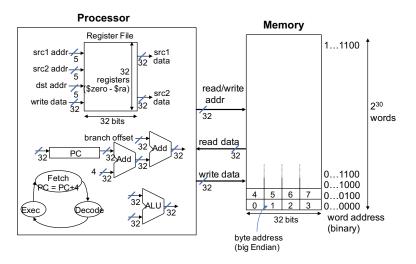



Base (displacement) addressing




Immediate addressing




PC-relative addressing



Pseudo-direct addressing



### MIPS Organization So Far





